aboutsummaryrefslogtreecommitdiff
path: root/include/pybind11/numpy.h
blob: 36077ec04d18c0c4f7265f6a24a96443e7037f42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
/*
    pybind11/numpy.h: Basic NumPy support, vectorize() wrapper

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "pybind11.h"
#include "complex.h"

#include <algorithm>
#include <array>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <numeric>
#include <sstream>
#include <string>
#include <type_traits>
#include <typeindex>
#include <utility>
#include <vector>

/* This will be true on all flat address space platforms and allows us to reduce the
   whole npy_intp / ssize_t / Py_intptr_t business down to just ssize_t for all size
   and dimension types (e.g. shape, strides, indexing), instead of inflicting this
   upon the library user. */
static_assert(sizeof(::pybind11::ssize_t) == sizeof(Py_intptr_t), "ssize_t != Py_intptr_t");
static_assert(std::is_signed<Py_intptr_t>::value, "Py_intptr_t must be signed");
// We now can reinterpret_cast between py::ssize_t and Py_intptr_t (MSVC + PyPy cares)

PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)

PYBIND11_WARNING_DISABLE_MSVC(4127)

class array; // Forward declaration

PYBIND11_NAMESPACE_BEGIN(detail)

template <>
struct handle_type_name<array> {
    static constexpr auto name = const_name("numpy.ndarray");
};

template <typename type, typename SFINAE = void>
struct npy_format_descriptor;

struct PyArrayDescr_Proxy {
    PyObject_HEAD
    PyObject *typeobj;
    char kind;
    char type;
    char byteorder;
    char flags;
    int type_num;
    int elsize;
    int alignment;
    char *subarray;
    PyObject *fields;
    PyObject *names;
};

struct PyArray_Proxy {
    PyObject_HEAD
    char *data;
    int nd;
    ssize_t *dimensions;
    ssize_t *strides;
    PyObject *base;
    PyObject *descr;
    int flags;
};

struct PyVoidScalarObject_Proxy {
    PyObject_VAR_HEAD char *obval;
    PyArrayDescr_Proxy *descr;
    int flags;
    PyObject *base;
};

struct numpy_type_info {
    PyObject *dtype_ptr;
    std::string format_str;
};

struct numpy_internals {
    std::unordered_map<std::type_index, numpy_type_info> registered_dtypes;

    numpy_type_info *get_type_info(const std::type_info &tinfo, bool throw_if_missing = true) {
        auto it = registered_dtypes.find(std::type_index(tinfo));
        if (it != registered_dtypes.end()) {
            return &(it->second);
        }
        if (throw_if_missing) {
            pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name());
        }
        return nullptr;
    }

    template <typename T>
    numpy_type_info *get_type_info(bool throw_if_missing = true) {
        return get_type_info(typeid(typename std::remove_cv<T>::type), throw_if_missing);
    }
};

PYBIND11_NOINLINE void load_numpy_internals(numpy_internals *&ptr) {
    ptr = &get_or_create_shared_data<numpy_internals>("_numpy_internals");
}

inline numpy_internals &get_numpy_internals() {
    static numpy_internals *ptr = nullptr;
    if (!ptr) {
        load_numpy_internals(ptr);
    }
    return *ptr;
}

template <typename T>
struct same_size {
    template <typename U>
    using as = bool_constant<sizeof(T) == sizeof(U)>;
};

template <typename Concrete>
constexpr int platform_lookup() {
    return -1;
}

// Lookup a type according to its size, and return a value corresponding to the NumPy typenum.
template <typename Concrete, typename T, typename... Ts, typename... Ints>
constexpr int platform_lookup(int I, Ints... Is) {
    return sizeof(Concrete) == sizeof(T) ? I : platform_lookup<Concrete, Ts...>(Is...);
}

struct npy_api {
    enum constants {
        NPY_ARRAY_C_CONTIGUOUS_ = 0x0001,
        NPY_ARRAY_F_CONTIGUOUS_ = 0x0002,
        NPY_ARRAY_OWNDATA_ = 0x0004,
        NPY_ARRAY_FORCECAST_ = 0x0010,
        NPY_ARRAY_ENSUREARRAY_ = 0x0040,
        NPY_ARRAY_ALIGNED_ = 0x0100,
        NPY_ARRAY_WRITEABLE_ = 0x0400,
        NPY_BOOL_ = 0,
        NPY_BYTE_,
        NPY_UBYTE_,
        NPY_SHORT_,
        NPY_USHORT_,
        NPY_INT_,
        NPY_UINT_,
        NPY_LONG_,
        NPY_ULONG_,
        NPY_LONGLONG_,
        NPY_ULONGLONG_,
        NPY_FLOAT_,
        NPY_DOUBLE_,
        NPY_LONGDOUBLE_,
        NPY_CFLOAT_,
        NPY_CDOUBLE_,
        NPY_CLONGDOUBLE_,
        NPY_OBJECT_ = 17,
        NPY_STRING_,
        NPY_UNICODE_,
        NPY_VOID_,
        // Platform-dependent normalization
        NPY_INT8_ = NPY_BYTE_,
        NPY_UINT8_ = NPY_UBYTE_,
        NPY_INT16_ = NPY_SHORT_,
        NPY_UINT16_ = NPY_USHORT_,
        // `npy_common.h` defines the integer aliases. In order, it checks:
        // NPY_BITSOF_LONG, NPY_BITSOF_LONGLONG, NPY_BITSOF_INT, NPY_BITSOF_SHORT, NPY_BITSOF_CHAR
        // and assigns the alias to the first matching size, so we should check in this order.
        NPY_INT32_
        = platform_lookup<std::int32_t, long, int, short>(NPY_LONG_, NPY_INT_, NPY_SHORT_),
        NPY_UINT32_ = platform_lookup<std::uint32_t, unsigned long, unsigned int, unsigned short>(
            NPY_ULONG_, NPY_UINT_, NPY_USHORT_),
        NPY_INT64_
        = platform_lookup<std::int64_t, long, long long, int>(NPY_LONG_, NPY_LONGLONG_, NPY_INT_),
        NPY_UINT64_
        = platform_lookup<std::uint64_t, unsigned long, unsigned long long, unsigned int>(
            NPY_ULONG_, NPY_ULONGLONG_, NPY_UINT_),
    };

    struct PyArray_Dims {
        Py_intptr_t *ptr;
        int len;
    };

    static npy_api &get() {
        static npy_api api = lookup();
        return api;
    }

    bool PyArray_Check_(PyObject *obj) const {
        return PyObject_TypeCheck(obj, PyArray_Type_) != 0;
    }
    bool PyArrayDescr_Check_(PyObject *obj) const {
        return PyObject_TypeCheck(obj, PyArrayDescr_Type_) != 0;
    }

    unsigned int (*PyArray_GetNDArrayCFeatureVersion_)();
    PyObject *(*PyArray_DescrFromType_)(int);
    PyObject *(*PyArray_NewFromDescr_)(PyTypeObject *,
                                       PyObject *,
                                       int,
                                       Py_intptr_t const *,
                                       Py_intptr_t const *,
                                       void *,
                                       int,
                                       PyObject *);
    // Unused. Not removed because that affects ABI of the class.
    PyObject *(*PyArray_DescrNewFromType_)(int);
    int (*PyArray_CopyInto_)(PyObject *, PyObject *);
    PyObject *(*PyArray_NewCopy_)(PyObject *, int);
    PyTypeObject *PyArray_Type_;
    PyTypeObject *PyVoidArrType_Type_;
    PyTypeObject *PyArrayDescr_Type_;
    PyObject *(*PyArray_DescrFromScalar_)(PyObject *);
    PyObject *(*PyArray_FromAny_)(PyObject *, PyObject *, int, int, int, PyObject *);
    int (*PyArray_DescrConverter_)(PyObject *, PyObject **);
    bool (*PyArray_EquivTypes_)(PyObject *, PyObject *);
    int (*PyArray_GetArrayParamsFromObject_)(PyObject *,
                                             PyObject *,
                                             unsigned char,
                                             PyObject **,
                                             int *,
                                             Py_intptr_t *,
                                             PyObject **,
                                             PyObject *);
    PyObject *(*PyArray_Squeeze_)(PyObject *);
    // Unused. Not removed because that affects ABI of the class.
    int (*PyArray_SetBaseObject_)(PyObject *, PyObject *);
    PyObject *(*PyArray_Resize_)(PyObject *, PyArray_Dims *, int, int);
    PyObject *(*PyArray_Newshape_)(PyObject *, PyArray_Dims *, int);
    PyObject *(*PyArray_View_)(PyObject *, PyObject *, PyObject *);

