aboutsummaryrefslogtreecommitdiff
path: root/include/pybind11/pybind11.h
blob: 3bffbb28d2a27fb56b00e4801a71a40604b6dfc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
/*
    pybind11/pybind11.h: Main header file of the C++11 python
    binding generator library

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#if defined(__INTEL_COMPILER)
#  pragma warning push
#  pragma warning disable 68    // integer conversion resulted in a change of sign
#  pragma warning disable 186   // pointless comparison of unsigned integer with zero
#  pragma warning disable 878   // incompatible exception specifications
#  pragma warning disable 1334  // the "template" keyword used for syntactic disambiguation may only be used within a template
#  pragma warning disable 1682  // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
#  pragma warning disable 1786  // function "strdup" was declared deprecated
#  pragma warning disable 1875  // offsetof applied to non-POD (Plain Old Data) types is nonstandard
#  pragma warning disable 2196  // warning #2196: routine is both "inline" and "noinline"
#elif defined(_MSC_VER)
#  pragma warning(push)
#  pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter
#  pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#  pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted
#  pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning)
#  pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name
#  pragma warning(disable: 4702) // warning C4702: unreachable code
#  pragma warning(disable: 4522) // warning C4522: multiple assignment operators specified
#  pragma warning(disable: 4505) // warning C4505: 'PySlice_GetIndicesEx': unreferenced local function has been removed (PyPy only)
#elif defined(__GNUG__) && !defined(__clang__)
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wunused-but-set-parameter"
#  pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#  pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#  pragma GCC diagnostic ignored "-Wstrict-aliasing"
#  pragma GCC diagnostic ignored "-Wattributes"
#  if __GNUC__ >= 7
#    pragma GCC diagnostic ignored "-Wnoexcept-type"
#  endif
#endif

#include "attr.h"
#include "options.h"
#include "detail/class.h"
#include "detail/init.h"

#include <memory>
#include <vector>
#include <string>
#include <utility>

#if defined(__GNUG__) && !defined(__clang__)
#  include <cxxabi.h>
#endif

PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)

/// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object
class cpp_function : public function {
public:
    cpp_function() = default;
    cpp_function(std::nullptr_t) { }

    /// Construct a cpp_function from a vanilla function pointer
    template <typename Return, typename... Args, typename... Extra>
    cpp_function(Return (*f)(Args...), const Extra&... extra) {
        initialize(f, f, extra...);
    }

    /// Construct a cpp_function from a lambda function (possibly with internal state)
    template <typename Func, typename... Extra,
              typename = detail::enable_if_t<detail::is_lambda<Func>::value>>
    cpp_function(Func &&f, const Extra&... extra) {
        initialize(std::forward<Func>(f),
                   (detail::function_signature_t<Func> *) nullptr, extra...);
    }

    /// Construct a cpp_function from a class method (non-const, no ref-qualifier)
    template <typename Return, typename Class, typename... Arg, typename... Extra>
    cpp_function(Return (Class::*f)(Arg...), const Extra&... extra) {
        initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
                   (Return (*) (Class *, Arg...)) nullptr, extra...);
    }

    /// Construct a cpp_function from a class method (non-const, lvalue ref-qualifier)
    /// A copy of the overload for non-const functions without explicit ref-qualifier
    /// but with an added `&`.
    template <typename Return, typename Class, typename... Arg, typename... Extra>
    cpp_function(Return (Class::*f)(Arg...)&, const Extra&... extra) {
        initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); },
                   (Return (*) (Class *, Arg...)) nullptr, extra...);
    }

    /// Construct a cpp_function from a class method (const, no ref-qualifier)
    template <typename Return, typename Class, typename... Arg, typename... Extra>
    cpp_function(Return (Class::*f)(Arg...) const, const Extra&... extra) {
        initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
                   (Return (*)(const Class *, Arg ...)) nullptr, extra...);
    }

    /// Construct a cpp_function from a class method (const, lvalue ref-qualifier)
    /// A copy of the overload for const functions without explicit ref-qualifier
    /// but with an added `&`.
    template <typename Return, typename Class, typename... Arg, typename... Extra>
    cpp_function(Return (Class::*f)(Arg...) const&, const Extra&... extra) {
        initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); },
                   (Return (*)(const Class *, Arg ...)) nullptr, extra...);
    }

    /// Return the function name
    object name() const { return attr("__name__"); }

protected:
    struct InitializingFunctionRecordDeleter {
        // `destruct(function_record, false)`: `initialize_generic` copies strings and
        // takes care of cleaning up in case of exceptions. So pass `false` to `free_strings`.
        void operator()(detail::function_record * rec) { destruct(rec, false); }
    };
    using unique_function_record = std::unique_ptr<detail::function_record, InitializingFunctionRecordDeleter>;

    /// Space optimization: don't inline this frequently instantiated fragment
    PYBIND11_NOINLINE unique_function_record make_function_record() {
        return unique_function_record(new detail::function_record());
    }

    /// Special internal constructor for functors, lambda functions, etc.
    template <typename Func, typename Return, typename... Args, typename... Extra>
    void initialize(Func &&f, Return (*)(Args...), const Extra&... extra) {
        using namespace detail;
        struct capture { remove_reference_t<Func> f; };

        /* Store the function including any extra state it might have (e.g. a lambda capture object) */
        // The unique_ptr makes sure nothing is leaked in case of an exception.
        auto unique_rec = make_function_record();
        auto rec = unique_rec.get();

        /* Store the capture object directly in the function record if there is enough space */
        if (sizeof(capture) <= sizeof(rec->data)) {
            /* Without these pragmas, GCC warns that there might not be
               enough space to use the placement new operator. However, the
               'if' statement above ensures that this is the case. */
#if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wplacement-new"
#endif
            new ((capture *) &rec->data) capture { std::forward<Func>(f) };
#if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
#  pragma GCC diagnostic pop
#endif
            if (!std::is_trivially_destructible<Func>::value)
                rec->free_data = [](function_record *r) { ((capture *) &r->data)->~capture(); };
        } else {
            rec->data[0] = new capture { std::forward<Func>(f) };
            rec->free_data = [](function_record *r) { delete ((capture *) r->data[0]); };
        }

        /* Type casters for the function arguments and return value */
        using cast_in = argument_loader<Args...>;
        using cast_out = make_caster<
            conditional_t<std::is_void<Return>::value, void_type, Return>
        >;

        static_assert(expected_num_args<Extra...>(sizeof...(Args), cast_in::has_args, cast_in::has_kwargs),
                      "The number of argument annotations does not match the number of function arguments");

        /* Dispatch code which converts function arguments and performs the actual function call */
        rec->impl = [](function_call &call) -> handle {
            cast_in args_converter;

            /* Try to cast the function arguments into the C++ domain */
            if (!args_converter.load_args(call))
                return PYBIND11_TRY_NEXT_OVERLOAD;

            /* Invoke call policy pre-call hook */
            process_attributes<Extra...>::precall(call);

            /* Get a pointer to the capture object */
            auto data = (sizeof(capture) <= sizeof(call.func.data)
                         ? &call.func.data : call.func.data[0]);
            auto *cap = const_cast<capture *>(reinterpret_cast<const capture *>(data));

            /* Override policy for rvalues -- usually to enforce rvp::move on an rvalue */
            return_value_policy policy = return_value_policy_override<Return>::policy(call.func.policy);

            /* Function scope guard -- defaults to the compile-to-nothing `void_type` */
            using Guard = extract_guard_t<Extra...>;

            /* Perform the function call */
            handle result = cast_out::cast(
                std::move(args_converter).template call<Return, Guard>(cap->f), policy, call.parent);

            /* Invoke call policy post-call hook */
            process_attributes<Extra...>::postcall(call, result);

            return result;
        };

        /* Process any user-provided function attributes */
        process_attributes<Extra...>::init(extra..., rec);

        {
            constexpr bool has_kw_only_args = any_of<std::is_same<kw_only, Extra>...>::value,
                           has_pos_only_args = any_of<std::is_same<pos_only, Extra>...>::value,
                           has_args = any_of<std::is_same<args, Args>...>::value,
                           has_arg_annotations = any_of<is_keyword<Extra>...>::value;
            static_assert(has_arg_annotations || !has_kw_only_args, "py::kw_only requires the use of argument annotations");
            static_assert(has_arg_annotations || !has_pos_only_args, "py::pos_only requires the use of argument annotations (for docstrings and aligning the annotations to the argument)");
            static_assert(!(has_args && has_kw_only_args), "py::kw_only cannot be combined with a py::args argument");
        }

        /* Generate a readable signature describing the function's arguments and return value types */
        static constexpr auto signature = _("(") + cast_in::arg_names + _(") -> ") + cast_out::name;
        PYBIND11_DESCR_CONSTEXPR auto types = decltype(signature)::types();

        /* Register the function with Python from generic (non-templated) code */
        // Pass on the ownership over the `unique_rec` to `initialize_generic`. `rec` stays valid.
        initialize_generic(std::move(unique_rec), signature.text, types.data(), sizeof...(Args));

        if (cast_in::has_args) rec->has_args = true;
        if (cast_in::has_kwargs) rec->has_kwargs = true;

        /* Stash some additional information used by an important optimization in 'functional.h' */
        using FunctionType = Return (*)(Args...);
        constexpr bool is_function_ptr =
            std::is_convertible<Func, FunctionType>::value &&
            sizeof(capture) == sizeof(void *);
        if (is_function_ptr) {
            rec->is_stateless = true;
            rec->data[1] = const_cast<void *>(reinterpret_cast<const void *>(&typeid(FunctionType)));
        }
    }

    // Utility class that keeps track of all duplicated strings, and cleans them up in its destructor,
    // unless they are released. Basically a RAII-solution to deal with exceptions along the way.
    class strdup_guard {
    public:
        ~strdup_guard() {
            for (auto s : strings)
                std::free(s);
        }
        char *operator()(const char *s) {
            auto t = strdup(s);
            strings.push_back(t);
            return t;
        }
        void release() {
            strings.clear();
        }
    private:
        std::vector<char *> strings;
    };

    /// Register a function call with Python (generic non-templated code goes here)
    void initialize_generic(unique_function_record &&unique_rec, const char *text,
                            const std::type_info *const *types, size_t args) {
        // Do NOT receive `unique_rec` by value. If this function fails to move out the unique_ptr,
        // we do not want this to destuct the pointer. `initialize` (the caller) still relies on the
        // pointee being alive after this call. Only move out if a `capsule` is going to keep it alive.
        auto rec = unique_rec.get();

        // Keep track of strdup'ed strings, and clean them up as long as the function's capsule
        // has not taken ownership yet (when `unique_rec.release()` is called).
        // Note: This cannot easily be fixed by a `unique_ptr` with custom deleter, because the strings
        // are only referenced before strdup'ing. So only *after* the following block could `destruct`
        // safely be called, but even then, `repr` could still throw in the middle of copying all strings.
        strdup_guard guarded_strdup;

        /* Create copies of all referenced C-style strings */
        rec->name = guarded_strdup(rec->name ? rec->name : "");
        if (rec->doc) rec->doc = guarded_strdup(rec->doc);
        for (auto &a: rec->args) {
            if (a.name)
                a.name = guarded_strdup(a.name);
            if (a.descr)
                a.descr = guarded_strdup(a.descr);
            else if (a.value)
                a.descr = guarded_strdup(repr(a.value).cast<std::string>().c_str());
        }

        rec->is_constructor = !strcmp(rec->name, "__init__") || !strcmp(rec->name, "__setstate__");

