summaryrefslogtreecommitdiff
path: root/standalone/secondary.h
blob: 8dc4c87fa7c6e991b57607ed97a2e246dc6b15cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//===-- secondary.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_SECONDARY_H_
#define SCUDO_SECONDARY_H_

#include "chunk.h"
#include "common.h"
#include "list.h"
#include "mem_map.h"
#include "memtag.h"
#include "mutex.h"
#include "options.h"
#include "stats.h"
#include "string_utils.h"
#include "thread_annotations.h"

namespace scudo {

// This allocator wraps the platform allocation primitives, and as such is on
// the slower side and should preferably be used for larger sized allocations.
// Blocks allocated will be preceded and followed by a guard page, and hold
// their own header that is not checksummed: the guard pages and the Combined
// header should be enough for our purpose.

namespace LargeBlock {

struct alignas(Max<uptr>(archSupportsMemoryTagging()
                             ? archMemoryTagGranuleSize()
                             : 1,
                         1U << SCUDO_MIN_ALIGNMENT_LOG)) Header {
  LargeBlock::Header *Prev;
  LargeBlock::Header *Next;
  uptr CommitBase;
  uptr CommitSize;
  MemMapT MemMap;
};

static_assert(sizeof(Header) % (1U << SCUDO_MIN_ALIGNMENT_LOG) == 0, "");
static_assert(!archSupportsMemoryTagging() ||
                  sizeof(Header) % archMemoryTagGranuleSize() == 0,
              "");

constexpr uptr getHeaderSize() { return sizeof(Header); }

template <typename Config> static uptr addHeaderTag(uptr Ptr) {
  if (allocatorSupportsMemoryTagging<Config>())
    return addFixedTag(Ptr, 1);
  return Ptr;
}

template <typename Config> static Header *getHeader(uptr Ptr) {
  return reinterpret_cast<Header *>(addHeaderTag<Config>(Ptr)) - 1;
}

template <typename Config> static Header *getHeader(const void *Ptr) {
  return getHeader<Config>(reinterpret_cast<uptr>(Ptr));
}

} // namespace LargeBlock

static inline void unmap(LargeBlock::Header *H) {
  // Note that the `H->MapMap` is stored on the pages managed by itself. Take
  // over the ownership before unmap() so that any operation along with unmap()
  // won't touch inaccessible pages.
  MemMapT MemMap = H->MemMap;
  MemMap.unmap(MemMap.getBase(), MemMap.getCapacity());
}

namespace {
struct CachedBlock {
  uptr CommitBase = 0;
  uptr CommitSize = 0;
  uptr BlockBegin = 0;
  MemMapT MemMap = {};
  u64 Time = 0;

  bool isValid() { return CommitBase != 0; }

  void invalidate() { CommitBase = 0; }
};
} // namespace

template <typename Config> class MapAllocatorNoCache {
public:
  void init(UNUSED s32 ReleaseToOsInterval) {}
  bool retrieve(UNUSED Options Options, UNUSED uptr Size, UNUSED uptr Alignment,
                UNUSED uptr HeadersSize, UNUSED LargeBlock::Header **H,
                UNUSED bool *Zeroed) {
    return false;
  }
  void store(UNUSED Options Options, LargeBlock::Header *H) { unmap(H); }
  bool canCache(UNUSED uptr Size) { return false; }
  void disable() {}
  void enable() {}
  void releaseToOS() {}
  void disableMemoryTagging() {}
  void unmapTestOnly() {}
  bool setOption(Option O, UNUSED sptr Value) {
    if (O == Option::ReleaseInterval || O == Option::MaxCacheEntriesCount ||
        O == Option::MaxCacheEntrySize)
      return false;
    // Not supported by the Secondary Cache, but not an error either.
    return true;
  }

  void getStats(UNUSED ScopedString *Str) {
    Str->append("Secondary Cache Disabled\n");
  }
};

static const uptr MaxUnusedCachePages = 4U;

template <typename Config>
bool mapSecondary(const Options &Options, uptr CommitBase, uptr CommitSize,
                  uptr AllocPos, uptr Flags, MemMapT &MemMap) {
  Flags |= MAP_RESIZABLE;
  Flags |= MAP_ALLOWNOMEM;