private:
    enum functions {
        API_PyArray_GetNDArrayCFeatureVersion = 211,
        API_PyArray_Type = 2,
        API_PyArrayDescr_Type = 3,
        API_PyVoidArrType_Type = 39,
        API_PyArray_DescrFromType = 45,
        API_PyArray_DescrFromScalar = 57,
        API_PyArray_FromAny = 69,
        API_PyArray_Resize = 80,
        API_PyArray_CopyInto = 82,
        API_PyArray_NewCopy = 85,
        API_PyArray_NewFromDescr = 94,
        API_PyArray_DescrNewFromType = 96,
        API_PyArray_Newshape = 135,
        API_PyArray_Squeeze = 136,
        API_PyArray_View = 137,
        API_PyArray_DescrConverter = 174,
        API_PyArray_EquivTypes = 182,
        API_PyArray_GetArrayParamsFromObject = 278,
        API_PyArray_SetBaseObject = 282
    };

    static npy_api lookup() {
        module_ m = module_::import("numpy.core.multiarray");
        auto c = m.attr("_ARRAY_API");
        void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), nullptr);
        npy_api api;
#define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func];
        DECL_NPY_API(PyArray_GetNDArrayCFeatureVersion);
        if (api.PyArray_GetNDArrayCFeatureVersion_() < 0x7) {
            pybind11_fail("pybind11 numpy support requires numpy >= 1.7.0");
        }
        DECL_NPY_API(PyArray_Type);
        DECL_NPY_API(PyVoidArrType_Type);
        DECL_NPY_API(PyArrayDescr_Type);
        DECL_NPY_API(PyArray_DescrFromType);
        DECL_NPY_API(PyArray_DescrFromScalar);
        DECL_NPY_API(PyArray_FromAny);
        DECL_NPY_API(PyArray_Resize);
        DECL_NPY_API(PyArray_CopyInto);
        DECL_NPY_API(PyArray_NewCopy);
        DECL_NPY_API(PyArray_NewFromDescr);
        DECL_NPY_API(PyArray_DescrNewFromType);
        DECL_NPY_API(PyArray_Newshape);
        DECL_NPY_API(PyArray_Squeeze);
        DECL_NPY_API(PyArray_View);
        DECL_NPY_API(PyArray_DescrConverter);
        DECL_NPY_API(PyArray_EquivTypes);
        DECL_NPY_API(PyArray_GetArrayParamsFromObject);
        DECL_NPY_API(PyArray_SetBaseObject);

#undef DECL_NPY_API
        return api;
    }
};

inline PyArray_Proxy *array_proxy(void *ptr) { return reinterpret_cast<PyArray_Proxy *>(ptr); }

inline const PyArray_Proxy *array_proxy(const void *ptr) {
    return reinterpret_cast<const PyArray_Proxy *>(ptr);
}

inline PyArrayDescr_Proxy *array_descriptor_proxy(PyObject *ptr) {
    return reinterpret_cast<PyArrayDescr_Proxy *>(ptr);
}

inline const PyArrayDescr_Proxy *array_descriptor_proxy(const PyObject *ptr) {
    return reinterpret_cast<const PyArrayDescr_Proxy *>(ptr);
}

inline bool check_flags(const void *ptr, int flag) {
    return (flag == (array_proxy(ptr)->flags & flag));
}

template <typename T>
struct is_std_array : std::false_type {};
template <typename T, size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {};
template <typename T>
struct is_complex : std::false_type {};
template <typename T>
struct is_complex<std::complex<T>> : std::true_type {};

template <typename T>
struct array_info_scalar {
    using type = T;
    static constexpr bool is_array = false;
    static constexpr bool is_empty = false;
    static constexpr auto extents = const_name("");
    static void append_extents(list & /* shape */) {}
};
// Computes underlying type and a comma-separated list of extents for array
// types (any mix of std::array and built-in arrays). An array of char is
// treated as scalar because it gets special handling.
template <typename T>
struct array_info : array_info_scalar<T> {};
template <typename T, size_t N>
struct array_info<std::array<T, N>> {
    using type = typename array_info<T>::type;
    static constexpr bool is_array = true;
    static constexpr bool is_empty = (N == 0) || array_info<T>::is_empty;
    static constexpr size_t extent = N;

    // appends the extents to shape
    static void append_extents(list &shape) {
        shape.append(N);
        array_info<T>::append_extents(shape);
    }

    static constexpr auto extents = const_name<array_info<T>::is_array>(
        concat(const_name<N>(), array_info<T>::extents), const_name<N>());
};
// For numpy we have special handling for arrays of characters, so we don't include
// the size in the array extents.
template <size_t N>
struct array_info<char[N]> : array_info_scalar<char[N]> {};
template <size_t N>
struct array_info<std::array<char, N>> : array_info_scalar<std::array<char, N>> {};
template <typename T, size_t N>
struct array_info<T[N]> : array_info<std::array<T, N>> {};
template <typename T>
using remove_all_extents_t = typename array_info<T>::type;

template <typename T>
using is_pod_struct
    = all_of<std::is_standard_layout<T>, // since we're accessing directly in memory
                                         // we need a standard layout type
#if defined(__GLIBCXX__)                                                                          \
    && (__GLIBCXX__ < 20150422 || __GLIBCXX__ == 20150426 || __GLIBCXX__ == 20150623              \
        || __GLIBCXX__ == 20150626 || __GLIBCXX__ == 20160803)
             // libstdc++ < 5 (including versions 4.8.5, 4.9.3 and 4.9.4 which were released after
             // 5) don't implement is_trivially_copyable, so approximate it
             std::is_trivially_destructible<T>,
             satisfies_any_of<T, std::has_trivial_copy_constructor, std::has_trivial_copy_assign>,
#else
             std::is_trivially_copyable<T>,
#endif
             satisfies_none_of<T,
                               std::is_reference,
                               std::is_array,
                               is_std_array,
                               std::is_arithmetic,
                               is_complex,
                               std::is_enum>>;

// Replacement for std::is_pod (deprecated in C++20)
template <typename T>
using is_pod = all_of<std::is_standard_layout<T>, std::is_trivial<T>>;

template <ssize_t Dim = 0, typename Strides>
ssize_t byte_offset_unsafe(const Strides &) {
    return 0;
}
template <ssize_t Dim = 0, typename Strides, typename... Ix>
ssize_t byte_offset_unsafe(const Strides &strides, ssize_t i, Ix... index) {
    return i * strides[Dim] + byte_offset_unsafe<Dim + 1>(strides, index...);
}

/**
 * Proxy class providing unsafe, unchecked const access to array data.  This is constructed through
 * the `unchecked<T, N>()` method of `array` or the `unchecked<N>()` method of `array_t<T>`. `Dims`
 * will be -1 for dimensions determined at runtime.
 */
template <typename T, ssize_t Dims>
class unchecked_reference {
protected:
    static constexpr bool Dynamic = Dims < 0;
    const unsigned char *data_;
    // Storing the shape & strides in local variables (i.e. these arrays) allows the compiler to
    // make large performance gains on big, nested loops, but requires compile-time dimensions
    conditional_t<Dynamic, const ssize_t *, std::array<ssize_t, (size_t) Dims>> shape_, strides_;
    const ssize_t dims_;

    friend class pybind11::array;
    // Constructor for compile-time dimensions:
    template <bool Dyn = Dynamic>
    unchecked_reference(const void *data,
                        const ssize_t *shape,
                        const ssize_t *strides,
                        enable_if_t<!Dyn, ssize_t>)
        : data_{reinterpret_cast<const unsigned char *>(data)}, dims_{Dims} {
        for (size_t i = 0; i < (size_t) dims_; i++) {
            shape_[i] = shape[i];
            strides_[i] = strides[i];
        }
    }
    // Constructor for runtime dimensions:
    template <bool Dyn = Dynamic>
    unchecked_reference(const void *data,
                        const ssize_t *shape,
                        const ssize_t *strides,
                        enable_if_t<Dyn, ssize_t> dims)
        : data_{reinterpret_cast<const unsigned char *>(data)}, shape_{shape}, strides_{strides},
          dims_{dims} {}

public:
    /**
     * Unchecked const reference access to data at the given indices.  For a compile-time known
     * number of dimensions, this requires the correct number of arguments; for run-time
     * dimensionality, this is not checked (and so is up to the caller to use safely).
     */
    template <typename... Ix>
    const T &operator()(Ix... index) const {
        static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
                      "Invalid number of indices for unchecked array reference");
        return *reinterpret_cast<const T *>(data_
                                            + byte_offset_unsafe(strides_, ssize_t(index)...));
    }
    /**
     * Unchecked const reference access to data; this operator only participates if the reference
     * is to a 1-dimensional array.  When present, this is exactly equivalent to `obj(index)`.
     */
    template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
    const T &operator[](ssize_t index) const {
        return operator()(index);
    }