#if !defined(NDEBUG) && !defined(PYBIND11_DISABLE_NEW_STYLE_INIT_WARNING)
        if (rec->is_constructor && !rec->is_new_style_constructor) {
            const auto class_name = detail::get_fully_qualified_tp_name((PyTypeObject *) rec->scope.ptr());
            const auto func_name = std::string(rec->name);
            PyErr_WarnEx(
                PyExc_FutureWarning,
                ("pybind11-bound class '" + class_name + "' is using an old-style "
                 "placement-new '" + func_name + "' which has been deprecated. See "
                 "the upgrade guide in pybind11's docs. This message is only visible "
                 "when compiled in debug mode.").c_str(), 0
            );
        }
#endif

        /* Generate a proper function signature */
        std::string signature;
        size_t type_index = 0, arg_index = 0;
        for (auto *pc = text; *pc != '\0'; ++pc) {
            const auto c = *pc;

            if (c == '{') {
                // Write arg name for everything except *args and **kwargs.
                if (*(pc + 1) == '*')
                    continue;
                // Separator for keyword-only arguments, placed before the kw
                // arguments start
                if (rec->nargs_kw_only > 0 && arg_index + rec->nargs_kw_only == args)
                    signature += "*, ";
                if (arg_index < rec->args.size() && rec->args[arg_index].name) {
                    signature += rec->args[arg_index].name;
                } else if (arg_index == 0 && rec->is_method) {
                    signature += "self";
                } else {
                    signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0));
                }
                signature += ": ";
            } else if (c == '}') {
                // Write default value if available.
                if (arg_index < rec->args.size() && rec->args[arg_index].descr) {
                    signature += " = ";
                    signature += rec->args[arg_index].descr;
                }
                // Separator for positional-only arguments (placed after the
                // argument, rather than before like *
                if (rec->nargs_pos_only > 0 && (arg_index + 1) == rec->nargs_pos_only)
                    signature += ", /";
                arg_index++;
            } else if (c == '%') {
                const std::type_info *t = types[type_index++];
                if (!t)
                    pybind11_fail("Internal error while parsing type signature (1)");
                if (auto tinfo = detail::get_type_info(*t)) {
                    handle th((PyObject *) tinfo->type);
                    signature +=
                        th.attr("__module__").cast<std::string>() + "." +
                        th.attr("__qualname__").cast<std::string>(); // Python 3.3+, but we backport it to earlier versions
                } else if (rec->is_new_style_constructor && arg_index == 0) {
                    // A new-style `__init__` takes `self` as `value_and_holder`.
                    // Rewrite it to the proper class type.
                    signature +=
                        rec->scope.attr("__module__").cast<std::string>() + "." +
                        rec->scope.attr("__qualname__").cast<std::string>();
                } else {
                    std::string tname(t->name());
                    detail::clean_type_id(tname);
                    signature += tname;
                }
            } else {
                signature += c;
            }
        }

        if (arg_index != args || types[type_index] != nullptr)
            pybind11_fail("Internal error while parsing type signature (2)");

#if PY_MAJOR_VERSION < 3
        if (strcmp(rec->name, "__next__") == 0) {
            std::free(rec->name);
            rec->name = guarded_strdup("next");
        } else if (strcmp(rec->name, "__bool__") == 0) {
            std::free(rec->name);
            rec->name = guarded_strdup("__nonzero__");
        }
#endif
        rec->signature = guarded_strdup(signature.c_str());
        rec->args.shrink_to_fit();
        rec->nargs = (std::uint16_t) args;

        if (rec->sibling && PYBIND11_INSTANCE_METHOD_CHECK(rec->sibling.ptr()))
            rec->sibling = PYBIND11_INSTANCE_METHOD_GET_FUNCTION(rec->sibling.ptr());

        detail::function_record *chain = nullptr, *chain_start = rec;
        if (rec->sibling) {
            if (PyCFunction_Check(rec->sibling.ptr())) {
                auto rec_capsule = reinterpret_borrow<capsule>(PyCFunction_GET_SELF(rec->sibling.ptr()));
                chain = (detail::function_record *) rec_capsule;
                /* Never append a method to an overload chain of a parent class;
                   instead, hide the parent's overloads in this case */
                if (!chain->scope.is(rec->scope))
                    chain = nullptr;
            }
            // Don't trigger for things like the default __init__, which are wrapper_descriptors that we are intentionally replacing
            else if (!rec->sibling.is_none() && rec->name[0] != '_')
                pybind11_fail("Cannot overload existing non-function object \"" + std::string(rec->name) +
                        "\" with a function of the same name");
        }

        if (!chain) {
            /* No existing overload was found, create a new function object */
            rec->def = new PyMethodDef();
            std::memset(rec->def, 0, sizeof(PyMethodDef));
            rec->def->ml_name = rec->name;
            rec->def->ml_meth = reinterpret_cast<PyCFunction>(reinterpret_cast<void (*) (void)>(*dispatcher));
            rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS;

            capsule rec_capsule(unique_rec.release(), [](void *ptr) {
                destruct((detail::function_record *) ptr);
            });
            guarded_strdup.release();

            object scope_module;
            if (rec->scope) {
                if (hasattr(rec->scope, "__module__")) {
                    scope_module = rec->scope.attr("__module__");
                } else if (hasattr(rec->scope, "__name__")) {
                    scope_module = rec->scope.attr("__name__");
                }
            }

            m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr());
            if (!m_ptr)
                pybind11_fail("cpp_function::cpp_function(): Could not allocate function object");
        } else {
            /* Append at the beginning or end of the overload chain */
            m_ptr = rec->sibling.ptr();
            inc_ref();
            if (chain->is_method != rec->is_method)
                pybind11_fail("overloading a method with both static and instance methods is not supported; "
                    #if defined(NDEBUG)
                        "compile in debug mode for more details"
                    #else
                        "error while attempting to bind " + std::string(rec->is_method ? "instance" : "static") + " method " +
                        std::string(pybind11::str(rec->scope.attr("__name__"))) + "." + std::string(rec->name) + signature
                    #endif
                );

            if (rec->prepend) {
                // Beginning of chain; we need to replace the capsule's current head-of-the-chain
                // pointer with this one, then make this one point to the previous head of the
                // chain.
                chain_start = rec;
                rec->next = chain;
                auto rec_capsule = reinterpret_borrow<capsule>(((PyCFunctionObject *) m_ptr)->m_self);
                rec_capsule.set_pointer(unique_rec.release());
                guarded_strdup.release();
            } else {
                // Or end of chain (normal behavior)
                chain_start = chain;
                while (chain->next)
                    chain = chain->next;
                chain->next = unique_rec.release();
                guarded_strdup.release();
            }
        }

        std::string signatures;
        int index = 0;
        /* Create a nice pydoc rec including all signatures and
           docstrings of the functions in the overload chain */
        if (chain && options::show_function_signatures()) {
            // First a generic signature
            signatures += rec->name;
            signatures += "(*args, **kwargs)\n";
            signatures += "Overloaded function.\n\n";
        }
        // Then specific overload signatures
        bool first_user_def = true;
        for (auto it = chain_start; it != nullptr; it = it->next) {
            if (options::show_function_signatures()) {
                if (index > 0) signatures += "\n";
                if (chain)
                    signatures += std::to_string(++index) + ". ";
                signatures += rec->name;
                signatures += it->signature;
                signatures += "\n";
            }
            if (it->doc && strlen(it->doc) > 0 && options::show_user_defined_docstrings()) {
                // If we're appending another docstring, and aren't printing function signatures, we
                // need to append a newline first:
                if (!options::show_function_signatures()) {
                    if (first_user_def) first_user_def = false;
                    else signatures += "\n";
                }
                if (options::show_function_signatures()) signatures += "\n";
                signatures += it->doc;
                if (options::show_function_signatures()) signatures += "\n";
            }
        }

        /* Install docstring */
        auto *func = (PyCFunctionObject *) m_ptr;
        std::free(const_cast<char *>(func->m_ml->ml_doc));
        // Install docstring if it's non-empty (when at least one option is enabled)
        func->m_ml->ml_doc = signatures.empty() ? nullptr : strdup(signatures.c_str());

        if (rec->is_method) {
            m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr());
            if (!m_ptr)
                pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object");
            Py_DECREF(func);
        }
    }

    /// When a cpp_function is GCed, release any memory allocated by pybind11
    static void destruct(detail::function_record *rec, bool free_strings = true) {
        // If on Python 3.9, check the interpreter "MICRO" (patch) version.
        // If this is running on 3.9.0, we have to work around a bug.
        #if !defined(PYPY_VERSION) && PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 9
            static bool is_zero = Py_GetVersion()[4] == '0';
        #endif

        while (rec) {
            detail::function_record *next = rec->next;
            if (rec->free_data)
                rec->free_data(rec);
            // During initialization, these strings might not have been copied yet,
            // so they cannot be freed. Once the function has been created, they can.
            // Check `make_function_record` for more details.
            if (free_strings) {
                std::free((char *) rec->name);
                std::free((char *) rec->doc);
                std::free((char *) rec->signature);
                for (auto &arg: rec->args) {
                    std::free(const_cast<char *>(arg.name));
                    std::free(const_cast<char *>(arg.descr));
                }
            }
            for (auto &arg: rec->args)
                arg.value.dec_ref();
            if (rec->def) {
                std::free(const_cast<char *>(rec->def->ml_doc));
                // Python 3.9.0 decref's these in the wrong order; rec->def
                // If loaded on 3.9.0, let these leak (use Python 3.9.1 at runtime to fix)
                // See https://github.com/python/cpython/pull/22670
                #if !defined(PYPY_VERSION) && PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 9
                    if (!is_zero)
                        delete rec->def;
                #else
                    delete rec->def;
                #endif
            }
            delete rec;
            rec = next;
        }
    }

    /// Main dispatch logic for calls to functions bound using pybind11
    static PyObject *dispatcher(PyObject *self, PyObject *args_in, PyObject *kwargs_in) {
        using namespace detail;

        /* Iterator over the list of potentially admissible overloads */
        const function_record *overloads = (function_record *) PyCapsule_GetPointer(self, nullptr),
                              *it = overloads;

        /* Need to know how many arguments + keyword arguments there are to pick the right overload */
        const auto n_args_in = (size_t) PyTuple_GET_SIZE(args_in);

        handle parent = n_args_in > 0 ? PyTuple_GET_ITEM(args_in, 0) : nullptr,
               result = PYBIND11_TRY_NEXT_OVERLOAD;

        auto self_value_and_holder = value_and_holder();
        if (overloads->is_constructor) {
            if (!PyObject_TypeCheck(parent.ptr(), (PyTypeObject *) overloads->scope.ptr())) {
                PyErr_SetString(PyExc_TypeError, "__init__(self, ...) called with invalid `self` argument");
                return nullptr;
            }

            const auto tinfo = get_type_info((PyTypeObject *) overloads->scope.ptr());
            const auto pi = reinterpret_cast<instance *>(parent.ptr());
            self_value_and_holder = pi->get_value_and_holder(tinfo, true);

            // If this value is already registered it must mean __init__ is invoked multiple times;
            // we really can't support that in C++, so just ignore the second __init__.
            if (self_value_and_holder.instance_registered())
                return none().release().ptr();
        }

        try {
            // We do this in two passes: in the first pass, we load arguments with `convert=false`;
            // in the second, we allow conversion (except for arguments with an explicit
            // py::arg().noconvert()).  This lets us prefer calls without conversion, with
            // conversion as a fallback.
            std::vector<function_call> second_pass;

