aboutsummaryrefslogtreecommitdiff
path: root/src/denoise.c
blob: ec9bc41e6769fdfc7c5c89e84d92637869fecd6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
/* Copyright (c) 2018 Gregor Richards
 * Copyright (c) 2017 Mozilla */
/*
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.

   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "kiss_fft.h"
#include "common.h"
#include <math.h>
#include "rnnoise.h"
#include "pitch.h"
#include "arch.h"
#include "rnn.h"
#include "rnn_data.h"

#define FRAME_SIZE_SHIFT 2
#define FRAME_SIZE (120<<FRAME_SIZE_SHIFT)
#define WINDOW_SIZE (2*FRAME_SIZE)
#define FREQ_SIZE (FRAME_SIZE + 1)

#define PITCH_MIN_PERIOD 60
#define PITCH_MAX_PERIOD 768
#define PITCH_FRAME_SIZE 960
#define PITCH_BUF_SIZE (PITCH_MAX_PERIOD+PITCH_FRAME_SIZE)

#define SQUARE(x) ((x)*(x))

#define NB_BANDS 22

#define CEPS_MEM 8
#define NB_DELTA_CEPS 6

#define NB_FEATURES (NB_BANDS+3*NB_DELTA_CEPS+2)


#ifndef TRAINING
#define TRAINING 0
#endif


/* The built-in model, used if no file is given as input */
extern const struct RNNModel rnnoise_model_orig;


static const opus_int16 eband5ms[] = {
/*0  200 400 600 800  1k 1.2 1.4 1.6  2k 2.4 2.8 3.2  4k 4.8 5.6 6.8  8k 9.6 12k 15.6 20k*/
  0,  1,  2,  3,  4,  5,  6,  7,  8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
};


typedef struct {
  int init;
  kiss_fft_state *kfft;
  float half_window[FRAME_SIZE];
  float dct_table[NB_BANDS*NB_BANDS];
} CommonState;

struct DenoiseState {
  float analysis_mem[FRAME_SIZE];
  float cepstral_mem[CEPS_MEM][NB_BANDS];
  int memid;
  float synthesis_mem[FRAME_SIZE];
  float pitch_buf[PITCH_BUF_SIZE];
  float pitch_enh_buf[PITCH_BUF_SIZE];
  float last_gain;
  int last_period;
  float mem_hp_x[2];
  float lastg[NB_BANDS];
  RNNState rnn;
};

static void compute_band_energy(float *bandE, const kiss_fft_cpx *X) {
  int i;
  float sum[NB_BANDS] = {0};
  for (i=0;i<NB_BANDS-1;i++)
  {
    int j;
    int band_size;
    band_size = (eband5ms[i+1]-eband5ms[i])<<FRAME_SIZE_SHIFT;
    for (j=0;j<band_size;j++) {
      float tmp;
      float frac = (float)j/band_size;
      tmp = SQUARE(X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].r);
      tmp += SQUARE(X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].i);
      sum[i] += (1-frac)*tmp;
      sum[i+1] += frac*tmp;
    }
  }
  sum[0] *= 2;
  sum[NB_BANDS-1] *= 2;
  for (i=0;i<NB_BANDS;i++)
  {
    bandE[i] = sum[i];
  }
}

static void compute_band_corr(float *bandE, const kiss_fft_cpx *X, const kiss_fft_cpx *P) {
  int i;
  float sum[NB_BANDS] = {0};
  for (i=0;i<NB_BANDS-1;i++)
  {
    int j;
    int band_size;
    band_size = (eband5ms[i+1]-eband5ms[i])<<FRAME_SIZE_SHIFT;
    for (j=0;j<band_size;j++) {
      float tmp;
      float frac = (float)j/band_size;
      tmp = X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].r * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].r;
      tmp += X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].i * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].i;
      sum[i] += (1-frac)*tmp;
      sum[i+1] += frac*tmp;
    }
  }
  sum[0] *= 2;
  sum[NB_BANDS-1] *= 2;
  for (i=0;i<NB_BANDS;i++)
  {
    bandE[i] = sum[i];
  }
}

static void interp_band_gain(float *g, const float *bandE) {
  int i;
  memset(g, 0, FREQ_SIZE);
  for (i=0;i<NB_BANDS-1;i++)
  {
    int j;
    int band_size;
    band_size = (eband5ms[i+1]-eband5ms[i])<<FRAME_SIZE_SHIFT;
    for (j=0;j<band_size;j++) {
      float frac = (float)j/band_size;
      g[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j] = (1-frac)*bandE[i] + frac*bandE[i+1];
    }
  }
}