    /// Pointer access to the data at the given indices.
    template <typename... Ix>
    const T *data(Ix... ix) const {
        return &operator()(ssize_t(ix)...);
    }

    /// Returns the item size, i.e. sizeof(T)
    constexpr static ssize_t itemsize() { return sizeof(T); }

    /// Returns the shape (i.e. size) of dimension `dim`
    ssize_t shape(ssize_t dim) const { return shape_[(size_t) dim]; }

    /// Returns the number of dimensions of the array
    ssize_t ndim() const { return dims_; }

    /// Returns the total number of elements in the referenced array, i.e. the product of the
    /// shapes
    template <bool Dyn = Dynamic>
    enable_if_t<!Dyn, ssize_t> size() const {
        return std::accumulate(
            shape_.begin(), shape_.end(), (ssize_t) 1, std::multiplies<ssize_t>());
    }
    template <bool Dyn = Dynamic>
    enable_if_t<Dyn, ssize_t> size() const {
        return std::accumulate(shape_, shape_ + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
    }

    /// Returns the total number of bytes used by the referenced data.  Note that the actual span
    /// in memory may be larger if the referenced array has non-contiguous strides (e.g. for a
    /// slice).
    ssize_t nbytes() const { return size() * itemsize(); }
};

template <typename T, ssize_t Dims>
class unchecked_mutable_reference : public unchecked_reference<T, Dims> {
    friend class pybind11::array;
    using ConstBase = unchecked_reference<T, Dims>;
    using ConstBase::ConstBase;
    using ConstBase::Dynamic;

public:
    // Bring in const-qualified versions from base class
    using ConstBase::operator();
    using ConstBase::operator[];

    /// Mutable, unchecked access to data at the given indices.
    template <typename... Ix>
    T &operator()(Ix... index) {
        static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
                      "Invalid number of indices for unchecked array reference");
        return const_cast<T &>(ConstBase::operator()(index...));
    }
    /**
     * Mutable, unchecked access data at the given index; this operator only participates if the
     * reference is to a 1-dimensional array (or has runtime dimensions).  When present, this is
     * exactly equivalent to `obj(index)`.
     */
    template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
    T &operator[](ssize_t index) {
        return operator()(index);
    }

    /// Mutable pointer access to the data at the given indices.
    template <typename... Ix>
    T *mutable_data(Ix... ix) {
        return &operator()(ssize_t(ix)...);
    }
};

template <typename T, ssize_t Dim>
struct type_caster<unchecked_reference<T, Dim>> {
    static_assert(Dim == 0 && Dim > 0 /* always fail */,
                  "unchecked array proxy object is not castable");
};
template <typename T, ssize_t Dim>
struct type_caster<unchecked_mutable_reference<T, Dim>>
    : type_caster<unchecked_reference<T, Dim>> {};

PYBIND11_NAMESPACE_END(detail)

class dtype : public object {
public:
    PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_)

    explicit dtype(const buffer_info &info) {
        dtype descr(_dtype_from_pep3118()(pybind11::str(info.format)));
        // If info.itemsize == 0, use the value calculated from the format string
        m_ptr = descr.strip_padding(info.itemsize != 0 ? info.itemsize : descr.itemsize())
                    .release()
                    .ptr();
    }

    explicit dtype(const pybind11::str &format) : dtype(from_args(format)) {}

    explicit dtype(const std::string &format) : dtype(pybind11::str(format)) {}

    explicit dtype(const char *format) : dtype(pybind11::str(format)) {}

    dtype(list names, list formats, list offsets, ssize_t itemsize) {
        dict args;
        args["names"] = std::move(names);
        args["formats"] = std::move(formats);
        args["offsets"] = std::move(offsets);
        args["itemsize"] = pybind11::int_(itemsize);
        m_ptr = from_args(args).release().ptr();
    }

    /// Return dtype for the given typenum (one of the NPY_TYPES).
    /// https://numpy.org/devdocs/reference/c-api/array.html#c.PyArray_DescrFromType
    explicit dtype(int typenum)
        : object(detail::npy_api::get().PyArray_DescrFromType_(typenum), stolen_t{}) {
        if (m_ptr == nullptr) {
            throw error_already_set();
        }
    }

    /// This is essentially the same as calling numpy.dtype(args) in Python.
    static dtype from_args(const object &args) {
        PyObject *ptr = nullptr;
        if ((detail::npy_api::get().PyArray_DescrConverter_(args.ptr(), &ptr) == 0) || !ptr) {
            throw error_already_set();
        }
        return reinterpret_steal<dtype>(ptr);
    }

    /// Return dtype associated with a C++ type.
    template <typename T>
    static dtype of() {
        return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::dtype();
    }

    /// Size of the data type in bytes.
    ssize_t itemsize() const { return detail::array_descriptor_proxy(m_ptr)->elsize; }

    /// Returns true for structured data types.
    bool has_fields() const { return detail::array_descriptor_proxy(m_ptr)->names != nullptr; }

    /// Single-character code for dtype's kind.
    /// For example, floating point types are 'f' and integral types are 'i'.
    char kind() const { return detail::array_descriptor_proxy(m_ptr)->kind; }

    /// Single-character for dtype's type.
    /// For example, ``float`` is 'f', ``double`` 'd', ``int`` 'i', and ``long`` 'l'.
    char char_() const {
        // Note: The signature, `dtype::char_` follows the naming of NumPy's
        // public Python API (i.e., ``dtype.char``), rather than its internal
        // C API (``PyArray_Descr::type``).
        return detail::array_descriptor_proxy(m_ptr)->type;
    }

    /// type number of dtype.
    int num() const {
        // Note: The signature, `dtype::num` follows the naming of NumPy's public
        // Python API (i.e., ``dtype.num``), rather than its internal
        // C API (``PyArray_Descr::type_num``).
        return detail::array_descriptor_proxy(m_ptr)->type_num;
    }

    /// Single character for byteorder
    char byteorder() const { return detail::array_descriptor_proxy(m_ptr)->byteorder; }

    /// Alignment of the data type
    int alignment() const { return detail::array_descriptor_proxy(m_ptr)->alignment; }

    /// Flags for the array descriptor
    char flags() const { return detail::array_descriptor_proxy(m_ptr)->flags; }

private:
    static object _dtype_from_pep3118() {
        static PyObject *obj = module_::import("numpy.core._internal")
                                   .attr("_dtype_from_pep3118")
                                   .cast<object>()
                                   .release()
                                   .ptr();
        return reinterpret_borrow<object>(obj);
    }

    dtype strip_padding(ssize_t itemsize) {
        // Recursively strip all void fields with empty names that are generated for
        // padding fields (as of NumPy v1.11).
        if (!has_fields()) {
            return *this;
        }

        struct field_descr {
            pybind11::str name;
            object format;
            pybind11::int_ offset;
            field_descr(pybind11::str &&name, object &&format, pybind11::int_ &&offset)
                : name{std::move(name)}, format{std::move(format)}, offset{std::move(offset)} {};
        };
        auto field_dict = attr("fields").cast<dict>();
        std::vector<field_descr> field_descriptors;
        field_descriptors.reserve(field_dict.size());

        for (auto field : field_dict.attr("items")()) {
            auto spec = field.cast<tuple>();
            auto name = spec[0].cast<pybind11::str>();
            auto spec_fo = spec[1].cast<tuple>();
            auto format = spec_fo[0].cast<dtype>();
            auto offset = spec_fo[1].cast<pybind11::int_>();
            if ((len(name) == 0u) && format.kind() == 'V') {
                continue;
            }
            field_descriptors.emplace_back(
                std::move(name), format.strip_padding(format.itemsize()), std::move(offset));
        }

        std::sort(field_descriptors.begin(),
                  field_descriptors.end(),
                  [](const field_descr &a, const field_descr &b) {
                      return a.offset.cast<int>() < b.offset.cast<int>();
                  });

        list names, formats, offsets;
        for (auto &descr : field_descriptors) {
            names.append(std::move(descr.name));
            formats.append(std::move(descr.format));
            offsets.append(std::move(descr.offset));
        }
        return dtype(std::move(names), std::move(formats), std::move(offsets), itemsize);
    }
};

class array : public buffer {
public:
    PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array)

    enum {
        c_style = detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_,
        f_style = detail::npy_api::NPY_ARRAY_F_CONTIGUOUS_,
        forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_
    };

    array() : array(0, static_cast<const double *>(nullptr)) {}

    using ShapeContainer = detail::any_container<ssize_t>;
    using StridesContainer = detail::any_container<ssize_t>;