            // However, if there are no overloads, we can just skip the no-convert pass entirely
            const bool overloaded = it != nullptr && it->next != nullptr;

            for (; it != nullptr; it = it->next) {

                /* For each overload:
                   1. Copy all positional arguments we were given, also checking to make sure that
                      named positional arguments weren't *also* specified via kwarg.
                   2. If we weren't given enough, try to make up the omitted ones by checking
                      whether they were provided by a kwarg matching the `py::arg("name")` name.  If
                      so, use it (and remove it from kwargs; if not, see if the function binding
                      provided a default that we can use.
                   3. Ensure that either all keyword arguments were "consumed", or that the function
                      takes a kwargs argument to accept unconsumed kwargs.
                   4. Any positional arguments still left get put into a tuple (for args), and any
                      leftover kwargs get put into a dict.
                   5. Pack everything into a vector; if we have py::args or py::kwargs, they are an
                      extra tuple or dict at the end of the positional arguments.
                   6. Call the function call dispatcher (function_record::impl)

                   If one of these fail, move on to the next overload and keep trying until we get a
                   result other than PYBIND11_TRY_NEXT_OVERLOAD.
                 */

                const function_record &func = *it;
                size_t num_args = func.nargs;    // Number of positional arguments that we need
                if (func.has_args) --num_args;   // (but don't count py::args
                if (func.has_kwargs) --num_args; //  or py::kwargs)
                size_t pos_args = num_args - func.nargs_kw_only;

                if (!func.has_args && n_args_in > pos_args)
                    continue; // Too many positional arguments for this overload

                if (n_args_in < pos_args && func.args.size() < pos_args)
                    continue; // Not enough positional arguments given, and not enough defaults to fill in the blanks

                function_call call(func, parent);

                size_t args_to_copy = (std::min)(pos_args, n_args_in); // Protect std::min with parentheses
                size_t args_copied = 0;

                // 0. Inject new-style `self` argument
                if (func.is_new_style_constructor) {
                    // The `value` may have been preallocated by an old-style `__init__`
                    // if it was a preceding candidate for overload resolution.
                    if (self_value_and_holder)
                        self_value_and_holder.type->dealloc(self_value_and_holder);

                    call.init_self = PyTuple_GET_ITEM(args_in, 0);
                    call.args.emplace_back(reinterpret_cast<PyObject *>(&self_value_and_holder));
                    call.args_convert.push_back(false);
                    ++args_copied;
                }

                // 1. Copy any position arguments given.
                bool bad_arg = false;
                for (; args_copied < args_to_copy; ++args_copied) {
                    const argument_record *arg_rec = args_copied < func.args.size() ? &func.args[args_copied] : nullptr;
                    if (kwargs_in && arg_rec && arg_rec->name && PyDict_GetItemString(kwargs_in, arg_rec->name)) {
                        bad_arg = true;
                        break;
                    }

                    handle arg(PyTuple_GET_ITEM(args_in, args_copied));
                    if (arg_rec && !arg_rec->none && arg.is_none()) {
                        bad_arg = true;
                        break;
                    }
                    call.args.push_back(arg);
                    call.args_convert.push_back(arg_rec ? arg_rec->convert : true);
                }
                if (bad_arg)
                    continue; // Maybe it was meant for another overload (issue #688)

                // We'll need to copy this if we steal some kwargs for defaults
                dict kwargs = reinterpret_borrow<dict>(kwargs_in);

                // 1.5. Fill in any missing pos_only args from defaults if they exist
                if (args_copied < func.nargs_pos_only) {
                    for (; args_copied < func.nargs_pos_only; ++args_copied) {
                        const auto &arg_rec = func.args[args_copied];
                        handle value;

                        if (arg_rec.value) {
                            value = arg_rec.value;
                        }
                        if (value) {
                            call.args.push_back(value);
                            call.args_convert.push_back(arg_rec.convert);
                        } else
                            break;
                    }

                    if (args_copied < func.nargs_pos_only)
                        continue; // Not enough defaults to fill the positional arguments
                }

                // 2. Check kwargs and, failing that, defaults that may help complete the list
                if (args_copied < num_args) {
                    bool copied_kwargs = false;

                    for (; args_copied < num_args; ++args_copied) {
                        const auto &arg_rec = func.args[args_copied];

                        handle value;
                        if (kwargs_in && arg_rec.name)
                            value = PyDict_GetItemString(kwargs.ptr(), arg_rec.name);

                        if (value) {
                            // Consume a kwargs value
                            if (!copied_kwargs) {
                                kwargs = reinterpret_steal<dict>(PyDict_Copy(kwargs.ptr()));
                                copied_kwargs = true;
                            }
                            PyDict_DelItemString(kwargs.ptr(), arg_rec.name);
                        } else if (arg_rec.value) {
                            value = arg_rec.value;
                        }

                        if (!arg_rec.none && value.is_none()) {
                            break;
                        }

                        if (value) {
                            call.args.push_back(value);
                            call.args_convert.push_back(arg_rec.convert);
                        }
                        else
                            break;
                    }

                    if (args_copied < num_args)
                        continue; // Not enough arguments, defaults, or kwargs to fill the positional arguments
                }

                // 3. Check everything was consumed (unless we have a kwargs arg)
                if (kwargs && !kwargs.empty() && !func.has_kwargs)
                    continue; // Unconsumed kwargs, but no py::kwargs argument to accept them

                // 4a. If we have a py::args argument, create a new tuple with leftovers
                if (func.has_args) {
                    tuple extra_args;
                    if (args_to_copy == 0) {
                        // We didn't copy out any position arguments from the args_in tuple, so we
                        // can reuse it directly without copying:
                        extra_args = reinterpret_borrow<tuple>(args_in);
                    } else if (args_copied >= n_args_in) {
                        extra_args = tuple(0);
                    } else {
                        size_t args_size = n_args_in - args_copied;
                        extra_args = tuple(args_size);
                        for (size_t i = 0; i < args_size; ++i) {
                            extra_args[i] = PyTuple_GET_ITEM(args_in, args_copied + i);
                        }
                    }
                    call.args.push_back(extra_args);
                    call.args_convert.push_back(false);
                    call.args_ref = std::move(extra_args);
                }

                // 4b. If we have a py::kwargs, pass on any remaining kwargs
                if (func.has_kwargs) {
                    if (!kwargs.ptr())
                        kwargs = dict(); // If we didn't get one, send an empty one
                    call.args.push_back(kwargs);
                    call.args_convert.push_back(false);
                    call.kwargs_ref = std::move(kwargs);
                }

                // 5. Put everything in a vector.  Not technically step 5, we've been building it
                // in `call.args` all along.
                #if !defined(NDEBUG)
                if (call.args.size() != func.nargs || call.args_convert.size() != func.nargs)
                    pybind11_fail("Internal error: function call dispatcher inserted wrong number of arguments!");
                #endif

                std::vector<bool> second_pass_convert;
                if (overloaded) {
                    // We're in the first no-convert pass, so swap out the conversion flags for a
                    // set of all-false flags.  If the call fails, we'll swap the flags back in for
                    // the conversion-allowed call below.
                    second_pass_convert.resize(func.nargs, false);
                    call.args_convert.swap(second_pass_convert);
                }

                // 6. Call the function.
                try {
                    loader_life_support guard{};
                    result = func.impl(call);
                } catch (reference_cast_error &) {
                    result = PYBIND11_TRY_NEXT_OVERLOAD;
                }

                if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD)
                    break;

                if (overloaded) {
                    // The (overloaded) call failed; if the call has at least one argument that
                    // permits conversion (i.e. it hasn't been explicitly specified `.noconvert()`)
                    // then add this call to the list of second pass overloads to try.
                    for (size_t i = func.is_method ? 1 : 0; i < pos_args; i++) {
                        if (second_pass_convert[i]) {
                            // Found one: swap the converting flags back in and store the call for
                            // the second pass.
                            call.args_convert.swap(second_pass_convert);
                            second_pass.push_back(std::move(call));
                            break;
                        }
                    }
                }
            }

            if (overloaded && !second_pass.empty() && result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
                // The no-conversion pass finished without success, try again with conversion allowed
                for (auto &call : second_pass) {
                    try {
                        loader_life_support guard{};
                        result = call.func.impl(call);
                    } catch (reference_cast_error &) {
                        result = PYBIND11_TRY_NEXT_OVERLOAD;
                    }

                    if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) {
                        // The error reporting logic below expects 'it' to be valid, as it would be
                        // if we'd encountered this failure in the first-pass loop.
                        if (!result)
                            it = &call.func;
                        break;
                    }
                }
            }
        } catch (error_already_set &e) {
            e.restore();
            return nullptr;
#ifdef __GLIBCXX__
        } catch ( abi::__forced_unwind& ) {
            throw;
#endif
        } catch (...) {
            /* When an exception is caught, give each registered exception
               translator a chance to translate it to a Python exception
               in reverse order of registration.

               A translator may choose to do one of the following:

                - catch the exception and call PyErr_SetString or PyErr_SetObject
                  to set a standard (or custom) Python exception, or
                - do nothing and let the exception fall through to the next translator, or
                - delegate translation to the next translator by throwing a new type of exception. */

            auto last_exception = std::current_exception();
            auto &registered_exception_translators = get_internals().registered_exception_translators;
            for (auto& translator : registered_exception_translators) {
                try {
                    translator(last_exception);
                } catch (...) {
                    last_exception = std::current_exception();
                    continue;
                }
                return nullptr;
            }
            PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!");
            return nullptr;
        }

        auto append_note_if_missing_header_is_suspected = [](std::string &msg) {
            if (msg.find("std::") != std::string::npos) {
                msg += "\n\n"
                       "Did you forget to `#include <pybind11/stl.h>`? Or <pybind11/complex.h>,\n"
                       "<pybind11/functional.h>, <pybind11/chrono.h>, etc. Some automatic\n"
                       "conversions are optional and require extra headers to be included\n"
                       "when compiling your pybind11 module.";
            }
        };

        if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
            if (overloads->is_operator)
                return handle(Py_NotImplemented).inc_ref().ptr();

            std::string msg = std::string(overloads->name) + "(): incompatible " +
                std::string(overloads->is_constructor ? "constructor" : "function") +
                " arguments. The following argument types are supported:\n";

            int ctr = 0;
            for (const function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) {
                msg += "    "+ std::to_string(++ctr) + ". ";

                bool wrote_sig = false;
                if (overloads->is_constructor) {
                    // For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as `Object(arg0, ...)`
                    std::string sig = it2->signature;
                    size_t start = sig.find('(') + 7; // skip "(self: "
                    if (start < sig.size()) {
                        // End at the , for the next argument
                        size_t end = sig.find(", "), next = end + 2;
                        size_t ret = sig.rfind(" -> ");
                        // Or the ), if there is no comma:
                        if (end >= sig.size()) next = end = sig.find(')');
                        if (start < end && next < sig.size()) {
                            msg.append(sig, start, end - start);
                            msg += '(';
                            msg.append(sig, next, ret - next);
                            wrote_sig = true;
                        }
                    }
                }
                if (!wrote_sig) msg += it2->signature;

                msg += "\n";
            }
            msg += "\nInvoked with: ";
            auto args_ = reinterpret_borrow<tuple>(args_in);
            bool some_args = false;
            for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) {
                if (!some_args) some_args = true;
                else msg += ", ";
                try {
                    msg += pybind11::repr(args_[ti]);
                } catch (const error_already_set&) {
                    msg += "<repr raised Error>";
                }
            }
            if (kwargs_in) {
                auto kwargs = reinterpret_borrow<dict>(kwargs_in);
                if (!kwargs.empty()) {
                    if (some_args) msg += "; ";
                    msg += "kwargs: ";
                    bool first = true;
                    for (auto kwarg : kwargs) {
                        if (first) first = false;
                        else msg += ", ";
                        msg += pybind11::str("{}=").format(kwarg.first);
                        try {
                            msg += pybind11::repr(kwarg.second);
                        } catch (const error_already_set&) {
                            msg += "<repr raised Error>";
                        }
                    }
                }
            }

            append_note_if_missing_header_is_suspected(msg);
            PyErr_SetString(PyExc_TypeError, msg.c_str());
            return nullptr;
        } else if (!result) {
            std::string msg = "Unable to convert function return value to a "
                              "Python type! The signature was\n\t";
            msg += it->signature;
            append_note_if_missing_header_is_suspected(msg);
            PyErr_SetString(PyExc_TypeError, msg.c_str());
            return nullptr;
        } else {
            if (overloads->is_constructor && !self_value_and_holder.holder_constructed()) {
                auto *pi = reinterpret_cast<instance *>(parent.ptr());
                self_value_and_holder.type->init_instance(pi, nullptr);
            }
            return result.ptr();
        }
    }
};