CommonState common;

static void check_init() {
  int i;
  if (common.init) return;
  common.kfft = rnn_fft_alloc_twiddles(2*FRAME_SIZE, NULL, NULL, NULL, 0);
  for (i=0;i<FRAME_SIZE;i++)
    common.half_window[i] = sin(.5*M_PI*sin(.5*M_PI*(i+.5)/FRAME_SIZE) * sin(.5*M_PI*(i+.5)/FRAME_SIZE));
  for (i=0;i<NB_BANDS;i++) {
    int j;
    for (j=0;j<NB_BANDS;j++) {
      common.dct_table[i*NB_BANDS + j] = cos((i+.5)*j*M_PI/NB_BANDS);
      if (j==0) common.dct_table[i*NB_BANDS + j] *= sqrt(.5);
    }
  }
  common.init = 1;
}

static void dct(float *out, const float *in) {
  int i;
  check_init();
  for (i=0;i<NB_BANDS;i++) {
    int j;
    float sum = 0;
    for (j=0;j<NB_BANDS;j++) {
      sum += in[j] * common.dct_table[j*NB_BANDS + i];
    }
    out[i] = sum*sqrt(2./22);
  }
}

#if 0
static void idct(float *out, const float *in) {
  int i;
  check_init();
  for (i=0;i<NB_BANDS;i++) {
    int j;
    float sum = 0;
    for (j=0;j<NB_BANDS;j++) {
      sum += in[j] * common.dct_table[i*NB_BANDS + j];
    }
    out[i] = sum*sqrt(2./22);
  }
}
#endif

static void forward_transform(kiss_fft_cpx *out, const float *in) {
  int i;
  kiss_fft_cpx x[WINDOW_SIZE];
  kiss_fft_cpx y[WINDOW_SIZE];
  check_init();
  for (i=0;i<WINDOW_SIZE;i++) {
    x[i].r = in[i];
    x[i].i = 0;
  }
  rnn_fft(common.kfft, x, y, 0);
  for (i=0;i<FREQ_SIZE;i++) {
    out[i] = y[i];
  }
}

static void inverse_transform(float *out, const kiss_fft_cpx *in) {
  int i;
  kiss_fft_cpx x[WINDOW_SIZE];
  kiss_fft_cpx y[WINDOW_SIZE];
  check_init();
  for (i=0;i<FREQ_SIZE;i++) {
    x[i] = in[i];
  }
  for (;i<WINDOW_SIZE;i++) {
    x[i].r = x[WINDOW_SIZE - i].r;
    x[i].i = -x[WINDOW_SIZE - i].i;
  }
  rnn_fft(common.kfft, x, y, 0);
  /* output in reverse order for IFFT. */
  out[0] = WINDOW_SIZE*y[0].r;
  for (i=1;i<WINDOW_SIZE;i++) {
    out[i] = WINDOW_SIZE*y[WINDOW_SIZE - i].r;
  }
}

static void apply_window(float *x) {
  int i;
  check_init();
  for (i=0;i<FRAME_SIZE;i++) {
    x[i] *= common.half_window[i];
    x[WINDOW_SIZE - 1 - i] *= common.half_window[i];
  }
}

int rnnoise_get_size() {
  return sizeof(DenoiseState);
}

int rnnoise_get_frame_size() {
  return FRAME_SIZE;
}

int rnnoise_init(DenoiseState *st, RNNModel *model) {
  memset(st, 0, sizeof(*st));
  if (model)
    st->rnn.model = model;
  else
    st->rnn.model = &rnnoise_model_orig;
  st->rnn.vad_gru_state = calloc(sizeof(float), st->rnn.model->vad_gru_size);
  st->rnn.noise_gru_state = calloc(sizeof(float), st->rnn.model->noise_gru_size);
  st->rnn.denoise_gru_state = calloc(sizeof(float), st->rnn.model->denoise_gru_size);
  return 0;
}