    // Constructs an array taking shape/strides from arbitrary container types
    array(const pybind11::dtype &dt,
          ShapeContainer shape,
          StridesContainer strides,
          const void *ptr = nullptr,
          handle base = handle()) {

        if (strides->empty()) {
            *strides = detail::c_strides(*shape, dt.itemsize());
        }

        auto ndim = shape->size();
        if (ndim != strides->size()) {
            pybind11_fail("NumPy: shape ndim doesn't match strides ndim");
        }
        auto descr = dt;

        int flags = 0;
        if (base && ptr) {
            if (isinstance<array>(base)) {
                /* Copy flags from base (except ownership bit) */
                flags = reinterpret_borrow<array>(base).flags()
                        & ~detail::npy_api::NPY_ARRAY_OWNDATA_;
            } else {
                /* Writable by default, easy to downgrade later on if needed */
                flags = detail::npy_api::NPY_ARRAY_WRITEABLE_;
            }
        }

        auto &api = detail::npy_api::get();
        auto tmp = reinterpret_steal<object>(api.PyArray_NewFromDescr_(
            api.PyArray_Type_,
            descr.release().ptr(),
            (int) ndim,
            // Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1)
            reinterpret_cast<Py_intptr_t *>(shape->data()),
            reinterpret_cast<Py_intptr_t *>(strides->data()),
            const_cast<void *>(ptr),
            flags,
            nullptr));
        if (!tmp) {
            throw error_already_set();
        }
        if (ptr) {
            if (base) {
                api.PyArray_SetBaseObject_(tmp.ptr(), base.inc_ref().ptr());
            } else {
                tmp = reinterpret_steal<object>(
                    api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */));
            }
        }
        m_ptr = tmp.release().ptr();
    }

    array(const pybind11::dtype &dt,
          ShapeContainer shape,
          const void *ptr = nullptr,
          handle base = handle())
        : array(dt, std::move(shape), {}, ptr, base) {}

    template <typename T,
              typename
              = detail::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>>
    array(const pybind11::dtype &dt, T count, const void *ptr = nullptr, handle base = handle())
        : array(dt, {{count}}, ptr, base) {}

    template <typename T>
    array(ShapeContainer shape, StridesContainer strides, const T *ptr, handle base = handle())
        : array(pybind11::dtype::of<T>(), std::move(shape), std::move(strides), ptr, base) {}

    template <typename T>
    array(ShapeContainer shape, const T *ptr, handle base = handle())
        : array(std::move(shape), {}, ptr, base) {}

    template <typename T>
    explicit array(ssize_t count, const T *ptr, handle base = handle())
        : array({count}, {}, ptr, base) {}

    explicit array(const buffer_info &info, handle base = handle())
        : array(pybind11::dtype(info), info.shape, info.strides, info.ptr, base) {}

    /// Array descriptor (dtype)
    pybind11::dtype dtype() const {
        return reinterpret_borrow<pybind11::dtype>(detail::array_proxy(m_ptr)->descr);
    }

    /// Total number of elements
    ssize_t size() const {
        return std::accumulate(shape(), shape() + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
    }

    /// Byte size of a single element
    ssize_t itemsize() const {
        return detail::array_descriptor_proxy(detail::array_proxy(m_ptr)->descr)->elsize;
    }

    /// Total number of bytes
    ssize_t nbytes() const { return size() * itemsize(); }

    /// Number of dimensions
    ssize_t ndim() const { return detail::array_proxy(m_ptr)->nd; }

    /// Base object
    object base() const { return reinterpret_borrow<object>(detail::array_proxy(m_ptr)->base); }

    /// Dimensions of the array
    const ssize_t *shape() const { return detail::array_proxy(m_ptr)->dimensions; }

    /// Dimension along a given axis
    ssize_t shape(ssize_t dim) const {
        if (dim >= ndim()) {
            fail_dim_check(dim, "invalid axis");
        }
        return shape()[dim];
    }

    /// Strides of the array
    const ssize_t *strides() const { return detail::array_proxy(m_ptr)->strides; }

    /// Stride along a given axis
    ssize_t strides(ssize_t dim) const {
        if (dim >= ndim()) {
            fail_dim_check(dim, "invalid axis");
        }
        return strides()[dim];
    }

    /// Return the NumPy array flags
    int flags() const { return detail::array_proxy(m_ptr)->flags; }

    /// If set, the array is writeable (otherwise the buffer is read-only)
    bool writeable() const {
        return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_);
    }

    /// If set, the array owns the data (will be freed when the array is deleted)
    bool owndata() const {
        return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_);
    }

    /// Pointer to the contained data. If index is not provided, points to the
    /// beginning of the buffer. May throw if the index would lead to out of bounds access.
    template <typename... Ix>
    const void *data(Ix... index) const {
        return static_cast<const void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
    }

    /// Mutable pointer to the contained data. If index is not provided, points to the
    /// beginning of the buffer. May throw if the index would lead to out of bounds access.
    /// May throw if the array is not writeable.
    template <typename... Ix>
    void *mutable_data(Ix... index) {
        check_writeable();
        return static_cast<void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
    }

    /// Byte offset from beginning of the array to a given index (full or partial).
    /// May throw if the index would lead to out of bounds access.
    template <typename... Ix>
    ssize_t offset_at(Ix... index) const {
        if ((ssize_t) sizeof...(index) > ndim()) {
            fail_dim_check(sizeof...(index), "too many indices for an array");
        }
        return byte_offset(ssize_t(index)...);
    }

    ssize_t offset_at() const { return 0; }

    /// Item count from beginning of the array to a given index (full or partial).
    /// May throw if the index would lead to out of bounds access.
    template <typename... Ix>
    ssize_t index_at(Ix... index) const {
        return offset_at(index...) / itemsize();
    }

    /**
     * Returns a proxy object that provides access to the array's data without bounds or
     * dimensionality checking.  Will throw if the array is missing the `writeable` flag.  Use with
     * care: the array must not be destroyed or reshaped for the duration of the returned object,
     * and the caller must take care not to access invalid dimensions or dimension indices.
     */
    template <typename T, ssize_t Dims = -1>
    detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
        if (Dims >= 0 && ndim() != Dims) {
            throw std::domain_error("array has incorrect number of dimensions: "
                                    + std::to_string(ndim()) + "; expected "
                                    + std::to_string(Dims));
        }
        return detail::unchecked_mutable_reference<T, Dims>(
            mutable_data(), shape(), strides(), ndim());
    }

    /**
     * Returns a proxy object that provides const access to the array's data without bounds or
     * dimensionality checking.  Unlike `mutable_unchecked()`, this does not require that the
     * underlying array have the `writable` flag.  Use with care: the array must not be destroyed
     * or reshaped for the duration of the returned object, and the caller must take care not to
     * access invalid dimensions or dimension indices.
     */
    template <typename T, ssize_t Dims = -1>
    detail::unchecked_reference<T, Dims> unchecked() const & {
        if (Dims >= 0 && ndim() != Dims) {
            throw std::domain_error("array has incorrect number of dimensions: "
                                    + std::to_string(ndim()) + "; expected "
                                    + std::to_string(Dims));
        }
        return detail::unchecked_reference<T, Dims>(data(), shape(), strides(), ndim());
    }

    /// Return a new view with all of the dimensions of length 1 removed
    array squeeze() {
        auto &api = detail::npy_api::get();
        return reinterpret_steal<array>(api.PyArray_Squeeze_(m_ptr));
    }

    /// Resize array to given shape
    /// If refcheck is true and more that one reference exist to this array
    /// then resize will succeed only if it makes a reshape, i.e. original size doesn't change
    void resize(ShapeContainer new_shape, bool refcheck = true) {
        detail::npy_api::PyArray_Dims d
            = {// Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1)
               reinterpret_cast<Py_intptr_t *>(new_shape->data()),
               int(new_shape->size())};
        // try to resize, set ordering param to -1 cause it's not used anyway
        auto new_array = reinterpret_steal<object>(
            detail::npy_api::get().PyArray_Resize_(m_ptr, &d, int(refcheck), -1));
        if (!new_array) {
            throw error_already_set();
        }
        if (isinstance<array>(new_array)) {
            *this = std::move(new_array);
        }
    }