/// Wrapper for Python extension modules
class module_ : public object {
public:
    PYBIND11_OBJECT_DEFAULT(module_, object, PyModule_Check)

    /// Create a new top-level Python module with the given name and docstring
    PYBIND11_DEPRECATED("Use PYBIND11_MODULE or module_::create_extension_module instead")
    explicit module_(const char *name, const char *doc = nullptr) {
#if PY_MAJOR_VERSION >= 3
        *this = create_extension_module(name, doc, new PyModuleDef());
#else
        *this = create_extension_module(name, doc, nullptr);
#endif
    }

    /** \rst
        Create Python binding for a new function within the module scope. ``Func``
        can be a plain C++ function, a function pointer, or a lambda function. For
        details on the ``Extra&& ... extra`` argument, see section :ref:`extras`.
    \endrst */
    template <typename Func, typename... Extra>
    module_ &def(const char *name_, Func &&f, const Extra& ... extra) {
        cpp_function func(std::forward<Func>(f), name(name_), scope(*this),
                          sibling(getattr(*this, name_, none())), extra...);
        // NB: allow overwriting here because cpp_function sets up a chain with the intention of
        // overwriting (and has already checked internally that it isn't overwriting non-functions).
        add_object(name_, func, true /* overwrite */);
        return *this;
    }

    /** \rst
        Create and return a new Python submodule with the given name and docstring.
        This also works recursively, i.e.

        .. code-block:: cpp

            py::module_ m("example", "pybind11 example plugin");
            py::module_ m2 = m.def_submodule("sub", "A submodule of 'example'");
            py::module_ m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'");
    \endrst */
    module_ def_submodule(const char *name, const char *doc = nullptr) {
        std::string full_name = std::string(PyModule_GetName(m_ptr))
            + std::string(".") + std::string(name);
        auto result = reinterpret_borrow<module_>(PyImport_AddModule(full_name.c_str()));
        if (doc && options::show_user_defined_docstrings())
            result.attr("__doc__") = pybind11::str(doc);
        attr(name) = result;
        return result;
    }

    /// Import and return a module or throws `error_already_set`.
    static module_ import(const char *name) {
        PyObject *obj = PyImport_ImportModule(name);
        if (!obj)
            throw error_already_set();
        return reinterpret_steal<module_>(obj);
    }

    /// Reload the module or throws `error_already_set`.
    void reload() {
        PyObject *obj = PyImport_ReloadModule(ptr());
        if (!obj)
            throw error_already_set();
        *this = reinterpret_steal<module_>(obj);
    }

    /** \rst
        Adds an object to the module using the given name.  Throws if an object with the given name
        already exists.

        ``overwrite`` should almost always be false: attempting to overwrite objects that pybind11 has
        established will, in most cases, break things.
    \endrst */
    PYBIND11_NOINLINE void add_object(const char *name, handle obj, bool overwrite = false) {
        if (!overwrite && hasattr(*this, name))
            pybind11_fail("Error during initialization: multiple incompatible definitions with name \"" +
                    std::string(name) + "\"");

        PyModule_AddObject(ptr(), name, obj.inc_ref().ptr() /* steals a reference */);
    }

#if PY_MAJOR_VERSION >= 3
    using module_def = PyModuleDef;
#else
    struct module_def {};
#endif

    /** \rst
        Create a new top-level module that can be used as the main module of a C extension.

        For Python 3, ``def`` should point to a statically allocated module_def.
        For Python 2, ``def`` can be a nullptr and is completely ignored.
    \endrst */
    static module_ create_extension_module(const char *name, const char *doc, module_def *def) {
#if PY_MAJOR_VERSION >= 3
        // module_def is PyModuleDef
        def = new (def) PyModuleDef {  // Placement new (not an allocation).
            /* m_base */     PyModuleDef_HEAD_INIT,
            /* m_name */     name,
            /* m_doc */      options::show_user_defined_docstrings() ? doc : nullptr,
            /* m_size */     -1,
            /* m_methods */  nullptr,
            /* m_slots */    nullptr,
            /* m_traverse */ nullptr,
            /* m_clear */    nullptr,
            /* m_free */     nullptr
        };
        auto m = PyModule_Create(def);
#else
        // Ignore module_def *def; only necessary for Python 3
        (void) def;
        auto m = Py_InitModule3(name, nullptr, options::show_user_defined_docstrings() ? doc : nullptr);
#endif
        if (m == nullptr) {
            if (PyErr_Occurred())
                throw error_already_set();
            pybind11_fail("Internal error in module_::create_extension_module()");
        }
        // TODO: Should be reinterpret_steal for Python 3, but Python also steals it again when returned from PyInit_...
        //       For Python 2, reinterpret_borrow is correct.
        return reinterpret_borrow<module_>(m);
    }
};

// When inside a namespace (or anywhere as long as it's not the first item on a line),
// C++20 allows "module" to be used. This is provided for backward compatibility, and for
// simplicity, if someone wants to use py::module for example, that is perfectly safe.
using module = module_;

/// \ingroup python_builtins
/// Return a dictionary representing the global variables in the current execution frame,
/// or ``__main__.__dict__`` if there is no frame (usually when the interpreter is embedded).
inline dict globals() {
    PyObject *p = PyEval_GetGlobals();
    return reinterpret_borrow<dict>(p ? p : module_::import("__main__").attr("__dict__").ptr());
}

PYBIND11_NAMESPACE_BEGIN(detail)
/// Generic support for creating new Python heap types
class generic_type : public object {
public:
    PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check)
protected:
    void initialize(const type_record &rec) {
        if (rec.scope && hasattr(rec.scope, "__dict__") && rec.scope.attr("__dict__").contains(rec.name))
            pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec.name) +
                          "\": an object with that name is already defined");

        if (rec.module_local ? get_local_type_info(*rec.type) : get_global_type_info(*rec.type))
            pybind11_fail("generic_type: type \"" + std::string(rec.name) +
                          "\" is already registered!");

        m_ptr = make_new_python_type(rec);

        /* Register supplemental type information in C++ dict */
        auto *tinfo = new detail::type_info();
        tinfo->type = (PyTypeObject *) m_ptr;
        tinfo->cpptype = rec.type;
        tinfo->type_size = rec.type_size;
        tinfo->type_align = rec.type_align;
        tinfo->operator_new = rec.operator_new;
        tinfo->holder_size_in_ptrs = size_in_ptrs(rec.holder_size);
        tinfo->init_instance = rec.init_instance;
        tinfo->dealloc = rec.dealloc;
        tinfo->simple_type = true;
        tinfo->simple_ancestors = true;
        tinfo->default_holder = rec.default_holder;
        tinfo->module_local = rec.module_local;

        auto &internals = get_internals();
        auto tindex = std::type_index(*rec.type);
        tinfo->direct_conversions = &internals.direct_conversions[tindex];
        if (rec.module_local)
            registered_local_types_cpp()[tindex] = tinfo;
        else
            internals.registered_types_cpp[tindex] = tinfo;
        internals.registered_types_py[(PyTypeObject *) m_ptr] = { tinfo };

        if (rec.bases.size() > 1 || rec.multiple_inheritance) {
            mark_parents_nonsimple(tinfo->type);
            tinfo->simple_ancestors = false;
        }
        else if (rec.bases.size() == 1) {
            auto parent_tinfo = get_type_info((PyTypeObject *) rec.bases[0].ptr());
            tinfo->simple_ancestors = parent_tinfo->simple_ancestors;
        }

        if (rec.module_local) {
            // Stash the local typeinfo and loader so that external modules can access it.
            tinfo->module_local_load = &type_caster_generic::local_load;
            setattr(m_ptr, PYBIND11_MODULE_LOCAL_ID, capsule(tinfo));
        }
    }

    /// Helper function which tags all parents of a type using mult. inheritance
    void mark_parents_nonsimple(PyTypeObject *value) {
        auto t = reinterpret_borrow<tuple>(value->tp_bases);
        for (handle h : t) {
            auto tinfo2 = get_type_info((PyTypeObject *) h.ptr());
            if (tinfo2)
                tinfo2->simple_type = false;
            mark_parents_nonsimple((PyTypeObject *) h.ptr());
        }
    }

    void install_buffer_funcs(
            buffer_info *(*get_buffer)(PyObject *, void *),
            void *get_buffer_data) {
        auto *type = (PyHeapTypeObject*) m_ptr;
        auto tinfo = detail::get_type_info(&type->ht_type);

        if (!type->ht_type.tp_as_buffer)
            pybind11_fail(
                "To be able to register buffer protocol support for the type '" +
                get_fully_qualified_tp_name(tinfo->type) +
                "' the associated class<>(..) invocation must "
                "include the pybind11::buffer_protocol() annotation!");

        tinfo->get_buffer = get_buffer;
        tinfo->get_buffer_data = get_buffer_data;
    }

    // rec_func must be set for either fget or fset.
    void def_property_static_impl(const char *name,
                                  handle fget, handle fset,
                                  detail::function_record *rec_func) {
        const auto is_static = rec_func && !(rec_func->is_method && rec_func->scope);
        const auto has_doc = rec_func && rec_func->doc && pybind11::options::show_user_defined_docstrings();
        auto property = handle((PyObject *) (is_static ? get_internals().static_property_type
                                                       : &PyProperty_Type));
        attr(name) = property(fget.ptr() ? fget : none(),
                              fset.ptr() ? fset : none(),
                              /*deleter*/none(),
                              pybind11::str(has_doc ? rec_func->doc : ""));
    }
};