DenoiseState *rnnoise_create(RNNModel *model) {
  DenoiseState *st;
  st = malloc(rnnoise_get_size());
  rnnoise_init(st, model);
  return st;
}

void rnnoise_destroy(DenoiseState *st) {
  free(st->rnn.vad_gru_state);
  free(st->rnn.noise_gru_state);
  free(st->rnn.denoise_gru_state);
  free(st);
}

#if TRAINING
int lowpass = FREQ_SIZE;
int band_lp = NB_BANDS;
#endif

static void frame_analysis(DenoiseState *st, kiss_fft_cpx *X, float *Ex, const float *in) {
  int i;
  float x[WINDOW_SIZE];
  RNN_COPY(x, st->analysis_mem, FRAME_SIZE);
  for (i=0;i<FRAME_SIZE;i++) x[FRAME_SIZE + i] = in[i];
  RNN_COPY(st->analysis_mem, in, FRAME_SIZE);
  apply_window(x);
  forward_transform(X, x);
#if TRAINING
  for (i=lowpass;i<FREQ_SIZE;i++)
    X[i].r = X[i].i = 0;
#endif
  compute_band_energy(Ex, X);
}

static int compute_frame_features(DenoiseState *st, kiss_fft_cpx *X, kiss_fft_cpx *P,
                                  float *Ex, float *Ep, float *Exp, float *features, const float *in) {
  int i;
  float E = 0;
  float *ceps_0, *ceps_1, *ceps_2;
  float spec_variability = 0;
  float Ly[NB_BANDS];
  float p[WINDOW_SIZE];
  float pitch_buf[PITCH_BUF_SIZE>>1];
  int pitch_index;
  float gain;
  float *(pre[1]);
  float tmp[NB_BANDS];
  float follow, logMax;
  frame_analysis(st, X, Ex, in);
  RNN_MOVE(st->pitch_buf, &st->pitch_buf[FRAME_SIZE], PITCH_BUF_SIZE-FRAME_SIZE);
  RNN_COPY(&st->pitch_buf[PITCH_BUF_SIZE-FRAME_SIZE], in, FRAME_SIZE);
  pre[0] = &st->pitch_buf[0];
  rnn_pitch_downsample(pre, pitch_buf, PITCH_BUF_SIZE, 1);
  rnn_pitch_search(pitch_buf+(PITCH_MAX_PERIOD>>1), pitch_buf, PITCH_FRAME_SIZE,
               PITCH_MAX_PERIOD-3*PITCH_MIN_PERIOD, &pitch_index);
  pitch_index = PITCH_MAX_PERIOD-pitch_index;