    /// Optional `order` parameter omitted, to be added as needed.
    array reshape(ShapeContainer new_shape) {
        detail::npy_api::PyArray_Dims d
            = {reinterpret_cast<Py_intptr_t *>(new_shape->data()), int(new_shape->size())};
        auto new_array
            = reinterpret_steal<array>(detail::npy_api::get().PyArray_Newshape_(m_ptr, &d, 0));
        if (!new_array) {
            throw error_already_set();
        }
        return new_array;
    }

    /// Create a view of an array in a different data type.
    /// This function may fundamentally reinterpret the data in the array.
    /// It is the responsibility of the caller to ensure that this is safe.
    /// Only supports the `dtype` argument, the `type` argument is omitted,
    /// to be added as needed.
    array view(const std::string &dtype) {
        auto &api = detail::npy_api::get();
        auto new_view = reinterpret_steal<array>(api.PyArray_View_(
            m_ptr, dtype::from_args(pybind11::str(dtype)).release().ptr(), nullptr));
        if (!new_view) {
            throw error_already_set();
        }
        return new_view;
    }

    /// Ensure that the argument is a NumPy array
    /// In case of an error, nullptr is returned and the Python error is cleared.
    static array ensure(handle h, int ExtraFlags = 0) {
        auto result = reinterpret_steal<array>(raw_array(h.ptr(), ExtraFlags));
        if (!result) {
            PyErr_Clear();
        }
        return result;
    }

protected:
    template <typename, typename>
    friend struct detail::npy_format_descriptor;

    void fail_dim_check(ssize_t dim, const std::string &msg) const {
        throw index_error(msg + ": " + std::to_string(dim) + " (ndim = " + std::to_string(ndim())
                          + ')');
    }

    template <typename... Ix>
    ssize_t byte_offset(Ix... index) const {
        check_dimensions(index...);
        return detail::byte_offset_unsafe(strides(), ssize_t(index)...);
    }

    void check_writeable() const {
        if (!writeable()) {
            throw std::domain_error("array is not writeable");
        }
    }

    template <typename... Ix>
    void check_dimensions(Ix... index) const {
        check_dimensions_impl(ssize_t(0), shape(), ssize_t(index)...);
    }

    void check_dimensions_impl(ssize_t, const ssize_t *) const {}

    template <typename... Ix>
    void check_dimensions_impl(ssize_t axis, const ssize_t *shape, ssize_t i, Ix... index) const {
        if (i >= *shape) {
            throw index_error(std::string("index ") + std::to_string(i)
                              + " is out of bounds for axis " + std::to_string(axis)
                              + " with size " + std::to_string(*shape));
        }
        check_dimensions_impl(axis + 1, shape + 1, index...);
    }

    /// Create array from any object -- always returns a new reference
    static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) {
        if (ptr == nullptr) {
            PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array from a nullptr");
            return nullptr;
        }
        return detail::npy_api::get().PyArray_FromAny_(
            ptr, nullptr, 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr);
    }
};

template <typename T, int ExtraFlags = array::forcecast>
class array_t : public array {
private:
    struct private_ctor {};
    // Delegating constructor needed when both moving and accessing in the same constructor
    array_t(private_ctor,
            ShapeContainer &&shape,
            StridesContainer &&strides,
            const T *ptr,
            handle base)
        : array(std::move(shape), std::move(strides), ptr, base) {}

public:
    static_assert(!detail::array_info<T>::is_array, "Array types cannot be used with array_t");

    using value_type = T;

    array_t() : array(0, static_cast<const T *>(nullptr)) {}
    array_t(handle h, borrowed_t) : array(h, borrowed_t{}) {}
    array_t(handle h, stolen_t) : array(h, stolen_t{}) {}

    PYBIND11_DEPRECATED("Use array_t<T>::ensure() instead")
    array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen_t{}) {
        if (!m_ptr) {
            PyErr_Clear();
        }
        if (!is_borrowed) {
            Py_XDECREF(h.ptr());
        }
    }

    // NOLINTNEXTLINE(google-explicit-constructor)
    array_t(const object &o) : array(raw_array_t(o.ptr()), stolen_t{}) {
        if (!m_ptr) {
            throw error_already_set();
        }
    }

    explicit array_t(const buffer_info &info, handle base = handle()) : array(info, base) {}

    array_t(ShapeContainer shape,
            StridesContainer strides,
            const T *ptr = nullptr,
            handle base = handle())
        : array(std::move(shape), std::move(strides), ptr, base) {}

    explicit array_t(ShapeContainer shape, const T *ptr = nullptr, handle base = handle())
        : array_t(private_ctor{},
                  std::move(shape),
                  (ExtraFlags & f_style) != 0 ? detail::f_strides(*shape, itemsize())
                                              : detail::c_strides(*shape, itemsize()),
                  ptr,
                  base) {}

    explicit array_t(ssize_t count, const T *ptr = nullptr, handle base = handle())
        : array({count}, {}, ptr, base) {}

    constexpr ssize_t itemsize() const { return sizeof(T); }

    template <typename... Ix>
    ssize_t index_at(Ix... index) const {
        return offset_at(index...) / itemsize();
    }

    template <typename... Ix>
    const T *data(Ix... index) const {
        return static_cast<const T *>(array::data(index...));
    }

    template <typename... Ix>
    T *mutable_data(Ix... index) {
        return static_cast<T *>(array::mutable_data(index...));
    }

    // Reference to element at a given index
    template <typename... Ix>
    const T &at(Ix... index) const {
        if ((ssize_t) sizeof...(index) != ndim()) {
            fail_dim_check(sizeof...(index), "index dimension mismatch");
        }
        return *(static_cast<const T *>(array::data())
                 + byte_offset(ssize_t(index)...) / itemsize());
    }

    // Mutable reference to element at a given index
    template <typename... Ix>
    T &mutable_at(Ix... index) {
        if ((ssize_t) sizeof...(index) != ndim()) {
            fail_dim_check(sizeof...(index), "index dimension mismatch");
        }
        return *(static_cast<T *>(array::mutable_data())
                 + byte_offset(ssize_t(index)...) / itemsize());
    }

    /**
     * Returns a proxy object that provides access to the array's data without bounds or
     * dimensionality checking.  Will throw if the array is missing the `writeable` flag.  Use with
     * care: the array must not be destroyed or reshaped for the duration of the returned object,
     * and the caller must take care not to access invalid dimensions or dimension indices.
     */
    template <ssize_t Dims = -1>
    detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
        return array::mutable_unchecked<T, Dims>();
    }

    /**
     * Returns a proxy object that provides const access to the array's data without bounds or
     * dimensionality checking.  Unlike `mutable_unchecked()`, this does not require that the
     * underlying array have the `writable` flag.  Use with care: the array must not be destroyed
     * or reshaped for the duration of the returned object, and the caller must take care not to
     * access invalid dimensions or dimension indices.
     */
    template <ssize_t Dims = -1>
    detail::unchecked_reference<T, Dims> unchecked() const & {
        return array::unchecked<T, Dims>();
    }

    /// Ensure that the argument is a NumPy array of the correct dtype (and if not, try to convert
    /// it).  In case of an error, nullptr is returned and the Python error is cleared.
    static array_t ensure(handle h) {
        auto result = reinterpret_steal<array_t>(raw_array_t(h.ptr()));
        if (!result) {
            PyErr_Clear();
        }
        return result;
    }

    static bool check_(handle h) {
        const auto &api = detail::npy_api::get();
        return api.PyArray_Check_(h.ptr())
               && api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr,
                                          dtype::of<T>().ptr())
               && detail::check_flags(h.ptr(), ExtraFlags & (array::c_style | array::f_style));
    }

protected:
    /// Create array from any object -- always returns a new reference
    static PyObject *raw_array_t(PyObject *ptr) {
        if (ptr == nullptr) {
            PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array_t from a nullptr");
            return nullptr;
        }
        return detail::npy_api::get().PyArray_FromAny_(ptr,
                                                       dtype::of<T>().release().ptr(),
                                                       0,
                                                       0,
                                                       detail::npy_api::NPY_ARRAY_ENSUREARRAY_
                                                           | ExtraFlags,
                                                       nullptr);
    }
};

template <typename T>
struct format_descriptor<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
    static std::string format() {
        return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::format();
    }
};

template <size_t N>
struct format_descriptor<char[N]> {
    static std::string format() { return std::to_string(N) + 's'; }
};
template <size_t N>
struct format_descriptor<std::array<char, N>> {
    static std::string format() { return std::to_string(N) + 's'; }
};

template <typename T>
struct format_descriptor<T, detail::enable_if_t<std::is_enum<T>::value>> {
    static std::string format() {
        return format_descriptor<
            typename std::remove_cv<typename std::underlying_type<T>::type>::type>::format();
    }
};

template <typename T>
struct format_descriptor<T, detail::enable_if_t<detail::array_info<T>::is_array>> {
    static std::string format() {
        using namespace detail;
        static constexpr auto extents = const_name("(") + array_info<T>::extents + const_name(")");
        return extents.text + format_descriptor<remove_all_extents_t<T>>::format();
    }
};