  const uptr MaxUnusedCacheBytes = MaxUnusedCachePages * getPageSizeCached();
  if (useMemoryTagging<Config>(Options) && CommitSize > MaxUnusedCacheBytes) {
    const uptr UntaggedPos = Max(AllocPos, CommitBase + MaxUnusedCacheBytes);
    return MemMap.remap(CommitBase, UntaggedPos - CommitBase, "scudo:secondary",
                        MAP_MEMTAG | Flags) &&
           MemMap.remap(UntaggedPos, CommitBase + CommitSize - UntaggedPos,
                        "scudo:secondary", Flags);
  } else {
    const uptr RemapFlags =
        (useMemoryTagging<Config>(Options) ? MAP_MEMTAG : 0) | Flags;
    return MemMap.remap(CommitBase, CommitSize, "scudo:secondary", RemapFlags);
  }
}

// Template specialization to avoid producing zero-length array
template <typename T, size_t Size> class NonZeroLengthArray {
public:
  T &operator[](uptr Idx) { return values[Idx]; }

private:
  T values[Size];
};
template <typename T> class NonZeroLengthArray<T, 0> {
public:
  T &operator[](uptr UNUSED Idx) { UNREACHABLE("Unsupported!"); }
};

template <typename Config> class MapAllocatorCache {
public:
  using CacheConfig = typename Config::Secondary::Cache;

  void getStats(ScopedString *Str) {
    ScopedLock L(Mutex);
    u32 Integral = 0;
    u32 Fractional = 0;
    if (CallsToRetrieve != 0) {
      Integral = SuccessfulRetrieves * 100 / CallsToRetrieve;
      Fractional = (((SuccessfulRetrieves * 100) % CallsToRetrieve) * 100 +
                    CallsToRetrieve / 2) /
                   CallsToRetrieve;
    }
    Str->append("Stats: MapAllocatorCache: EntriesCount: %d, "
                "MaxEntriesCount: %u, MaxEntrySize: %zu\n",
                EntriesCount, atomic_load_relaxed(&MaxEntriesCount),
                atomic_load_relaxed(&MaxEntrySize));
    Str->append("Stats: CacheRetrievalStats: SuccessRate: %u/%u "
                "(%u.%02u%%)\n",
                SuccessfulRetrieves, CallsToRetrieve, Integral, Fractional);
    for (CachedBlock Entry : Entries) {
      if (!Entry.isValid())
        continue;
      Str->append("StartBlockAddress: 0x%zx, EndBlockAddress: 0x%zx, "
                  "BlockSize: %zu %s\n",
                  Entry.CommitBase, Entry.CommitBase + Entry.CommitSize,
                  Entry.CommitSize, Entry.Time == 0 ? "[R]" : "");
    }
  }

  // Ensure the default maximum specified fits the array.
  static_assert(CacheConfig::DefaultMaxEntriesCount <=
                    CacheConfig::EntriesArraySize,
                "");

  void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
    DCHECK_EQ(EntriesCount, 0U);
    setOption(Option::MaxCacheEntriesCount,
              static_cast<sptr>(CacheConfig::DefaultMaxEntriesCount));
    setOption(Option::MaxCacheEntrySize,
              static_cast<sptr>(CacheConfig::DefaultMaxEntrySize));
    setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
  }

  void store(const Options &Options, LargeBlock::Header *H) EXCLUDES(Mutex) {
    if (!canCache(H->CommitSize))
      return unmap(H);