  gain = rnn_remove_doubling(pitch_buf, PITCH_MAX_PERIOD, PITCH_MIN_PERIOD,
          PITCH_FRAME_SIZE, &pitch_index, st->last_period, st->last_gain);
  st->last_period = pitch_index;
  st->last_gain = gain;
  for (i=0;i<WINDOW_SIZE;i++)
    p[i] = st->pitch_buf[PITCH_BUF_SIZE-WINDOW_SIZE-pitch_index+i];
  apply_window(p);
  forward_transform(P, p);
  compute_band_energy(Ep, P);
  compute_band_corr(Exp, X, P);
  for (i=0;i<NB_BANDS;i++) Exp[i] = Exp[i]/sqrt(.001+Ex[i]*Ep[i]);
  dct(tmp, Exp);
  for (i=0;i<NB_DELTA_CEPS;i++) features[NB_BANDS+2*NB_DELTA_CEPS+i] = tmp[i];
  features[NB_BANDS+2*NB_DELTA_CEPS] -= 1.3;
  features[NB_BANDS+2*NB_DELTA_CEPS+1] -= 0.9;
  features[NB_BANDS+3*NB_DELTA_CEPS] = .01*(pitch_index-300);
  logMax = -2;
  follow = -2;
  for (i=0;i<NB_BANDS;i++) {
    Ly[i] = log10(1e-2+Ex[i]);
    Ly[i] = MAX16(logMax-7, MAX16(follow-1.5, Ly[i]));
    logMax = MAX16(logMax, Ly[i]);
    follow = MAX16(follow-1.5, Ly[i]);
    E += Ex[i];
  }
  if (!TRAINING && E < 0.04) {
    /* If there's no audio, avoid messing up the state. */
    RNN_CLEAR(features, NB_FEATURES);
    return 1;
  }
  dct(features, Ly);
  features[0] -= 12;
  features[1] -= 4;
  ceps_0 = st->cepstral_mem[st->memid];
  ceps_1 = (st->memid < 1) ? st->cepstral_mem[CEPS_MEM+st->memid-1] : st->cepstral_mem[st->memid-1];
  ceps_2 = (st->memid < 2) ? st->cepstral_mem[CEPS_MEM+st->memid-2] : st->cepstral_mem[st->memid-2];
  for (i=0;i<NB_BANDS;i++) ceps_0[i] = features[i];
  st->memid++;
  for (i=0;i<NB_DELTA_CEPS;i++) {
    features[i] = ceps_0[i] + ceps_1[i] + ceps_2[i];
    features[NB_BANDS+i] = ceps_0[i] - ceps_2[i];
    features[NB_BANDS+NB_DELTA_CEPS+i] =  ceps_0[i] - 2*ceps_1[i] + ceps_2[i];
  }
  /* Spectral variability features. */
  if (st->memid == CEPS_MEM) st->memid = 0;
  for (i=0;i<CEPS_MEM;i++)
  {
    int j;
    float mindist = 1e15f;
    for (j=0;j<CEPS_MEM;j++)
    {
      int k;
      float dist=0;
      for (k=0;k<NB_BANDS;k++)
      {
        float tmp;
        tmp = st->cepstral_mem[i][k] - st->cepstral_mem[j][k];
        dist += tmp*tmp;
      }
      if (j!=i)
        mindist = MIN32(mindist, dist);
    }
    spec_variability += mindist;
  }
  features[NB_BANDS+3*NB_DELTA_CEPS+1] = spec_variability/CEPS_MEM-2.1;
  return TRAINING && E < 0.1;
}

static void frame_synthesis(DenoiseState *st, float *out, const kiss_fft_cpx *y) {
  float x[WINDOW_SIZE];
  int i;
  inverse_transform(x, y);
  apply_window(x);
  for (i=0;i<FRAME_SIZE;i++) out[i] = x[i] + st->synthesis_mem[i];
  RNN_COPY(st->synthesis_mem, &x[FRAME_SIZE], FRAME_SIZE);
}

static void biquad(float *y, float mem[2], const float *x, const float *b, const float *a, int N) {
  int i;
  for (i=0;i<N;i++) {
    float xi, yi;
    xi = x[i];
    yi = x[i] + mem[0];
    mem[0] = mem[1] + (b[0]*(double)xi - a[0]*(double)yi);
    mem[1] = (b[1]*(double)xi - a[1]*(double)yi);
    y[i] = yi;
  }
}

static void pitch_filter(kiss_fft_cpx *X, const kiss_fft_cpx *P, const float *Ex, const float *Ep,
                  const float *Exp, const float *g) {
  int i;
  float r[NB_BANDS];
  float rf[FREQ_SIZE] = {0};
  for (i=0;i<NB_BANDS;i++) {
#if 0
    if (Exp[i]>g[i]) r[i] = 1;
    else r[i] = Exp[i]*(1-g[i])/(.001 + g[i]*(1-Exp[i]));
    r[i] = MIN16(1, MAX16(0, r[i]));
#else
    if (Exp[i]>g[i]) r[i] = 1;
    else r[i] = SQUARE(Exp[i])*(1-SQUARE(g[i]))/(.001 + SQUARE(g[i])*(1-SQUARE(Exp[i])));
    r[i] = sqrt(MIN16(1, MAX16(0, r[i])));
#endif
    r[i] *= sqrt(Ex[i]/(1e-8+Ep[i]));
  }
  interp_band_gain(rf, r);
  for (i=0;i<FREQ_SIZE;i++) {
    X[i].r += rf[i]*P[i].r;
    X[i].i += rf[i]*P[i].i;
  }
  float newE[NB_BANDS];
  compute_band_energy(newE, X);
  float norm[NB_BANDS];
  float normf[FREQ_SIZE]={0};
  for (i=0;i<NB_BANDS;i++) {
    norm[i] = sqrt(Ex[i]/(1e-8+newE[i]));
  }
  interp_band_gain(normf, norm);
  for (i=0;i<FREQ_SIZE;i++) {
    X[i].r *= normf[i];
    X[i].i *= normf[i];
  }
}