PYBIND11_NAMESPACE_BEGIN(detail)
template <typename T, int ExtraFlags>
struct pyobject_caster<array_t<T, ExtraFlags>> {
    using type = array_t<T, ExtraFlags>;

    bool load(handle src, bool convert) {
        if (!convert && !type::check_(src)) {
            return false;
        }
        value = type::ensure(src);
        return static_cast<bool>(value);
    }

    static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
        return src.inc_ref();
    }
    PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
};

template <typename T>
struct compare_buffer_info<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
    static bool compare(const buffer_info &b) {
        return npy_api::get().PyArray_EquivTypes_(dtype::of<T>().ptr(), dtype(b).ptr());
    }
};

template <typename T, typename = void>
struct npy_format_descriptor_name;

template <typename T>
struct npy_format_descriptor_name<T, enable_if_t<std::is_integral<T>::value>> {
    static constexpr auto name = const_name<std::is_same<T, bool>::value>(
        const_name("bool"),
        const_name<std::is_signed<T>::value>("numpy.int", "numpy.uint")
            + const_name<sizeof(T) * 8>());
};

template <typename T>
struct npy_format_descriptor_name<T, enable_if_t<std::is_floating_point<T>::value>> {
    static constexpr auto name = const_name < std::is_same<T, float>::value
                                 || std::is_same<T, const float>::value
                                 || std::is_same<T, double>::value
                                 || std::is_same<T, const double>::value
                                        > (const_name("numpy.float") + const_name<sizeof(T) * 8>(),
                                           const_name("numpy.longdouble"));
};

template <typename T>
struct npy_format_descriptor_name<T, enable_if_t<is_complex<T>::value>> {
    static constexpr auto name = const_name < std::is_same<typename T::value_type, float>::value
                                 || std::is_same<typename T::value_type, const float>::value
                                 || std::is_same<typename T::value_type, double>::value
                                 || std::is_same<typename T::value_type, const double>::value
                                        > (const_name("numpy.complex")
                                               + const_name<sizeof(typename T::value_type) * 16>(),
                                           const_name("numpy.longcomplex"));
};

template <typename T>
struct npy_format_descriptor<
    T,
    enable_if_t<satisfies_any_of<T, std::is_arithmetic, is_complex>::value>>
    : npy_format_descriptor_name<T> {
private:
    // NB: the order here must match the one in common.h
    constexpr static const int values[15] = {npy_api::NPY_BOOL_,
                                             npy_api::NPY_BYTE_,
                                             npy_api::NPY_UBYTE_,
                                             npy_api::NPY_INT16_,
                                             npy_api::NPY_UINT16_,
                                             npy_api::NPY_INT32_,
                                             npy_api::NPY_UINT32_,
                                             npy_api::NPY_INT64_,
                                             npy_api::NPY_UINT64_,
                                             npy_api::NPY_FLOAT_,
                                             npy_api::NPY_DOUBLE_,
                                             npy_api::NPY_LONGDOUBLE_,
                                             npy_api::NPY_CFLOAT_,
                                             npy_api::NPY_CDOUBLE_,
                                             npy_api::NPY_CLONGDOUBLE_};

public:
    static constexpr int value = values[detail::is_fmt_numeric<T>::index];

    static pybind11::dtype dtype() { return pybind11::dtype(/*typenum*/ value); }
};

template <typename T>
struct npy_format_descriptor<T, enable_if_t<is_same_ignoring_cvref<T, PyObject *>::value>> {
    static constexpr auto name = const_name("object");

    static constexpr int value = npy_api::NPY_OBJECT_;

    static pybind11::dtype dtype() { return pybind11::dtype(/*typenum*/ value); }
};

#define PYBIND11_DECL_CHAR_FMT                                                                    \
    static constexpr auto name = const_name("S") + const_name<N>();                               \
    static pybind11::dtype dtype() {                                                              \
        return pybind11::dtype(std::string("S") + std::to_string(N));                             \
    }
template <size_t N>
struct npy_format_descriptor<char[N]> {
    PYBIND11_DECL_CHAR_FMT
};
template <size_t N>
struct npy_format_descriptor<std::array<char, N>> {
    PYBIND11_DECL_CHAR_FMT
};
#undef PYBIND11_DECL_CHAR_FMT

template <typename T>
struct npy_format_descriptor<T, enable_if_t<array_info<T>::is_array>> {
private:
    using base_descr = npy_format_descriptor<typename array_info<T>::type>;

public:
    static_assert(!array_info<T>::is_empty, "Zero-sized arrays are not supported");

    static constexpr auto name
        = const_name("(") + array_info<T>::extents + const_name(")") + base_descr::name;
    static pybind11::dtype dtype() {
        list shape;
        array_info<T>::append_extents(shape);
        return pybind11::dtype::from_args(
            pybind11::make_tuple(base_descr::dtype(), std::move(shape)));
    }
};

template <typename T>
struct npy_format_descriptor<T, enable_if_t<std::is_enum<T>::value>> {
private:
    using base_descr = npy_format_descriptor<typename std::underlying_type<T>::type>;

public:
    static constexpr auto name = base_descr::name;
    static pybind11::dtype dtype() { return base_descr::dtype(); }
};

struct field_descriptor {
    const char *name;
    ssize_t offset;
    ssize_t size;
    std::string format;
    dtype descr;
};

PYBIND11_NOINLINE void register_structured_dtype(any_container<field_descriptor> fields,
                                                 const std::type_info &tinfo,
                                                 ssize_t itemsize,
                                                 bool (*direct_converter)(PyObject *, void *&)) {

    auto &numpy_internals = get_numpy_internals();
    if (numpy_internals.get_type_info(tinfo, false)) {
        pybind11_fail("NumPy: dtype is already registered");
    }

    // Use ordered fields because order matters as of NumPy 1.14:
    // https://docs.scipy.org/doc/numpy/release.html#multiple-field-indexing-assignment-of-structured-arrays
    std::vector<field_descriptor> ordered_fields(std::move(fields));
    std::sort(
        ordered_fields.begin(),
        ordered_fields.end(),
        [](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; });

    list names, formats, offsets;
    for (auto &field : ordered_fields) {
        if (!field.descr) {
            pybind11_fail(std::string("NumPy: unsupported field dtype: `") + field.name + "` @ "
                          + tinfo.name());
        }
        names.append(pybind11::str(field.name));
        formats.append(field.descr);
        offsets.append(pybind11::int_(field.offset));
    }
    auto *dtype_ptr
        = pybind11::dtype(std::move(names), std::move(formats), std::move(offsets), itemsize)
              .release()
              .ptr();

    // There is an existing bug in NumPy (as of v1.11): trailing bytes are
    // not encoded explicitly into the format string. This will supposedly
    // get fixed in v1.12; for further details, see these:
    // - https://github.com/numpy/numpy/issues/7797
    // - https://github.com/numpy/numpy/pull/7798
    // Because of this, we won't use numpy's logic to generate buffer format
    // strings and will just do it ourselves.
    ssize_t offset = 0;
    std::ostringstream oss;
    // mark the structure as unaligned with '^', because numpy and C++ don't
    // always agree about alignment (particularly for complex), and we're
    // explicitly listing all our padding. This depends on none of the fields
    // overriding the endianness. Putting the ^ in front of individual fields
    // isn't guaranteed to work due to https://github.com/numpy/numpy/issues/9049
    oss << "^T{";
    for (auto &field : ordered_fields) {
        if (field.offset > offset) {
            oss << (field.offset - offset) << 'x';
        }
        oss << field.format << ':' << field.name << ':';
        offset = field.offset + field.size;
    }
    if (itemsize > offset) {
        oss << (itemsize - offset) << 'x';
    }
    oss << '}';
    auto format_str = oss.str();