    bool EntryCached = false;
    bool EmptyCache = false;
    const s32 Interval = atomic_load_relaxed(&ReleaseToOsIntervalMs);
    const u64 Time = getMonotonicTimeFast();
    const u32 MaxCount = atomic_load_relaxed(&MaxEntriesCount);
    CachedBlock Entry;
    Entry.CommitBase = H->CommitBase;
    Entry.CommitSize = H->CommitSize;
    Entry.BlockBegin = reinterpret_cast<uptr>(H + 1);
    Entry.MemMap = H->MemMap;
    Entry.Time = Time;
    if (useMemoryTagging<Config>(Options)) {
      if (Interval == 0 && !SCUDO_FUCHSIA) {
        // Release the memory and make it inaccessible at the same time by
        // creating a new MAP_NOACCESS mapping on top of the existing mapping.
        // Fuchsia does not support replacing mappings by creating a new mapping
        // on top so we just do the two syscalls there.
        Entry.Time = 0;
        mapSecondary<Config>(Options, Entry.CommitBase, Entry.CommitSize,
                             Entry.CommitBase, MAP_NOACCESS, Entry.MemMap);
      } else {
        Entry.MemMap.setMemoryPermission(Entry.CommitBase, Entry.CommitSize,
                                         MAP_NOACCESS);
      }
    } else if (Interval == 0) {
      Entry.MemMap.releaseAndZeroPagesToOS(Entry.CommitBase, Entry.CommitSize);
      Entry.Time = 0;
    }
    do {
      ScopedLock L(Mutex);
      if (useMemoryTagging<Config>(Options) && QuarantinePos == -1U) {
        // If we get here then memory tagging was disabled in between when we
        // read Options and when we locked Mutex. We can't insert our entry into
        // the quarantine or the cache because the permissions would be wrong so
        // just unmap it.
        break;
      }
      if (CacheConfig::QuarantineSize && useMemoryTagging<Config>(Options)) {
        QuarantinePos =
            (QuarantinePos + 1) % Max(CacheConfig::QuarantineSize, 1u);
        if (!Quarantine[QuarantinePos].isValid()) {
          Quarantine[QuarantinePos] = Entry;
          return;
        }
        CachedBlock PrevEntry = Quarantine[QuarantinePos];
        Quarantine[QuarantinePos] = Entry;
        if (OldestTime == 0)
          OldestTime = Entry.Time;
        Entry = PrevEntry;
      }
      if (EntriesCount >= MaxCount) {
        if (IsFullEvents++ == 4U)
          EmptyCache = true;
      } else {
        for (u32 I = 0; I < MaxCount; I++) {
          if (Entries[I].isValid())
            continue;
          if (I != 0)
            Entries[I] = Entries[0];
          Entries[0] = Entry;
          EntriesCount++;
          if (OldestTime == 0)
            OldestTime = Entry.Time;
          EntryCached = true;
          break;
        }
      }
    } while (0);
    if (EmptyCache)
      empty();
    else if (Interval >= 0)
      releaseOlderThan(Time - static_cast<u64>(Interval) * 1000000);
    if (!EntryCached)
      Entry.MemMap.unmap(Entry.MemMap.getBase(), Entry.MemMap.getCapacity());
  }

  bool retrieve(Options Options, uptr Size, uptr Alignment, uptr HeadersSize,
                LargeBlock::Header **H, bool *Zeroed) EXCLUDES(Mutex) {
    const uptr PageSize = getPageSizeCached();
    const u32 MaxCount = atomic_load_relaxed(&MaxEntriesCount);
    // 10% of the requested size proved to be the optimal choice for
    // retrieving cached blocks after testing several options.
    constexpr u32 FragmentedBytesDivisor = 10;
    bool Found = false;
    CachedBlock Entry;
    uptr EntryHeaderPos = 0;
    {
      ScopedLock L(Mutex);
      CallsToRetrieve++;
      if (EntriesCount == 0)
        return false;
      u32 OptimalFitIndex = 0;
      uptr MinDiff = UINTPTR_MAX;
      for (u32 I = 0; I < MaxCount; I++) {
        if (!Entries[I].isValid())
          continue;
        const uptr CommitBase = Entries[I].CommitBase;
        const uptr CommitSize = Entries[I].CommitSize;
        const uptr AllocPos =
            roundDown(CommitBase + CommitSize - Size, Alignment);
        const uptr HeaderPos = AllocPos - HeadersSize;
        if (HeaderPos > CommitBase + CommitSize)
          continue;
        if (HeaderPos < CommitBase ||
            AllocPos > CommitBase + PageSize * MaxUnusedCachePages) {
          continue;
        }
        Found = true;
        const uptr Diff = HeaderPos - CommitBase;
        // immediately use a cached block if it's size is close enough to the
        // requested size.
        const uptr MaxAllowedFragmentedBytes =
            (CommitBase + CommitSize - HeaderPos) / FragmentedBytesDivisor;
        if (Diff <= MaxAllowedFragmentedBytes) {
          OptimalFitIndex = I;
          EntryHeaderPos = HeaderPos;
          break;
        }
        // keep track of the smallest cached block
        // that is greater than (AllocSize + HeaderSize)
        if (Diff > MinDiff)
          continue;
        OptimalFitIndex = I;
        MinDiff = Diff;
        EntryHeaderPos = HeaderPos;
      }
      if (Found) {
        Entry = Entries[OptimalFitIndex];
        Entries[OptimalFitIndex].invalidate();
        EntriesCount--;
        SuccessfulRetrieves++;
      }
    }
    if (!Found)
      return false;