float rnnoise_process_frame(DenoiseState *st, float *out, const float *in) {
  int i;
  kiss_fft_cpx X[FREQ_SIZE];
  kiss_fft_cpx P[WINDOW_SIZE];
  float x[FRAME_SIZE];
  float Ex[NB_BANDS], Ep[NB_BANDS];
  float Exp[NB_BANDS];
  float features[NB_FEATURES];
  float g[NB_BANDS];
  float gf[FREQ_SIZE]={1};
  float vad_prob = 0;
  int silence;
  static const float a_hp[2] = {-1.99599, 0.99600};
  static const float b_hp[2] = {-2, 1};
  biquad(x, st->mem_hp_x, in, b_hp, a_hp, FRAME_SIZE);
  silence = compute_frame_features(st, X, P, Ex, Ep, Exp, features, x);

  if (!silence) {
    compute_rnn(&st->rnn, g, &vad_prob, features);
    pitch_filter(X, P, Ex, Ep, Exp, g);
    for (i=0;i<NB_BANDS;i++) {
      float alpha = .6f;
      g[i] = MAX16(g[i], alpha*st->lastg[i]);
      st->lastg[i] = g[i];
    }
    interp_band_gain(gf, g);
#if 1
    for (i=0;i<FREQ_SIZE;i++) {
      X[i].r *= gf[i];
      X[i].i *= gf[i];
    }
#endif
  }

  frame_synthesis(st, out, X);
  return vad_prob;
}

#if TRAINING

static float uni_rand() {
  return rand()/(double)RAND_MAX-.5;
}

static void rand_resp(float *a, float *b) {
  a[0] = .75*uni_rand();
  a[1] = .75*uni_rand();
  b[0] = .75*uni_rand();
  b[1] = .75*uni_rand();
}