    // Smoke test: verify that NumPy properly parses our buffer format string
    auto &api = npy_api::get();
    auto arr = array(buffer_info(nullptr, itemsize, format_str, 1));
    if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr())) {
        pybind11_fail("NumPy: invalid buffer descriptor!");
    }

    auto tindex = std::type_index(tinfo);
    numpy_internals.registered_dtypes[tindex] = {dtype_ptr, std::move(format_str)};
    get_internals().direct_conversions[tindex].push_back(direct_converter);
}

template <typename T, typename SFINAE>
struct npy_format_descriptor {
    static_assert(is_pod_struct<T>::value,
                  "Attempt to use a non-POD or unimplemented POD type as a numpy dtype");

    static constexpr auto name = make_caster<T>::name;

    static pybind11::dtype dtype() { return reinterpret_borrow<pybind11::dtype>(dtype_ptr()); }

    static std::string format() {
        static auto format_str = get_numpy_internals().get_type_info<T>(true)->format_str;
        return format_str;
    }

    static void register_dtype(any_container<field_descriptor> fields) {
        register_structured_dtype(std::move(fields),
                                  typeid(typename std::remove_cv<T>::type),
                                  sizeof(T),
                                  &direct_converter);
    }

private:
    static PyObject *dtype_ptr() {
        static PyObject *ptr = get_numpy_internals().get_type_info<T>(true)->dtype_ptr;
        return ptr;
    }

    static bool direct_converter(PyObject *obj, void *&value) {
        auto &api = npy_api::get();
        if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_)) {
            return false;
        }
        if (auto descr = reinterpret_steal<object>(api.PyArray_DescrFromScalar_(obj))) {
            if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) {
                value = ((PyVoidScalarObject_Proxy *) obj)->obval;
                return true;
            }
        }
        return false;
    }
};

#ifdef __CLION_IDE__ // replace heavy macro with dummy code for the IDE (doesn't affect code)
#    define PYBIND11_NUMPY_DTYPE(Type, ...) ((void) 0)
#    define PYBIND11_NUMPY_DTYPE_EX(Type, ...) ((void) 0)
#else

#    define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name)                                          \
        ::pybind11::detail::field_descriptor {                                                    \
            Name, offsetof(T, Field), sizeof(decltype(std::declval<T>().Field)),                  \
                ::pybind11::format_descriptor<decltype(std::declval<T>().Field)>::format(),       \
                ::pybind11::detail::npy_format_descriptor<                                        \
                    decltype(std::declval<T>().Field)>::dtype()                                   \
        }

// Extract name, offset and format descriptor for a struct field
#    define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, #Field)

// The main idea of this macro is borrowed from https://github.com/swansontec/map-macro
// (C) William Swanson, Paul Fultz
#    define PYBIND11_EVAL0(...) __VA_ARGS__
#    define PYBIND11_EVAL1(...) PYBIND11_EVAL0(PYBIND11_EVAL0(PYBIND11_EVAL0(__VA_ARGS__)))
#    define PYBIND11_EVAL2(...) PYBIND11_EVAL1(PYBIND11_EVAL1(PYBIND11_EVAL1(__VA_ARGS__)))
#    define PYBIND11_EVAL3(...) PYBIND11_EVAL2(PYBIND11_EVAL2(PYBIND11_EVAL2(__VA_ARGS__)))
#    define PYBIND11_EVAL4(...) PYBIND11_EVAL3(PYBIND11_EVAL3(PYBIND11_EVAL3(__VA_ARGS__)))
#    define PYBIND11_EVAL(...) PYBIND11_EVAL4(PYBIND11_EVAL4(PYBIND11_EVAL4(__VA_ARGS__)))
#    define PYBIND11_MAP_END(...)
#    define PYBIND11_MAP_OUT
#    define PYBIND11_MAP_COMMA ,
#    define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END
#    define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT
#    define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0(test, next, 0)
#    define PYBIND11_MAP_NEXT(test, next) PYBIND11_MAP_NEXT1(PYBIND11_MAP_GET_END test, next)
#    if defined(_MSC_VER)                                                                         \
        && !defined(__clang__) // MSVC is not as eager to expand macros, hence this workaround
#        define PYBIND11_MAP_LIST_NEXT1(test, next)                                               \
            PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0))
#    else
#        define PYBIND11_MAP_LIST_NEXT1(test, next)                                               \
            PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)
#    endif
#    define PYBIND11_MAP_LIST_NEXT(test, next)                                                    \
        PYBIND11_MAP_LIST_NEXT1(PYBIND11_MAP_GET_END test, next)
#    define PYBIND11_MAP_LIST0(f, t, x, peek, ...)                                                \
        f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST1)(f, t, peek, __VA_ARGS__)
#    define PYBIND11_MAP_LIST1(f, t, x, peek, ...)                                                \
        f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST0)(f, t, peek, __VA_ARGS__)
// PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ...
#    define PYBIND11_MAP_LIST(f, t, ...)                                                          \
        PYBIND11_EVAL(PYBIND11_MAP_LIST1(f, t, __VA_ARGS__, (), 0))

#    define PYBIND11_NUMPY_DTYPE(Type, ...)                                                       \
        ::pybind11::detail::npy_format_descriptor<Type>::register_dtype(                          \
            ::std::vector<::pybind11::detail::field_descriptor>{                                  \
                PYBIND11_MAP_LIST(PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)})

#    if defined(_MSC_VER) && !defined(__clang__)
#        define PYBIND11_MAP2_LIST_NEXT1(test, next)                                              \
            PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0))
#    else
#        define PYBIND11_MAP2_LIST_NEXT1(test, next)                                              \
            PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)
#    endif
#    define PYBIND11_MAP2_LIST_NEXT(test, next)                                                   \
        PYBIND11_MAP2_LIST_NEXT1(PYBIND11_MAP_GET_END test, next)
#    define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...)                                          \
        f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST1)(f, t, peek, __VA_ARGS__)
#    define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...)                                          \
        f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST0)(f, t, peek, __VA_ARGS__)
// PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ...
#    define PYBIND11_MAP2_LIST(f, t, ...)                                                         \
        PYBIND11_EVAL(PYBIND11_MAP2_LIST1(f, t, __VA_ARGS__, (), 0))

#    define PYBIND11_NUMPY_DTYPE_EX(Type, ...)                                                    \
        ::pybind11::detail::npy_format_descriptor<Type>::register_dtype(                          \
            ::std::vector<::pybind11::detail::field_descriptor>{                                  \
                PYBIND11_MAP2_LIST(PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)})

#endif // __CLION_IDE__

class common_iterator {
public:
    using container_type = std::vector<ssize_t>;
    using value_type = container_type::value_type;
    using size_type = container_type::size_type;

    common_iterator() : m_strides() {}

    common_iterator(void *ptr, const container_type &strides, const container_type &shape)
        : p_ptr(reinterpret_cast<char *>(ptr)), m_strides(strides.size()) {
        m_strides.back() = static_cast<value_type>(strides.back());
        for (size_type i = m_strides.size() - 1; i != 0; --i) {
            size_type j = i - 1;
            auto s = static_cast<value_type>(shape[i]);
            m_strides[j] = strides[j] + m_strides[i] - strides[i] * s;
        }
    }

    void increment(size_type dim) { p_ptr += m_strides[dim]; }

    void *data() const { return p_ptr; }

private:
    char *p_ptr{nullptr};
    container_type m_strides;
};

template <size_t N>
class multi_array_iterator {
public:
    using container_type = std::vector<ssize_t>;

    multi_array_iterator(const std::array<buffer_info, N> &buffers, const container_type &shape)
        : m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator() {