/// Set the pointer to operator new if it exists. The cast is needed because it can be overloaded.
template <typename T, typename = void_t<decltype(static_cast<void *(*)(size_t)>(T::operator new))>>
void set_operator_new(type_record *r) { r->operator_new = &T::operator new; }

template <typename> void set_operator_new(...) { }

template <typename T, typename SFINAE = void> struct has_operator_delete : std::false_type { };
template <typename T> struct has_operator_delete<T, void_t<decltype(static_cast<void (*)(void *)>(T::operator delete))>>
    : std::true_type { };
template <typename T, typename SFINAE = void> struct has_operator_delete_size : std::false_type { };
template <typename T> struct has_operator_delete_size<T, void_t<decltype(static_cast<void (*)(void *, size_t)>(T::operator delete))>>
    : std::true_type { };
/// Call class-specific delete if it exists or global otherwise. Can also be an overload set.
template <typename T, enable_if_t<has_operator_delete<T>::value, int> = 0>
void call_operator_delete(T *p, size_t, size_t) { T::operator delete(p); }
template <typename T, enable_if_t<!has_operator_delete<T>::value && has_operator_delete_size<T>::value, int> = 0>
void call_operator_delete(T *p, size_t s, size_t) { T::operator delete(p, s); }

inline void call_operator_delete(void *p, size_t s, size_t a) {
    (void)s; (void)a;
    #if defined(__cpp_aligned_new) && (!defined(_MSC_VER) || _MSC_VER >= 1912)
        if (a > __STDCPP_DEFAULT_NEW_ALIGNMENT__) {
            #ifdef __cpp_sized_deallocation
                ::operator delete(p, s, std::align_val_t(a));
            #else
                ::operator delete(p, std::align_val_t(a));
            #endif
            return;
        }
    #endif
    #ifdef __cpp_sized_deallocation
        ::operator delete(p, s);
    #else
        ::operator delete(p);
    #endif
}

inline void add_class_method(object& cls, const char *name_, const cpp_function &cf) {
    cls.attr(cf.name()) = cf;
    if (strcmp(name_, "__eq__") == 0 && !cls.attr("__dict__").contains("__hash__")) {
      cls.attr("__hash__") = none();
    }
}

PYBIND11_NAMESPACE_END(detail)

/// Given a pointer to a member function, cast it to its `Derived` version.
/// Forward everything else unchanged.
template <typename /*Derived*/, typename F>
auto method_adaptor(F &&f) -> decltype(std::forward<F>(f)) { return std::forward<F>(f); }

template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...)) -> Return (Derived::*)(Args...) {
    static_assert(detail::is_accessible_base_of<Class, Derived>::value,
        "Cannot bind an inaccessible base class method; use a lambda definition instead");
    return pmf;
}

template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...) const) -> Return (Derived::*)(Args...) const {
    static_assert(detail::is_accessible_base_of<Class, Derived>::value,
        "Cannot bind an inaccessible base class method; use a lambda definition instead");
    return pmf;
}

template <typename type_, typename... options>
class class_ : public detail::generic_type {
    template <typename T> using is_holder = detail::is_holder_type<type_, T>;
    template <typename T> using is_subtype = detail::is_strict_base_of<type_, T>;
    template <typename T> using is_base = detail::is_strict_base_of<T, type_>;
    // struct instead of using here to help MSVC:
    template <typename T> struct is_valid_class_option :
        detail::any_of<is_holder<T>, is_subtype<T>, is_base<T>> {};

public:
    using type = type_;
    using type_alias = detail::exactly_one_t<is_subtype, void, options...>;
    constexpr static bool has_alias = !std::is_void<type_alias>::value;
    using holder_type = detail::exactly_one_t<is_holder, std::unique_ptr<type>, options...>;

    static_assert(detail::all_of<is_valid_class_option<options>...>::value,
            "Unknown/invalid class_ template parameters provided");

    static_assert(!has_alias || std::is_polymorphic<type>::value,
            "Cannot use an alias class with a non-polymorphic type");

    PYBIND11_OBJECT(class_, generic_type, PyType_Check)

    template <typename... Extra>
    class_(handle scope, const char *name, const Extra &... extra) {
        using namespace detail;

        // MI can only be specified via class_ template options, not constructor parameters
        static_assert(
            none_of<is_pyobject<Extra>...>::value || // no base class arguments, or:
            (   constexpr_sum(is_pyobject<Extra>::value...) == 1 && // Exactly one base
                constexpr_sum(is_base<options>::value...)   == 0 && // no template option bases
                none_of<std::is_same<multiple_inheritance, Extra>...>::value), // no multiple_inheritance attr
            "Error: multiple inheritance bases must be specified via class_ template options");

        type_record record;
        record.scope = scope;
        record.name = name;
        record.type = &typeid(type);
        record.type_size = sizeof(conditional_t<has_alias, type_alias, type>);
        record.type_align = alignof(conditional_t<has_alias, type_alias, type>&);
        record.holder_size = sizeof(holder_type);
        record.init_instance = init_instance;
        record.dealloc = dealloc;
        record.default_holder = detail::is_instantiation<std::unique_ptr, holder_type>::value;

        set_operator_new<type>(&record);

        /* Register base classes specified via template arguments to class_, if any */
        PYBIND11_EXPAND_SIDE_EFFECTS(add_base<options>(record));

        /* Process optional arguments, if any */
        process_attributes<Extra...>::init(extra..., &record);

        generic_type::initialize(record);

        if (has_alias) {
            auto &instances = record.module_local ? registered_local_types_cpp() : get_internals().registered_types_cpp;
            instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))];
        }
    }

    template <typename Base, detail::enable_if_t<is_base<Base>::value, int> = 0>
    static void add_base(detail::type_record &rec) {
        rec.add_base(typeid(Base), [](void *src) -> void * {
            return static_cast<Base *>(reinterpret_cast<type *>(src));
        });
    }

    template <typename Base, detail::enable_if_t<!is_base<Base>::value, int> = 0>
    static void add_base(detail::type_record &) { }

    template <typename Func, typename... Extra>
    class_ &def(const char *name_, Func&& f, const Extra&... extra) {
        cpp_function cf(method_adaptor<type>(std::forward<Func>(f)), name(name_), is_method(*this),
                        sibling(getattr(*this, name_, none())), extra...);
        add_class_method(*this, name_, cf);
        return *this;
    }

    template <typename Func, typename... Extra> class_ &
    def_static(const char *name_, Func &&f, const Extra&... extra) {
        static_assert(!std::is_member_function_pointer<Func>::value,
                "def_static(...) called with a non-static member function pointer");
        cpp_function cf(std::forward<Func>(f), name(name_), scope(*this),
                        sibling(getattr(*this, name_, none())), extra...);
        attr(cf.name()) = staticmethod(cf);
        return *this;
    }

    template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
    class_ &def(const detail::op_<id, ot, L, R> &op, const Extra&... extra) {
        op.execute(*this, extra...);
        return *this;
    }

    template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
    class_ & def_cast(const detail::op_<id, ot, L, R> &op, const Extra&... extra) {
        op.execute_cast(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(const detail::initimpl::constructor<Args...> &init, const Extra&... extra) {
        init.execute(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(const detail::initimpl::alias_constructor<Args...> &init, const Extra&... extra) {
        init.execute(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(detail::initimpl::factory<Args...> &&init, const Extra&... extra) {
        std::move(init).execute(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(detail::initimpl::pickle_factory<Args...> &&pf, const Extra &...extra) {
        std::move(pf).execute(*this, extra...);
        return *this;
    }

    template <typename Func>
    class_& def_buffer(Func &&func) {
        struct capture { Func func; };
        auto *ptr = new capture { std::forward<Func>(func) };
        install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* {
            detail::make_caster<type> caster;
            if (!caster.load(obj, false))
                return nullptr;
            return new buffer_info(((capture *) ptr)->func(caster));
        }, ptr);
        weakref(m_ptr, cpp_function([ptr](handle wr) {
            delete ptr;
            wr.dec_ref();
        })).release();
        return *this;
    }

    template <typename Return, typename Class, typename... Args>
    class_ &def_buffer(Return (Class::*func)(Args...)) {
        return def_buffer([func] (type &obj) { return (obj.*func)(); });
    }

    template <typename Return, typename Class, typename... Args>
    class_ &def_buffer(Return (Class::*func)(Args...) const) {
        return def_buffer([func] (const type &obj) { return (obj.*func)(); });
    }

    template <typename C, typename D, typename... Extra>
    class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) {
        static_assert(std::is_same<C, type>::value || std::is_base_of<C, type>::value, "def_readwrite() requires a class member (or base class member)");
        cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this)),
                     fset([pm](type &c, const D &value) { c.*pm = value; }, is_method(*this));
        def_property(name, fget, fset, return_value_policy::reference_internal, extra...);
        return *this;
    }

    template <typename C, typename D, typename... Extra>
    class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) {
        static_assert(std::is_same<C, type>::value || std::is_base_of<C, type>::value, "def_readonly() requires a class member (or base class member)");
        cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this));
        def_property_readonly(name, fget, return_value_policy::reference_internal, extra...);
        return *this;
    }

    template <typename D, typename... Extra>
    class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) {
        cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)),
                     fset([pm](object, const D &value) { *pm = value; }, scope(*this));
        def_property_static(name, fget, fset, return_value_policy::reference, extra...);
        return *this;
    }

    template <typename D, typename... Extra>
    class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) {
        cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this));
        def_property_readonly_static(name, fget, return_value_policy::reference, extra...);
        return *this;
    }

    /// Uses return_value_policy::reference_internal by default
    template <typename Getter, typename... Extra>
    class_ &def_property_readonly(const char *name, const Getter &fget, const Extra& ...extra) {
        return def_property_readonly(name, cpp_function(method_adaptor<type>(fget)),
                                     return_value_policy::reference_internal, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property_readonly(const char *name, const cpp_function &fget, const Extra& ...extra) {
        return def_property(name, fget, nullptr, extra...);
    }

    /// Uses return_value_policy::reference by default
    template <typename Getter, typename... Extra>
    class_ &def_property_readonly_static(const char *name, const Getter &fget, const Extra& ...extra) {
        return def_property_readonly_static(name, cpp_function(fget), return_value_policy::reference, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra& ...extra) {
        return def_property_static(name, fget, nullptr, extra...);
    }

    /// Uses return_value_policy::reference_internal by default
    template <typename Getter, typename Setter, typename... Extra>
    class_ &def_property(const char *name, const Getter &fget, const Setter &fset, const Extra& ...extra) {
        return def_property(name, fget, cpp_function(method_adaptor<type>(fset)), extra...);
    }
    template <typename Getter, typename... Extra>
    class_ &def_property(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) {
        return def_property(name, cpp_function(method_adaptor<type>(fget)), fset,
                            return_value_policy::reference_internal, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) {
        return def_property_static(name, fget, fset, is_method(*this), extra...);
    }

    /// Uses return_value_policy::reference by default
    template <typename Getter, typename... Extra>
    class_ &def_property_static(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) {
        return def_property_static(name, cpp_function(fget), fset, return_value_policy::reference, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) {
        static_assert( 0 == detail::constexpr_sum(std::is_base_of<arg, Extra>::value...),
                      "Argument annotations are not allowed for properties");
        auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset);
        auto *rec_active = rec_fget;
        if (rec_fget) {
           char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */
           detail::process_attributes<Extra...>::init(extra..., rec_fget);
           if (rec_fget->doc && rec_fget->doc != doc_prev) {
              free(doc_prev);
              rec_fget->doc = strdup(rec_fget->doc);
           }
        }
        if (rec_fset) {
            char *doc_prev = rec_fset->doc;
            detail::process_attributes<Extra...>::init(extra..., rec_fset);
            if (rec_fset->doc && rec_fset->doc != doc_prev) {
                free(doc_prev);
                rec_fset->doc = strdup(rec_fset->doc);
            }
            if (! rec_active) rec_active = rec_fset;
        }
        def_property_static_impl(name, fget, fset, rec_active);
        return *this;
    }

private:
    /// Initialize holder object, variant 1: object derives from enable_shared_from_this
    template <typename T>
    static void init_holder(detail::instance *inst, detail::value_and_holder &v_h,
            const holder_type * /* unused */, const std::enable_shared_from_this<T> * /* dummy */) {
        try {
            auto sh = std::dynamic_pointer_cast<typename holder_type::element_type>(
                    v_h.value_ptr<type>()->shared_from_this());
            if (sh) {
                new (std::addressof(v_h.holder<holder_type>())) holder_type(std::move(sh));
                v_h.set_holder_constructed();
            }
        } catch (const std::bad_weak_ptr &) {}

        if (!v_h.holder_constructed() && inst->owned) {
            new (std::addressof(v_h.holder<holder_type>())) holder_type(v_h.value_ptr<type>());
            v_h.set_holder_constructed();
        }
    }

    static void init_holder_from_existing(const detail::value_and_holder &v_h,
            const holder_type *holder_ptr, std::true_type /*is_copy_constructible*/) {
        new (std::addressof(v_h.holder<holder_type>())) holder_type(*reinterpret_cast<const holder_type *>(holder_ptr));
    }

    static void init_holder_from_existing(const detail::value_and_holder &v_h,
            const holder_type *holder_ptr, std::false_type /*is_copy_constructible*/) {
        new (std::addressof(v_h.holder<holder_type>())) holder_type(std::move(*const_cast<holder_type *>(holder_ptr)));
    }