    *H = reinterpret_cast<LargeBlock::Header *>(
        LargeBlock::addHeaderTag<Config>(EntryHeaderPos));
    *Zeroed = Entry.Time == 0;
    if (useMemoryTagging<Config>(Options))
      Entry.MemMap.setMemoryPermission(Entry.CommitBase, Entry.CommitSize, 0);
    uptr NewBlockBegin = reinterpret_cast<uptr>(*H + 1);
    if (useMemoryTagging<Config>(Options)) {
      if (*Zeroed) {
        storeTags(LargeBlock::addHeaderTag<Config>(Entry.CommitBase),
                  NewBlockBegin);
      } else if (Entry.BlockBegin < NewBlockBegin) {
        storeTags(Entry.BlockBegin, NewBlockBegin);
      } else {
        storeTags(untagPointer(NewBlockBegin), untagPointer(Entry.BlockBegin));
      }
    }
    (*H)->CommitBase = Entry.CommitBase;
    (*H)->CommitSize = Entry.CommitSize;
    (*H)->MemMap = Entry.MemMap;
    return true;
  }

  bool canCache(uptr Size) {
    return atomic_load_relaxed(&MaxEntriesCount) != 0U &&
           Size <= atomic_load_relaxed(&MaxEntrySize);
  }

  bool setOption(Option O, sptr Value) {
    if (O == Option::ReleaseInterval) {
      const s32 Interval = Max(
          Min(static_cast<s32>(Value), CacheConfig::MaxReleaseToOsIntervalMs),
          CacheConfig::MinReleaseToOsIntervalMs);
      atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
      return true;
    }
    if (O == Option::MaxCacheEntriesCount) {
      const u32 MaxCount = static_cast<u32>(Value);
      if (MaxCount > CacheConfig::EntriesArraySize)
        return false;
      atomic_store_relaxed(&MaxEntriesCount, MaxCount);
      return true;
    }
    if (O == Option::MaxCacheEntrySize) {
      atomic_store_relaxed(&MaxEntrySize, static_cast<uptr>(Value));
      return true;
    }
    // Not supported by the Secondary Cache, but not an error either.
    return true;
  }

  void releaseToOS() { releaseOlderThan(UINT64_MAX); }

  void disableMemoryTagging() EXCLUDES(Mutex) {
    ScopedLock L(Mutex);
    for (u32 I = 0; I != CacheConfig::QuarantineSize; ++I) {
      if (Quarantine[I].isValid()) {
        MemMapT &MemMap = Quarantine[I].MemMap;
        MemMap.unmap(MemMap.getBase(), MemMap.getCapacity());
        Quarantine[I].invalidate();
      }
    }
    const u32 MaxCount = atomic_load_relaxed(&MaxEntriesCount);
    for (u32 I = 0; I < MaxCount; I++) {
      if (Entries[I].isValid()) {
        Entries[I].MemMap.setMemoryPermission(Entries[I].CommitBase,
                                              Entries[I].CommitSize, 0);
      }
    }
    QuarantinePos = -1U;
  }

  void disable() NO_THREAD_SAFETY_ANALYSIS { Mutex.lock(); }

  void enable() NO_THREAD_SAFETY_ANALYSIS { Mutex.unlock(); }

  void unmapTestOnly() { empty(); }

private:
  void empty() {
    MemMapT MapInfo[CacheConfig::EntriesArraySize];
    uptr N = 0;
    {
      ScopedLock L(Mutex);
      for (uptr I = 0; I < CacheConfig::EntriesArraySize; I++) {
        if (!Entries[I].isValid())
          continue;
        MapInfo[N] = Entries[I].MemMap;
        Entries[I].invalidate();
        N++;
      }
      EntriesCount = 0;
      IsFullEvents = 0;
    }
    for (uptr I = 0; I < N; I++) {
      MemMapT &MemMap = MapInfo[I];
      MemMap.unmap(MemMap.getBase(), MemMap.getCapacity());
    }
  }