int main(int argc, char **argv) {
  int i;
  int count=0;
  static const float a_hp[2] = {-1.99599, 0.99600};
  static const float b_hp[2] = {-2, 1};
  float a_noise[2] = {0};
  float b_noise[2] = {0};
  float a_sig[2] = {0};
  float b_sig[2] = {0};
  float mem_hp_x[2]={0};
  float mem_hp_n[2]={0};
  float mem_resp_x[2]={0};
  float mem_resp_n[2]={0};
  float x[FRAME_SIZE];
  float n[FRAME_SIZE];
  float xn[FRAME_SIZE];
  int vad_cnt=0;
  int gain_change_count=0;
  float speech_gain = 1, noise_gain = 1;
  FILE *f1, *f2;
  int maxCount;
  DenoiseState *st;
  DenoiseState *noise_state;
  DenoiseState *noisy;
  st = rnnoise_create(NULL);
  noise_state = rnnoise_create(NULL);
  noisy = rnnoise_create(NULL);
  if (argc!=4) {
    fprintf(stderr, "usage: %s <speech> <noise> <count>\n", argv[0]);
    return 1;
  }
  f1 = fopen(argv[1], "r");
  f2 = fopen(argv[2], "r");
  maxCount = atoi(argv[3]);
  for(i=0;i<150;i++) {
    short tmp[FRAME_SIZE];
    fread(tmp, sizeof(short), FRAME_SIZE, f2);
  }
  while (1) {
    kiss_fft_cpx X[FREQ_SIZE], Y[FREQ_SIZE], N[FREQ_SIZE], P[WINDOW_SIZE];
    float Ex[NB_BANDS], Ey[NB_BANDS], En[NB_BANDS], Ep[NB_BANDS];
    float Exp[NB_BANDS];
    float Ln[NB_BANDS];
    float features[NB_FEATURES];
    float g[NB_BANDS];
    short tmp[FRAME_SIZE];
    float vad=0;
    float E=0;
    if (count==maxCount) break;
    if ((count%1000)==0) fprintf(stderr, "%d\r", count);
    if (++gain_change_count > 2821) {
      speech_gain = pow(10., (-40+(rand()%60))/20.);
      noise_gain = pow(10., (-30+(rand()%50))/20.);
      if (rand()%10==0) noise_gain = 0;
      noise_gain *= speech_gain;
      if (rand()%10==0) speech_gain = 0;
      gain_change_count = 0;
      rand_resp(a_noise, b_noise);
      rand_resp(a_sig, b_sig);
      lowpass = FREQ_SIZE * 3000./24000. * pow(50., rand()/(double)RAND_MAX);
      for (i=0;i<NB_BANDS;i++) {
        if (eband5ms[i]<<FRAME_SIZE_SHIFT > lowpass) {
          band_lp = i;
          break;
        }
      }
    }
    if (speech_gain != 0) {
      fread(tmp, sizeof(short), FRAME_SIZE, f1);
      if (feof(f1)) {
        rewind(f1);
        fread(tmp, sizeof(short), FRAME_SIZE, f1);
      }
      for (i=0;i<FRAME_SIZE;i++) x[i] = speech_gain*tmp[i];
      for (i=0;i<FRAME_SIZE;i++) E += tmp[i]*(float)tmp[i];
    } else {
      for (i=0;i<FRAME_SIZE;i++) x[i] = 0;
      E = 0;
    }
    if (noise_gain!=0) {
      fread(tmp, sizeof(short), FRAME_SIZE, f2);
      if (feof(f2)) {
        rewind(f2);
        fread(tmp, sizeof(short), FRAME_SIZE, f2);
      }
      for (i=0;i<FRAME_SIZE;i++) n[i] = noise_gain*tmp[i];
    } else {
      for (i=0;i<FRAME_SIZE;i++) n[i] = 0;
    }
    biquad(x, mem_hp_x, x, b_hp, a_hp, FRAME_SIZE);
    biquad(x, mem_resp_x, x, b_sig, a_sig, FRAME_SIZE);
    biquad(n, mem_hp_n, n, b_hp, a_hp, FRAME_SIZE);
    biquad(n, mem_resp_n, n, b_noise, a_noise, FRAME_SIZE);
    for (i=0;i<FRAME_SIZE;i++) xn[i] = x[i] + n[i];
    if (E > 1e9f) {
      vad_cnt=0;
    } else if (E > 1e8f) {
      vad_cnt -= 5;
    } else if (E > 1e7f) {
      vad_cnt++;
    } else {
      vad_cnt+=2;
    }
    if (vad_cnt < 0) vad_cnt = 0;
    if (vad_cnt > 15) vad_cnt = 15;

    if (vad_cnt >= 10) vad = 0;
    else if (vad_cnt > 0) vad = 0.5f;
    else vad = 1.f;

    frame_analysis(st, Y, Ey, x);
    frame_analysis(noise_state, N, En, n);
    for (i=0;i<NB_BANDS;i++) Ln[i] = log10(1e-2+En[i]);
    int silence = compute_frame_features(noisy, X, P, Ex, Ep, Exp, features, xn);
    pitch_filter(X, P, Ex, Ep, Exp, g);
    //printf("%f %d\n", noisy->last_gain, noisy->last_period);
    for (i=0;i<NB_BANDS;i++) {
      g[i] = sqrt((Ey[i]+1e-3)/(Ex[i]+1e-3));
      if (g[i] > 1) g[i] = 1;
      if (silence || i > band_lp) g[i] = -1;
      if (Ey[i] < 5e-2 && Ex[i] < 5e-2) g[i] = -1;
      if (vad==0 && noise_gain==0) g[i] = -1;
    }
    count++;
#if 1
    fwrite(features, sizeof(float), NB_FEATURES, stdout);
    fwrite(g, sizeof(float), NB_BANDS, stdout);
    fwrite(Ln, sizeof(float), NB_BANDS, stdout);
    fwrite(&vad, sizeof(float), 1, stdout);
#endif
  }
  fprintf(stderr, "matrix size: %d x %d\n", count, NB_FEATURES + 2*NB_BANDS + 1);
  fclose(f1);
  fclose(f2);
  return 0;
}

#endif