    /// Initialize holder object, variant 2: try to construct from existing holder object, if possible
    static void init_holder(detail::instance *inst, detail::value_and_holder &v_h,
            const holder_type *holder_ptr, const void * /* dummy -- not enable_shared_from_this<T>) */) {
        if (holder_ptr) {
            init_holder_from_existing(v_h, holder_ptr, std::is_copy_constructible<holder_type>());
            v_h.set_holder_constructed();
        } else if (inst->owned || detail::always_construct_holder<holder_type>::value) {
            new (std::addressof(v_h.holder<holder_type>())) holder_type(v_h.value_ptr<type>());
            v_h.set_holder_constructed();
        }
    }

    /// Performs instance initialization including constructing a holder and registering the known
    /// instance.  Should be called as soon as the `type` value_ptr is set for an instance.  Takes an
    /// optional pointer to an existing holder to use; if not specified and the instance is
    /// `.owned`, a new holder will be constructed to manage the value pointer.
    static void init_instance(detail::instance *inst, const void *holder_ptr) {
        auto v_h = inst->get_value_and_holder(detail::get_type_info(typeid(type)));
        if (!v_h.instance_registered()) {
            register_instance(inst, v_h.value_ptr(), v_h.type);
            v_h.set_instance_registered();
        }
        init_holder(inst, v_h, (const holder_type *) holder_ptr, v_h.value_ptr<type>());
    }

    /// Deallocates an instance; via holder, if constructed; otherwise via operator delete.
    static void dealloc(detail::value_and_holder &v_h) {
        // We could be deallocating because we are cleaning up after a Python exception.
        // If so, the Python error indicator will be set. We need to clear that before
        // running the destructor, in case the destructor code calls more Python.
        // If we don't, the Python API will exit with an exception, and pybind11 will
        // throw error_already_set from the C++ destructor which is forbidden and triggers
        // std::terminate().
        error_scope scope;
        if (v_h.holder_constructed()) {
            v_h.holder<holder_type>().~holder_type();
            v_h.set_holder_constructed(false);
        }
        else {
            detail::call_operator_delete(v_h.value_ptr<type>(),
                v_h.type->type_size,
                v_h.type->type_align
            );
        }
        v_h.value_ptr() = nullptr;
    }

    static detail::function_record *get_function_record(handle h) {
        h = detail::get_function(h);
        return h ? (detail::function_record *) reinterpret_borrow<capsule>(PyCFunction_GET_SELF(h.ptr()))
                 : nullptr;
    }
};

/// Binds an existing constructor taking arguments Args...
template <typename... Args> detail::initimpl::constructor<Args...> init() { return {}; }
/// Like `init<Args...>()`, but the instance is always constructed through the alias class (even
/// when not inheriting on the Python side).
template <typename... Args> detail::initimpl::alias_constructor<Args...> init_alias() { return {}; }

/// Binds a factory function as a constructor
template <typename Func, typename Ret = detail::initimpl::factory<Func>>
Ret init(Func &&f) { return {std::forward<Func>(f)}; }

/// Dual-argument factory function: the first function is called when no alias is needed, the second
/// when an alias is needed (i.e. due to python-side inheritance).  Arguments must be identical.
template <typename CFunc, typename AFunc, typename Ret = detail::initimpl::factory<CFunc, AFunc>>
Ret init(CFunc &&c, AFunc &&a) {
    return {std::forward<CFunc>(c), std::forward<AFunc>(a)};
}

/// Binds pickling functions `__getstate__` and `__setstate__` and ensures that the type
/// returned by `__getstate__` is the same as the argument accepted by `__setstate__`.
template <typename GetState, typename SetState>
detail::initimpl::pickle_factory<GetState, SetState> pickle(GetState &&g, SetState &&s) {
    return {std::forward<GetState>(g), std::forward<SetState>(s)};
}

PYBIND11_NAMESPACE_BEGIN(detail)

inline str enum_name(handle arg) {
    dict entries = arg.get_type().attr("__entries");
    for (auto kv : entries) {
        if (handle(kv.second[int_(0)]).equal(arg))
            return pybind11::str(kv.first);
    }
    return "???";
}

struct enum_base {
    enum_base(handle base, handle parent) : m_base(base), m_parent(parent) { }

    PYBIND11_NOINLINE void init(bool is_arithmetic, bool is_convertible) {
        m_base.attr("__entries") = dict();
        auto property = handle((PyObject *) &PyProperty_Type);
        auto static_property = handle((PyObject *) get_internals().static_property_type);

        m_base.attr("__repr__") = cpp_function(
            [](object arg) -> str {
                handle type = type::handle_of(arg);
                object type_name = type.attr("__name__");
                return pybind11::str("<{}.{}: {}>").format(type_name, enum_name(arg), int_(arg));
            }, name("__repr__"), is_method(m_base)
        );

        m_base.attr("name") = property(cpp_function(&enum_name, name("name"), is_method(m_base)));

        m_base.attr("__str__") = cpp_function(
            [](handle arg) -> str {
                object type_name = type::handle_of(arg).attr("__name__");
                return pybind11::str("{}.{}").format(type_name, enum_name(arg));
            }, name("name"), is_method(m_base)
        );

        m_base.attr("__doc__") = static_property(cpp_function(
            [](handle arg) -> std::string {
                std::string docstring;
                dict entries = arg.attr("__entries");
                if (((PyTypeObject *) arg.ptr())->tp_doc)
                    docstring += std::string(((PyTypeObject *) arg.ptr())->tp_doc) + "\n\n";
                docstring += "Members:";
                for (auto kv : entries) {
                    auto key = std::string(pybind11::str(kv.first));
                    auto comment = kv.second[int_(1)];
                    docstring += "\n\n  " + key;
                    if (!comment.is_none())
                        docstring += " : " + (std::string) pybind11::str(comment);
                }
                return docstring;
            }, name("__doc__")
        ), none(), none(), "");

        m_base.attr("__members__") = static_property(cpp_function(
            [](handle arg) -> dict {
                dict entries = arg.attr("__entries"), m;
                for (auto kv : entries)
                    m[kv.first] = kv.second[int_(0)];
                return m;
            }, name("__members__")), none(), none(), ""
        );

        #define PYBIND11_ENUM_OP_STRICT(op, expr, strict_behavior)                     \
            m_base.attr(op) = cpp_function(                                            \
                [](object a, object b) {                                               \
                    if (!type::handle_of(a).is(type::handle_of(b)))                    \
                        strict_behavior;                                               \
                    return expr;                                                       \
                },                                                                     \
                name(op), is_method(m_base), arg("other"))

        #define PYBIND11_ENUM_OP_CONV(op, expr)                                        \
            m_base.attr(op) = cpp_function(                                            \
                [](object a_, object b_) {                                             \
                    int_ a(a_), b(b_);                                                 \
                    return expr;                                                       \
                },                                                                     \
                name(op), is_method(m_base), arg("other"))

        #define PYBIND11_ENUM_OP_CONV_LHS(op, expr)                                    \
            m_base.attr(op) = cpp_function(                                            \
                [](object a_, object b) {                                              \
                    int_ a(a_);                                                        \
                    return expr;                                                       \
                },                                                                     \
                name(op), is_method(m_base), arg("other"))

        if (is_convertible) {
            PYBIND11_ENUM_OP_CONV_LHS("__eq__", !b.is_none() &&  a.equal(b));
            PYBIND11_ENUM_OP_CONV_LHS("__ne__",  b.is_none() || !a.equal(b));

            if (is_arithmetic) {
                PYBIND11_ENUM_OP_CONV("__lt__",   a <  b);
                PYBIND11_ENUM_OP_CONV("__gt__",   a >  b);
                PYBIND11_ENUM_OP_CONV("__le__",   a <= b);
                PYBIND11_ENUM_OP_CONV("__ge__",   a >= b);
                PYBIND11_ENUM_OP_CONV("__and__",  a &  b);
                PYBIND11_ENUM_OP_CONV("__rand__", a &  b);
                PYBIND11_ENUM_OP_CONV("__or__",   a |  b);
                PYBIND11_ENUM_OP_CONV("__ror__",  a |  b);
                PYBIND11_ENUM_OP_CONV("__xor__",  a ^  b);
                PYBIND11_ENUM_OP_CONV("__rxor__", a ^  b);
                m_base.attr("__invert__") = cpp_function(
                    [](object arg) { return ~(int_(arg)); }, name("__invert__"), is_method(m_base));
            }
        } else {
            PYBIND11_ENUM_OP_STRICT("__eq__",  int_(a).equal(int_(b)), return false);
            PYBIND11_ENUM_OP_STRICT("__ne__", !int_(a).equal(int_(b)), return true);

            if (is_arithmetic) {
                #define PYBIND11_THROW throw type_error("Expected an enumeration of matching type!");
                PYBIND11_ENUM_OP_STRICT("__lt__", int_(a) <  int_(b), PYBIND11_THROW);
                PYBIND11_ENUM_OP_STRICT("__gt__", int_(a) >  int_(b), PYBIND11_THROW);
                PYBIND11_ENUM_OP_STRICT("__le__", int_(a) <= int_(b), PYBIND11_THROW);
                PYBIND11_ENUM_OP_STRICT("__ge__", int_(a) >= int_(b), PYBIND11_THROW);
                #undef PYBIND11_THROW
            }
        }

        #undef PYBIND11_ENUM_OP_CONV_LHS
        #undef PYBIND11_ENUM_OP_CONV
        #undef PYBIND11_ENUM_OP_STRICT

        m_base.attr("__getstate__") = cpp_function(
            [](object arg) { return int_(arg); }, name("__getstate__"), is_method(m_base));

        m_base.attr("__hash__") = cpp_function(
            [](object arg) { return int_(arg); }, name("__hash__"), is_method(m_base));
    }

    PYBIND11_NOINLINE void value(char const* name_, object value, const char *doc = nullptr) {
        dict entries = m_base.attr("__entries");
        str name(name_);
        if (entries.contains(name)) {
            std::string type_name = (std::string) str(m_base.attr("__name__"));
            throw value_error(type_name + ": element \"" + std::string(name_) + "\" already exists!");
        }

        entries[name] = std::make_pair(value, doc);
        m_base.attr(name) = value;
    }

    PYBIND11_NOINLINE void export_values() {
        dict entries = m_base.attr("__entries");
        for (auto kv : entries)
            m_parent.attr(kv.first) = kv.second[int_(0)];
    }

    handle m_base;
    handle m_parent;
};

PYBIND11_NAMESPACE_END(detail)