  void releaseIfOlderThan(CachedBlock &Entry, u64 Time) REQUIRES(Mutex) {
    if (!Entry.isValid() || !Entry.Time)
      return;
    if (Entry.Time > Time) {
      if (OldestTime == 0 || Entry.Time < OldestTime)
        OldestTime = Entry.Time;
      return;
    }
    Entry.MemMap.releaseAndZeroPagesToOS(Entry.CommitBase, Entry.CommitSize);
    Entry.Time = 0;
  }

  void releaseOlderThan(u64 Time) EXCLUDES(Mutex) {
    ScopedLock L(Mutex);
    if (!EntriesCount || OldestTime == 0 || OldestTime > Time)
      return;
    OldestTime = 0;
    for (uptr I = 0; I < CacheConfig::QuarantineSize; I++)
      releaseIfOlderThan(Quarantine[I], Time);
    for (uptr I = 0; I < CacheConfig::EntriesArraySize; I++)
      releaseIfOlderThan(Entries[I], Time);
  }

  HybridMutex Mutex;
  u32 EntriesCount GUARDED_BY(Mutex) = 0;
  u32 QuarantinePos GUARDED_BY(Mutex) = 0;
  atomic_u32 MaxEntriesCount = {};
  atomic_uptr MaxEntrySize = {};
  u64 OldestTime GUARDED_BY(Mutex) = 0;
  u32 IsFullEvents GUARDED_BY(Mutex) = 0;
  atomic_s32 ReleaseToOsIntervalMs = {};
  u32 CallsToRetrieve GUARDED_BY(Mutex) = 0;
  u32 SuccessfulRetrieves GUARDED_BY(Mutex) = 0;

  CachedBlock Entries[CacheConfig::EntriesArraySize] GUARDED_BY(Mutex) = {};
  NonZeroLengthArray<CachedBlock, CacheConfig::QuarantineSize>
      Quarantine GUARDED_BY(Mutex) = {};
};

template <typename Config> class MapAllocator {
public:
  void init(GlobalStats *S,
            s32 ReleaseToOsInterval = -1) NO_THREAD_SAFETY_ANALYSIS {
    DCHECK_EQ(AllocatedBytes, 0U);
    DCHECK_EQ(FreedBytes, 0U);
    Cache.init(ReleaseToOsInterval);
    Stats.init();
    if (LIKELY(S))
      S->link(&Stats);
  }

  void *allocate(const Options &Options, uptr Size, uptr AlignmentHint = 0,
                 uptr *BlockEnd = nullptr,
                 FillContentsMode FillContents = NoFill);

  void deallocate(const Options &Options, void *Ptr);

  static uptr getBlockEnd(void *Ptr) {
    auto *B = LargeBlock::getHeader<Config>(Ptr);
    return B->CommitBase + B->CommitSize;
  }

  static uptr getBlockSize(void *Ptr) {
    return getBlockEnd(Ptr) - reinterpret_cast<uptr>(Ptr);
  }

  static constexpr uptr getHeadersSize() {
    return Chunk::getHeaderSize() + LargeBlock::getHeaderSize();
  }

  void disable() NO_THREAD_SAFETY_ANALYSIS {
    Mutex.lock();
    Cache.disable();
  }

  void enable() NO_THREAD_SAFETY_ANALYSIS {
    Cache.enable();
    Mutex.unlock();
  }

  template <typename F> void iterateOverBlocks(F Callback) const {
    Mutex.assertHeld();

    for (const auto &H : InUseBlocks) {
      uptr Ptr = reinterpret_cast<uptr>(&H) + LargeBlock::getHeaderSize();
      if (allocatorSupportsMemoryTagging<Config>())
        Ptr = untagPointer(Ptr);
      Callback(Ptr);
    }
  }

  bool canCache(uptr Size) { return Cache.canCache(Size); }

  bool setOption(Option O, sptr Value) { return Cache.setOption(O, Value); }

  void releaseToOS() { Cache.releaseToOS(); }

  void disableMemoryTagging() { Cache.disableMemoryTagging(); }

  void unmapTestOnly() { Cache.unmapTestOnly(); }

  void getStats(ScopedString *Str);

private:
  typename Config::Secondary::template CacheT<Config> Cache;

  mutable HybridMutex Mutex;
  DoublyLinkedList<LargeBlock::Header> InUseBlocks GUARDED_BY(Mutex);
  uptr AllocatedBytes GUARDED_BY(Mutex) = 0;
  uptr FreedBytes GUARDED_BY(Mutex) = 0;
  uptr FragmentedBytes GUARDED_BY(Mutex) = 0;
  uptr LargestSize GUARDED_BY(Mutex) = 0;
  u32 NumberOfAllocs GUARDED_BY(Mutex) = 0;
  u32 NumberOfFrees GUARDED_BY(Mutex) = 0;
  LocalStats Stats GUARDED_BY(Mutex);
};

// As with the Primary, the size passed to this function includes any desired
// alignment, so that the frontend can align the user allocation. The hint
// parameter allows us to unmap spurious memory when dealing with larger
// (greater than a page) alignments on 32-bit platforms.
// Due to the sparsity of address space available on those platforms, requesting
// an allocation from the Secondary with a large alignment would end up wasting
// VA space (even though we are not committing the whole thing), hence the need
// to trim off some of the reserved space.
// For allocations requested with an alignment greater than or equal to a page,
// the committed memory will amount to something close to Size - AlignmentHint
// (pending rounding and headers).
template <typename Config>
void *MapAllocator<Config>::allocate(const Options &Options, uptr Size,
                                     uptr Alignment, uptr *BlockEndPtr,
                                     FillContentsMode FillContents) {
  if (Options.get(OptionBit::AddLargeAllocationSlack))
    Size += 1UL << SCUDO_MIN_ALIGNMENT_LOG;
  Alignment = Max(Alignment, uptr(1U) << SCUDO_MIN_ALIGNMENT_LOG);
  const uptr PageSize = getPageSizeCached();

  // Note that cached blocks may have aligned address already. Thus we simply
  // pass the required size (`Size` + `getHeadersSize()`) to do cache look up.
  const uptr MinNeededSizeForCache = roundUp(Size + getHeadersSize(), PageSize);

  if (Alignment < PageSize && Cache.canCache(MinNeededSizeForCache)) {
    LargeBlock::Header *H;
    bool Zeroed;
    if (Cache.retrieve(Options, Size, Alignment, getHeadersSize(), &H,
                       &Zeroed)) {
      const uptr BlockEnd = H->CommitBase + H->CommitSize;
      if (BlockEndPtr)
        *BlockEndPtr = BlockEnd;
      uptr HInt = reinterpret_cast<uptr>(H);
      if (allocatorSupportsMemoryTagging<Config>())
        HInt = untagPointer(HInt);
      const uptr PtrInt = HInt + LargeBlock::getHeaderSize();
      void *Ptr = reinterpret_cast<void *>(PtrInt);
      if (FillContents && !Zeroed)
        memset(Ptr, FillContents == ZeroFill ? 0 : PatternFillByte,
               BlockEnd - PtrInt);
      {
        ScopedLock L(Mutex);
        InUseBlocks.push_back(H);
        AllocatedBytes += H->CommitSize;
        FragmentedBytes += H->MemMap.getCapacity() - H->CommitSize;
        NumberOfAllocs++;
        Stats.add(StatAllocated, H->CommitSize);
        Stats.add(StatMapped, H->MemMap.getCapacity());
      }
      return Ptr;
    }
  }

  uptr RoundedSize =
      roundUp(roundUp(Size, Alignment) + getHeadersSize(), PageSize);
  if (Alignment > PageSize)
    RoundedSize += Alignment - PageSize;

  ReservedMemoryT ReservedMemory;
  const uptr MapSize = RoundedSize + 2 * PageSize;
  if (UNLIKELY(!ReservedMemory.create(/*Addr=*/0U, MapSize, nullptr,
                                      MAP_ALLOWNOMEM))) {
    return nullptr;
  }

  // Take the entire ownership of reserved region.
  MemMapT MemMap = ReservedMemory.dispatch(ReservedMemory.getBase(),
                                           ReservedMemory.getCapacity());
  uptr MapBase = MemMap.getBase();
  uptr CommitBase = MapBase + PageSize;
  uptr MapEnd = MapBase + MapSize;