/// Binds C++ enumerations and enumeration classes to Python
template <typename Type> class enum_ : public class_<Type> {
public:
    using Base = class_<Type>;
    using Base::def;
    using Base::attr;
    using Base::def_property_readonly;
    using Base::def_property_readonly_static;
    using Scalar = typename std::underlying_type<Type>::type;

    template <typename... Extra>
    enum_(const handle &scope, const char *name, const Extra&... extra)
      : class_<Type>(scope, name, extra...), m_base(*this, scope) {
        constexpr bool is_arithmetic = detail::any_of<std::is_same<arithmetic, Extra>...>::value;
        constexpr bool is_convertible = std::is_convertible<Type, Scalar>::value;
        m_base.init(is_arithmetic, is_convertible);

        def(init([](Scalar i) { return static_cast<Type>(i); }), arg("value"));
        def_property_readonly("value", [](Type value) { return (Scalar) value; });
        def("__int__", [](Type value) { return (Scalar) value; });
        #if PY_MAJOR_VERSION < 3
            def("__long__", [](Type value) { return (Scalar) value; });
        #endif
        #if PY_MAJOR_VERSION > 3 || (PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION >= 8)
            def("__index__", [](Type value) { return (Scalar) value; });
        #endif

        attr("__setstate__") = cpp_function(
            [](detail::value_and_holder &v_h, Scalar arg) {
                detail::initimpl::setstate<Base>(v_h, static_cast<Type>(arg),
                        Py_TYPE(v_h.inst) != v_h.type->type); },
            detail::is_new_style_constructor(),
            pybind11::name("__setstate__"), is_method(*this), arg("state"));
    }

    /// Export enumeration entries into the parent scope
    enum_& export_values() {
        m_base.export_values();
        return *this;
    }

    /// Add an enumeration entry
    enum_& value(char const* name, Type value, const char *doc = nullptr) {
        m_base.value(name, pybind11::cast(value, return_value_policy::copy), doc);
        return *this;
    }

private:
    detail::enum_base m_base;
};

PYBIND11_NAMESPACE_BEGIN(detail)


inline void keep_alive_impl(handle nurse, handle patient) {
    if (!nurse || !patient)
        pybind11_fail("Could not activate keep_alive!");

    if (patient.is_none() || nurse.is_none())
        return; /* Nothing to keep alive or nothing to be kept alive by */

    auto tinfo = all_type_info(Py_TYPE(nurse.ptr()));
    if (!tinfo.empty()) {
        /* It's a pybind-registered type, so we can store the patient in the
         * internal list. */
        add_patient(nurse.ptr(), patient.ptr());
    }
    else {
        /* Fall back to clever approach based on weak references taken from
         * Boost.Python. This is not used for pybind-registered types because
         * the objects can be destroyed out-of-order in a GC pass. */
        cpp_function disable_lifesupport(
            [patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); });

        weakref wr(nurse, disable_lifesupport);

        patient.inc_ref(); /* reference patient and leak the weak reference */
        (void) wr.release();
    }
}

PYBIND11_NOINLINE inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret) {
    auto get_arg = [&](size_t n) {
        if (n == 0)
            return ret;
        else if (n == 1 && call.init_self)
            return call.init_self;
        else if (n <= call.args.size())
            return call.args[n - 1];
        return handle();
    };

    keep_alive_impl(get_arg(Nurse), get_arg(Patient));
}

inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type) {
    auto res = get_internals().registered_types_py
#ifdef __cpp_lib_unordered_map_try_emplace
        .try_emplace(type);
#else
        .emplace(type, std::vector<detail::type_info *>());
#endif
    if (res.second) {
        // New cache entry created; set up a weak reference to automatically remove it if the type
        // gets destroyed:
        weakref((PyObject *) type, cpp_function([type](handle wr) {
            get_internals().registered_types_py.erase(type);
            wr.dec_ref();
        })).release();
    }

    return res;
}

template <typename Iterator, typename Sentinel, bool KeyIterator, return_value_policy Policy>
struct iterator_state {
    Iterator it;
    Sentinel end;
    bool first_or_done;
};

PYBIND11_NAMESPACE_END(detail)

/// Makes a python iterator from a first and past-the-end C++ InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Iterator,
          typename Sentinel,
          typename ValueType = decltype(*std::declval<Iterator>()),
          typename... Extra>
iterator make_iterator(Iterator first, Sentinel last, Extra &&... extra) {
    using state = detail::iterator_state<Iterator, Sentinel, false, Policy>;

    if (!detail::get_type_info(typeid(state), false)) {
        class_<state>(handle(), "iterator", pybind11::module_local())
            .def("__iter__", [](state &s) -> state& { return s; })
            .def("__next__", [](state &s) -> ValueType {
                if (!s.first_or_done)
                    ++s.it;
                else
                    s.first_or_done = false;
                if (s.it == s.end) {
                    s.first_or_done = true;
                    throw stop_iteration();
                }
                return *s.it;
            }, std::forward<Extra>(extra)..., Policy);
    }

    return cast(state{first, last, true});
}

/// Makes an python iterator over the keys (`.first`) of a iterator over pairs from a
/// first and past-the-end InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Iterator,
          typename Sentinel,
          typename KeyType = decltype((*std::declval<Iterator>()).first),
          typename... Extra>
iterator make_key_iterator(Iterator first, Sentinel last, Extra &&... extra) {
    using state = detail::iterator_state<Iterator, Sentinel, true, Policy>;

    if (!detail::get_type_info(typeid(state), false)) {
        class_<state>(handle(), "iterator", pybind11::module_local())
            .def("__iter__", [](state &s) -> state& { return s; })
            .def("__next__", [](state &s) -> KeyType {
                if (!s.first_or_done)
                    ++s.it;
                else
                    s.first_or_done = false;
                if (s.it == s.end) {
                    s.first_or_done = true;
                    throw stop_iteration();
                }
                return (*s.it).first;
            }, std::forward<Extra>(extra)..., Policy);
    }

    return cast(state{first, last, true});
}

/// Makes an iterator over values of an stl container or other container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Type, typename... Extra> iterator make_iterator(Type &value, Extra&&... extra) {
    return make_iterator<Policy>(std::begin(value), std::end(value), extra...);
}

/// Makes an iterator over the keys (`.first`) of a stl map-like container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Type, typename... Extra> iterator make_key_iterator(Type &value, Extra&&... extra) {
    return make_key_iterator<Policy>(std::begin(value), std::end(value), extra...);
}

template <typename InputType, typename OutputType> void implicitly_convertible() {
    struct set_flag {
        bool &flag;
        set_flag(bool &flag_) : flag(flag_) { flag_ = true; }
        ~set_flag() { flag = false; }
    };
    auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * {
        static bool currently_used = false;
        if (currently_used) // implicit conversions are non-reentrant
            return nullptr;
        set_flag flag_helper(currently_used);
        if (!detail::make_caster<InputType>().load(obj, false))
            return nullptr;
        tuple args(1);
        args[0] = obj;
        PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr);
        if (result == nullptr)
            PyErr_Clear();
        return result;
    };

    if (auto tinfo = detail::get_type_info(typeid(OutputType)))
        tinfo->implicit_conversions.push_back(implicit_caster);
    else
        pybind11_fail("implicitly_convertible: Unable to find type " + type_id<OutputType>());
}

template <typename ExceptionTranslator>
void register_exception_translator(ExceptionTranslator&& translator) {
    detail::get_internals().registered_exception_translators.push_front(
        std::forward<ExceptionTranslator>(translator));
}

/**
 * Wrapper to generate a new Python exception type.
 *
 * This should only be used with PyErr_SetString for now.
 * It is not (yet) possible to use as a py::base.
 * Template type argument is reserved for future use.
 */
template <typename type>
class exception : public object {
public:
    exception() = default;
    exception(handle scope, const char *name, handle base = PyExc_Exception) {
        std::string full_name = scope.attr("__name__").cast<std::string>() +
                                std::string(".") + name;
        m_ptr = PyErr_NewException(const_cast<char *>(full_name.c_str()), base.ptr(), NULL);
        if (hasattr(scope, "__dict__") && scope.attr("__dict__").contains(name))
            pybind11_fail("Error during initialization: multiple incompatible "
                          "definitions with name \"" + std::string(name) + "\"");
        scope.attr(name) = *this;
    }

    // Sets the current python exception to this exception object with the given message
    void operator()(const char *message) {
        PyErr_SetString(m_ptr, message);
    }
};

PYBIND11_NAMESPACE_BEGIN(detail)
// Returns a reference to a function-local static exception object used in the simple
// register_exception approach below.  (It would be simpler to have the static local variable
// directly in register_exception, but that makes clang <3.5 segfault - issue #1349).
template <typename CppException>
exception<CppException> &get_exception_object() { static exception<CppException> ex; return ex; }
PYBIND11_NAMESPACE_END(detail)

/**
 * Registers a Python exception in `m` of the given `name` and installs an exception translator to
 * translate the C++ exception to the created Python exception using the exceptions what() method.
 * This is intended for simple exception translations; for more complex translation, register the
 * exception object and translator directly.
 */
template <typename CppException>
exception<CppException> &register_exception(handle scope,
                                            const char *name,
                                            handle base = PyExc_Exception) {
    auto &ex = detail::get_exception_object<CppException>();
    if (!ex) ex = exception<CppException>(scope, name, base);

    register_exception_translator([](std::exception_ptr p) {
        if (!p) return;
        try {
            std::rethrow_exception(p);
        } catch (const CppException &e) {
            detail::get_exception_object<CppException>()(e.what());
        }
    });
    return ex;
}

PYBIND11_NAMESPACE_BEGIN(detail)
PYBIND11_NOINLINE inline void print(tuple args, dict kwargs) {
    auto strings = tuple(args.size());
    for (size_t i = 0; i < args.size(); ++i) {
        strings[i] = str(args[i]);
    }
    auto sep = kwargs.contains("sep") ? kwargs["sep"] : cast(" ");
    auto line = sep.attr("join")(strings);

    object file;
    if (kwargs.contains("file")) {
        file = kwargs["file"].cast<object>();
    } else {
        try {
            file = module_::import("sys").attr("stdout");
        } catch (const error_already_set &) {
            /* If print() is called from code that is executed as
               part of garbage collection during interpreter shutdown,
               importing 'sys' can fail. Give up rather than crashing the
               interpreter in this case. */
            return;
        }
    }

    auto write = file.attr("write");
    write(line);
    write(kwargs.contains("end") ? kwargs["end"] : cast("\n"));

    if (kwargs.contains("flush") && kwargs["flush"].cast<bool>())
        file.attr("flush")();
}
PYBIND11_NAMESPACE_END(detail)

template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
void print(Args &&...args) {
    auto c = detail::collect_arguments<policy>(std::forward<Args>(args)...);
    detail::print(c.args(), c.kwargs());
}

#if defined(WITH_THREAD) && !defined(PYPY_VERSION)