  // In the unlikely event of alignments larger than a page, adjust the amount
  // of memory we want to commit, and trim the extra memory.
  if (UNLIKELY(Alignment >= PageSize)) {
    // For alignments greater than or equal to a page, the user pointer (eg: the
    // pointer that is returned by the C or C++ allocation APIs) ends up on a
    // page boundary , and our headers will live in the preceding page.
    CommitBase = roundUp(MapBase + PageSize + 1, Alignment) - PageSize;
    const uptr NewMapBase = CommitBase - PageSize;
    DCHECK_GE(NewMapBase, MapBase);
    // We only trim the extra memory on 32-bit platforms: 64-bit platforms
    // are less constrained memory wise, and that saves us two syscalls.
    if (SCUDO_WORDSIZE == 32U && NewMapBase != MapBase) {
      MemMap.unmap(MapBase, NewMapBase - MapBase);
      MapBase = NewMapBase;
    }
    const uptr NewMapEnd =
        CommitBase + PageSize + roundUp(Size, PageSize) + PageSize;
    DCHECK_LE(NewMapEnd, MapEnd);
    if (SCUDO_WORDSIZE == 32U && NewMapEnd != MapEnd) {
      MemMap.unmap(NewMapEnd, MapEnd - NewMapEnd);
      MapEnd = NewMapEnd;
    }
  }

  const uptr CommitSize = MapEnd - PageSize - CommitBase;
  const uptr AllocPos = roundDown(CommitBase + CommitSize - Size, Alignment);
  if (!mapSecondary<Config>(Options, CommitBase, CommitSize, AllocPos, 0,
                            MemMap)) {
    MemMap.unmap(MemMap.getBase(), MemMap.getCapacity());
    return nullptr;
  }
  const uptr HeaderPos = AllocPos - getHeadersSize();
  LargeBlock::Header *H = reinterpret_cast<LargeBlock::Header *>(
      LargeBlock::addHeaderTag<Config>(HeaderPos));
  if (useMemoryTagging<Config>(Options))
    storeTags(LargeBlock::addHeaderTag<Config>(CommitBase),
              reinterpret_cast<uptr>(H + 1));
  H->CommitBase = CommitBase;
  H->CommitSize = CommitSize;
  H->MemMap = MemMap;
  if (BlockEndPtr)
    *BlockEndPtr = CommitBase + CommitSize;
  {
    ScopedLock L(Mutex);
    InUseBlocks.push_back(H);
    AllocatedBytes += CommitSize;
    FragmentedBytes += H->MemMap.getCapacity() - CommitSize;
    if (LargestSize < CommitSize)
      LargestSize = CommitSize;
    NumberOfAllocs++;
    Stats.add(StatAllocated, CommitSize);
    Stats.add(StatMapped, H->MemMap.getCapacity());
  }
  return reinterpret_cast<void *>(HeaderPos + LargeBlock::getHeaderSize());
}

template <typename Config>
void MapAllocator<Config>::deallocate(const Options &Options, void *Ptr)
    EXCLUDES(Mutex) {
  LargeBlock::Header *H = LargeBlock::getHeader<Config>(Ptr);
  const uptr CommitSize = H->CommitSize;
  {
    ScopedLock L(Mutex);
    InUseBlocks.remove(H);
    FreedBytes += CommitSize;
    FragmentedBytes -= H->MemMap.getCapacity() - CommitSize;
    NumberOfFrees++;
    Stats.sub(StatAllocated, CommitSize);
    Stats.sub(StatMapped, H->MemMap.getCapacity());
  }
  Cache.store(Options, H);
}

template <typename Config>
void MapAllocator<Config>::getStats(ScopedString *Str) EXCLUDES(Mutex) {
  ScopedLock L(Mutex);
  Str->append("Stats: MapAllocator: allocated %u times (%zuK), freed %u times "
              "(%zuK), remains %u (%zuK) max %zuM, Fragmented %zuK\n",
              NumberOfAllocs, AllocatedBytes >> 10, NumberOfFrees,
              FreedBytes >> 10, NumberOfAllocs - NumberOfFrees,
              (AllocatedBytes - FreedBytes) >> 10, LargestSize >> 20,
              FragmentedBytes >> 10);
  Cache.getStats(Str);
}

} // namespace scudo

#endif // SCUDO_SECONDARY_H_