/* The functions below essentially reproduce the PyGILState_* API using a RAII
 * pattern, but there are a few important differences:
 *
 * 1. When acquiring the GIL from an non-main thread during the finalization
 *    phase, the GILState API blindly terminates the calling thread, which
 *    is often not what is wanted. This API does not do this.
 *
 * 2. The gil_scoped_release function can optionally cut the relationship
 *    of a PyThreadState and its associated thread, which allows moving it to
 *    another thread (this is a fairly rare/advanced use case).
 *
 * 3. The reference count of an acquired thread state can be controlled. This
 *    can be handy to prevent cases where callbacks issued from an external
 *    thread would otherwise constantly construct and destroy thread state data
 *    structures.
 *
 * See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an
 * example which uses features 2 and 3 to migrate the Python thread of
 * execution to another thread (to run the event loop on the original thread,
 * in this case).
 */

class gil_scoped_acquire {
public:
    PYBIND11_NOINLINE gil_scoped_acquire() {
        auto const &internals = detail::get_internals();
        tstate = (PyThreadState *) PYBIND11_TLS_GET_VALUE(internals.tstate);

        if (!tstate) {
            /* Check if the GIL was acquired using the PyGILState_* API instead (e.g. if
               calling from a Python thread). Since we use a different key, this ensures
               we don't create a new thread state and deadlock in PyEval_AcquireThread
               below. Note we don't save this state with internals.tstate, since we don't
               create it we would fail to clear it (its reference count should be > 0). */
            tstate = PyGILState_GetThisThreadState();
        }

        if (!tstate) {
            tstate = PyThreadState_New(internals.istate);
            #if !defined(NDEBUG)
                if (!tstate)
                    pybind11_fail("scoped_acquire: could not create thread state!");
            #endif
            tstate->gilstate_counter = 0;
            PYBIND11_TLS_REPLACE_VALUE(internals.tstate, tstate);
        } else {
            release = detail::get_thread_state_unchecked() != tstate;
        }

        if (release) {
            PyEval_AcquireThread(tstate);
        }

        inc_ref();
    }

    void inc_ref() {
        ++tstate->gilstate_counter;
    }

    PYBIND11_NOINLINE void dec_ref() {
        --tstate->gilstate_counter;
        #if !defined(NDEBUG)
            if (detail::get_thread_state_unchecked() != tstate)
                pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!");
            if (tstate->gilstate_counter < 0)
                pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!");
        #endif
        if (tstate->gilstate_counter == 0) {
            #if !defined(NDEBUG)
                if (!release)
                    pybind11_fail("scoped_acquire::dec_ref(): internal error!");
            #endif
            PyThreadState_Clear(tstate);
            if (active)
                PyThreadState_DeleteCurrent();
            PYBIND11_TLS_DELETE_VALUE(detail::get_internals().tstate);
            release = false;
        }
    }

    /// This method will disable the PyThreadState_DeleteCurrent call and the
    /// GIL won't be acquired. This method should be used if the interpreter
    /// could be shutting down when this is called, as thread deletion is not
    /// allowed during shutdown. Check _Py_IsFinalizing() on Python 3.7+, and
    /// protect subsequent code.
    PYBIND11_NOINLINE void disarm() {
        active = false;
    }

    PYBIND11_NOINLINE ~gil_scoped_acquire() {
        dec_ref();
        if (release)
           PyEval_SaveThread();
    }
private:
    PyThreadState *tstate = nullptr;
    bool release = true;
    bool active = true;
};

class gil_scoped_release {
public:
    explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) {
        // `get_internals()` must be called here unconditionally in order to initialize
        // `internals.tstate` for subsequent `gil_scoped_acquire` calls. Otherwise, an
        // initialization race could occur as multiple threads try `gil_scoped_acquire`.
        const auto &internals = detail::get_internals();
        tstate = PyEval_SaveThread();
        if (disassoc) {
            auto key = internals.tstate;
            PYBIND11_TLS_DELETE_VALUE(key);
        }
    }

    /// This method will disable the PyThreadState_DeleteCurrent call and the
    /// GIL won't be acquired. This method should be used if the interpreter
    /// could be shutting down when this is called, as thread deletion is not
    /// allowed during shutdown. Check _Py_IsFinalizing() on Python 3.7+, and
    /// protect subsequent code.
    PYBIND11_NOINLINE void disarm() {
        active = false;
    }

    ~gil_scoped_release() {
        if (!tstate)
            return;
        // `PyEval_RestoreThread()` should not be called if runtime is finalizing
        if (active)
            PyEval_RestoreThread(tstate);
        if (disassoc) {
            auto key = detail::get_internals().tstate;
            PYBIND11_TLS_REPLACE_VALUE(key, tstate);
        }
    }
private:
    PyThreadState *tstate;
    bool disassoc;
    bool active = true;
};
#elif defined(PYPY_VERSION)
class gil_scoped_acquire {
    PyGILState_STATE state;
public:
    gil_scoped_acquire() { state = PyGILState_Ensure(); }
    ~gil_scoped_acquire() { PyGILState_Release(state); }
    void disarm() {}
};

class gil_scoped_release {
    PyThreadState *state;
public:
    gil_scoped_release() { state = PyEval_SaveThread(); }
    ~gil_scoped_release() { PyEval_RestoreThread(state); }
    void disarm() {}
};
#else
class gil_scoped_acquire {
    void disarm() {}
};
class gil_scoped_release {
    void disarm() {}
};
#endif

error_already_set::~error_already_set() {
    if (m_type) {
        gil_scoped_acquire gil;
        error_scope scope;
        m_type.release().dec_ref();
        m_value.release().dec_ref();
        m_trace.release().dec_ref();
    }
}

PYBIND11_NAMESPACE_BEGIN(detail)
inline function get_type_override(const void *this_ptr, const type_info *this_type, const char *name)  {
    handle self = get_object_handle(this_ptr, this_type);
    if (!self)
        return function();
    handle type = type::handle_of(self);
    auto key = std::make_pair(type.ptr(), name);

    /* Cache functions that aren't overridden in Python to avoid
       many costly Python dictionary lookups below */
    auto &cache = get_internals().inactive_override_cache;
    if (cache.find(key) != cache.end())
        return function();

    function override = getattr(self, name, function());
    if (override.is_cpp_function()) {
        cache.insert(key);
        return function();
    }

    /* Don't call dispatch code if invoked from overridden function.
       Unfortunately this doesn't work on PyPy. */
#if !defined(PYPY_VERSION)
    PyFrameObject *frame = PyThreadState_Get()->frame;
    if (frame && (std::string) str(frame->f_code->co_name) == name &&
        frame->f_code->co_argcount > 0) {
        PyFrame_FastToLocals(frame);
        PyObject *self_caller = PyDict_GetItem(
            frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0));
        if (self_caller == self.ptr())
            return function();
    }
#else
    /* PyPy currently doesn't provide a detailed cpyext emulation of
       frame objects, so we have to emulate this using Python. This
       is going to be slow..*/
    dict d; d["self"] = self; d["name"] = pybind11::str(name);
    PyObject *result = PyRun_String(
        "import inspect\n"
        "frame = inspect.currentframe()\n"
        "if frame is not None:\n"
        "    frame = frame.f_back\n"
        "    if frame is not None and str(frame.f_code.co_name) == name and "
        "frame.f_code.co_argcount > 0:\n"
        "        self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n"
        "        if self_caller == self:\n"
        "            self = None\n",
        Py_file_input, d.ptr(), d.ptr());
    if (result == nullptr)
        throw error_already_set();
    if (d["self"].is_none())
        return function();
    Py_DECREF(result);
#endif

    return override;
}
PYBIND11_NAMESPACE_END(detail)

/** \rst
  Try to retrieve a python method by the provided name from the instance pointed to by the this_ptr.

  :this_ptr: The pointer to the object the overridden method should be retrieved for. This should be
             the first non-trampoline class encountered in the inheritance chain.
  :name: The name of the overridden Python method to retrieve.
  :return: The Python method by this name from the object or an empty function wrapper.
 \endrst */
template <class T> function get_override(const T *this_ptr, const char *name) {
    auto tinfo = detail::get_type_info(typeid(T));
    return tinfo ? detail::get_type_override(this_ptr, tinfo, name) : function();
}

#define PYBIND11_OVERRIDE_IMPL(ret_type, cname, name, ...) \
    do { \
        pybind11::gil_scoped_acquire gil; \
        pybind11::function override = pybind11::get_override(static_cast<const cname *>(this), name); \
        if (override) { \
            auto o = override(__VA_ARGS__); \
            if (pybind11::detail::cast_is_temporary_value_reference<ret_type>::value) { \
                static pybind11::detail::override_caster_t<ret_type> caster; \
                return pybind11::detail::cast_ref<ret_type>(std::move(o), caster); \
            } \
            else return pybind11::detail::cast_safe<ret_type>(std::move(o)); \
        } \
    } while (false)

/** \rst
    Macro to populate the virtual method in the trampoline class. This macro tries to look up a method named 'fn'
    from the Python side, deals with the :ref:`gil` and necessary argument conversions to call this method and return
    the appropriate type. See :ref:`overriding_virtuals` for more information. This macro should be used when the method
    name in C is not the same as the method name in Python. For example with `__str__`.

    .. code-block:: cpp

      std::string toString() override {
        PYBIND11_OVERRIDE_NAME(
            std::string, // Return type (ret_type)
            Animal,      // Parent class (cname)
            "__str__",   // Name of method in Python (name)
            toString,    // Name of function in C++ (fn)
        );
      }
\endrst */
#define PYBIND11_OVERRIDE_NAME(ret_type, cname, name, fn, ...) \
    do { \
        PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__); \
        return cname::fn(__VA_ARGS__); \
    } while (false)

/** \rst
    Macro for pure virtual functions, this function is identical to :c:macro:`PYBIND11_OVERRIDE_NAME`, except that it
    throws if no override can be found.
\endrst */
#define PYBIND11_OVERRIDE_PURE_NAME(ret_type, cname, name, fn, ...) \
    do { \
        PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__); \
        pybind11::pybind11_fail("Tried to call pure virtual function \"" PYBIND11_STRINGIFY(cname) "::" name "\""); \
    } while (false)

/** \rst
    Macro to populate the virtual method in the trampoline class. This macro tries to look up the method
    from the Python side, deals with the :ref:`gil` and necessary argument conversions to call this method and return
    the appropriate type. This macro should be used if the method name in C and in Python are identical.
    See :ref:`overriding_virtuals` for more information.

    .. code-block:: cpp

      class PyAnimal : public Animal {
      public:
          // Inherit the constructors
          using Animal::Animal;

          // Trampoline (need one for each virtual function)
          std::string go(int n_times) override {
              PYBIND11_OVERRIDE_PURE(
                  std::string, // Return type (ret_type)
                  Animal,      // Parent class (cname)
                  go,          // Name of function in C++ (must match Python name) (fn)
                  n_times      // Argument(s) (...)
              );
          }
      };
\endrst */
#define PYBIND11_OVERRIDE(ret_type, cname, fn, ...) \
    PYBIND11_OVERRIDE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), #fn, fn, __VA_ARGS__)

/** \rst
    Macro for pure virtual functions, this function is identical to :c:macro:`PYBIND11_OVERRIDE`, except that it throws
    if no override can be found.
\endrst */
#define PYBIND11_OVERRIDE_PURE(ret_type, cname, fn, ...) \
    PYBIND11_OVERRIDE_PURE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), #fn, fn, __VA_ARGS__)


// Deprecated versions

PYBIND11_DEPRECATED("get_type_overload has been deprecated")
inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) {
    return detail::get_type_override(this_ptr, this_type, name);
}

template <class T>
inline function get_overload(const T *this_ptr, const char *name) {
    return get_override(this_ptr, name);
}

#define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) \
    PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__)
#define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \
    PYBIND11_OVERRIDE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, fn, __VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \
    PYBIND11_OVERRIDE_PURE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, fn, __VA_ARGS__);
#define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \
    PYBIND11_OVERRIDE(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), fn, __VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \
    PYBIND11_OVERRIDE_PURE(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), fn, __VA_ARGS__);

PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
#  pragma warning(pop)
#elif defined(__GNUG__) && !defined(__clang__)
#  pragma GCC diagnostic pop
#endif