        // Manual copy to avoid conversion warning if using std::copy
        for (size_t i = 0; i < shape.size(); ++i) {
            m_shape[i] = shape[i];
        }

        container_type strides(shape.size());
        for (size_t i = 0; i < N; ++i) {
            init_common_iterator(buffers[i], shape, m_common_iterator[i], strides);
        }
    }

    multi_array_iterator &operator++() {
        for (size_t j = m_index.size(); j != 0; --j) {
            size_t i = j - 1;
            if (++m_index[i] != m_shape[i]) {
                increment_common_iterator(i);
                break;
            }
            m_index[i] = 0;
        }
        return *this;
    }

    template <size_t K, class T = void>
    T *data() const {
        return reinterpret_cast<T *>(m_common_iterator[K].data());
    }

private:
    using common_iter = common_iterator;

    void init_common_iterator(const buffer_info &buffer,
                              const container_type &shape,
                              common_iter &iterator,
                              container_type &strides) {
        auto buffer_shape_iter = buffer.shape.rbegin();
        auto buffer_strides_iter = buffer.strides.rbegin();
        auto shape_iter = shape.rbegin();
        auto strides_iter = strides.rbegin();

        while (buffer_shape_iter != buffer.shape.rend()) {
            if (*shape_iter == *buffer_shape_iter) {
                *strides_iter = *buffer_strides_iter;
            } else {
                *strides_iter = 0;
            }

            ++buffer_shape_iter;
            ++buffer_strides_iter;
            ++shape_iter;
            ++strides_iter;
        }

        std::fill(strides_iter, strides.rend(), 0);
        iterator = common_iter(buffer.ptr, strides, shape);
    }

    void increment_common_iterator(size_t dim) {
        for (auto &iter : m_common_iterator) {
            iter.increment(dim);
        }
    }

    container_type m_shape;
    container_type m_index;
    std::array<common_iter, N> m_common_iterator;
};

enum class broadcast_trivial { non_trivial, c_trivial, f_trivial };

// Populates the shape and number of dimensions for the set of buffers.  Returns a
// broadcast_trivial enum value indicating whether the broadcast is "trivial"--that is, has each
// buffer being either a singleton or a full-size, C-contiguous (`c_trivial`) or Fortran-contiguous
// (`f_trivial`) storage buffer; returns `non_trivial` otherwise.
template <size_t N>
broadcast_trivial
broadcast(const std::array<buffer_info, N> &buffers, ssize_t &ndim, std::vector<ssize_t> &shape) {
    ndim = std::accumulate(
        buffers.begin(), buffers.end(), ssize_t(0), [](ssize_t res, const buffer_info &buf) {
            return std::max(res, buf.ndim);
        });

    shape.clear();
    shape.resize((size_t) ndim, 1);

    // Figure out the output size, and make sure all input arrays conform (i.e. are either size 1
    // or the full size).
    for (size_t i = 0; i < N; ++i) {
        auto res_iter = shape.rbegin();
        auto end = buffers[i].shape.rend();
        for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != end;
             ++shape_iter, ++res_iter) {
            const auto &dim_size_in = *shape_iter;
            auto &dim_size_out = *res_iter;

            // Each input dimension can either be 1 or `n`, but `n` values must match across
            // buffers
            if (dim_size_out == 1) {
                dim_size_out = dim_size_in;
            } else if (dim_size_in != 1 && dim_size_in != dim_size_out) {
                pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!");
            }
        }
    }

    bool trivial_broadcast_c = true;
    bool trivial_broadcast_f = true;
    for (size_t i = 0; i < N && (trivial_broadcast_c || trivial_broadcast_f); ++i) {
        if (buffers[i].size == 1) {
            continue;
        }

        // Require the same number of dimensions:
        if (buffers[i].ndim != ndim) {
            return broadcast_trivial::non_trivial;
        }

        // Require all dimensions be full-size:
        if (!std::equal(buffers[i].shape.cbegin(), buffers[i].shape.cend(), shape.cbegin())) {
            return broadcast_trivial::non_trivial;
        }

        // Check for C contiguity (but only if previous inputs were also C contiguous)
        if (trivial_broadcast_c) {
            ssize_t expect_stride = buffers[i].itemsize;
            auto end = buffers[i].shape.crend();
            for (auto shape_iter = buffers[i].shape.crbegin(),
                      stride_iter = buffers[i].strides.crbegin();
                 trivial_broadcast_c && shape_iter != end;
                 ++shape_iter, ++stride_iter) {
                if (expect_stride == *stride_iter) {
                    expect_stride *= *shape_iter;
                } else {
                    trivial_broadcast_c = false;
                }
            }
        }

        // Check for Fortran contiguity (if previous inputs were also F contiguous)
        if (trivial_broadcast_f) {
            ssize_t expect_stride = buffers[i].itemsize;
            auto end = buffers[i].shape.cend();
            for (auto shape_iter = buffers[i].shape.cbegin(),
                      stride_iter = buffers[i].strides.cbegin();
                 trivial_broadcast_f && shape_iter != end;
                 ++shape_iter, ++stride_iter) {
                if (expect_stride == *stride_iter) {
                    expect_stride *= *shape_iter;
                } else {
                    trivial_broadcast_f = false;
                }
            }
        }
    }

    return trivial_broadcast_c   ? broadcast_trivial::c_trivial
           : trivial_broadcast_f ? broadcast_trivial::f_trivial
                                 : broadcast_trivial::non_trivial;
}

template <typename T>
struct vectorize_arg {
    static_assert(!std::is_rvalue_reference<T>::value,
                  "Functions with rvalue reference arguments cannot be vectorized");
    // The wrapped function gets called with this type:
    using call_type = remove_reference_t<T>;
    // Is this a vectorized argument?
    static constexpr bool vectorize
        = satisfies_any_of<call_type, std::is_arithmetic, is_complex, is_pod>::value
          && satisfies_none_of<call_type,
                               std::is_pointer,
                               std::is_array,
                               is_std_array,
                               std::is_enum>::value
          && (!std::is_reference<T>::value
              || (std::is_lvalue_reference<T>::value && std::is_const<call_type>::value));
    // Accept this type: an array for vectorized types, otherwise the type as-is:
    using type = conditional_t<vectorize, array_t<remove_cv_t<call_type>, array::forcecast>, T>;
};

// py::vectorize when a return type is present
template <typename Func, typename Return, typename... Args>
struct vectorize_returned_array {
    using Type = array_t<Return>;

    static Type create(broadcast_trivial trivial, const std::vector<ssize_t> &shape) {
        if (trivial == broadcast_trivial::f_trivial) {
            return array_t<Return, array::f_style>(shape);
        }
        return array_t<Return>(shape);
    }

    static Return *mutable_data(Type &array) { return array.mutable_data(); }

    static Return call(Func &f, Args &...args) { return f(args...); }

    static void call(Return *out, size_t i, Func &f, Args &...args) { out[i] = f(args...); }
};

// py::vectorize when a return type is not present
template <typename Func, typename... Args>
struct vectorize_returned_array<Func, void, Args...> {
    using Type = none;

    static Type create(broadcast_trivial, const std::vector<ssize_t> &) { return none(); }

    static void *mutable_data(Type &) { return nullptr; }

    static detail::void_type call(Func &f, Args &...args) {
        f(args...);
        return {};
    }

    static void call(void *, size_t, Func &f, Args &...args) { f(args...); }
};

template <typename Func, typename Return, typename... Args>
struct vectorize_helper {

// NVCC for some reason breaks if NVectorized is private
#ifdef __CUDACC__
public:
#else
private:
#endif

    static constexpr size_t N = sizeof...(Args);
    static constexpr size_t NVectorized = constexpr_sum(vectorize_arg<Args>::vectorize...);
    static_assert(
        NVectorized >= 1,
        "pybind11::vectorize(...) requires a function with at least one vectorizable argument");

public:
    template <typename T,
              // SFINAE to prevent shadowing the copy constructor.
              typename = detail::enable_if_t<
                  !std::is_same<vectorize_helper, typename std::decay<T>::type>::value>>
    explicit vectorize_helper(T &&f) : f(std::forward<T>(f)) {}

    object operator()(typename vectorize_arg<Args>::type... args) {
        return run(args...,
                   make_index_sequence<N>(),
                   select_indices<vectorize_arg<Args>::vectorize...>(),
                   make_index_sequence<NVectorized>());
    }

private:
    remove_reference_t<Func> f;

    // Internal compiler error in MSVC 19.16.27025.1 (Visual Studio 2017 15.9.4), when compiling
    // with "/permissive-" flag when arg_call_types is manually inlined.
    using arg_call_types = std::tuple<typename vectorize_arg<Args>::call_type...>;
    template <size_t Index>
    using param_n_t = typename std::tuple_element<Index, arg_call_types>::type;

    using returned_array = vectorize_returned_array<Func, Return, Args...>;

    // Runs a vectorized function given arguments tuple and three index sequences:
    //     - Index is the full set of 0 ... (N-1) argument indices;
    //     - VIndex is the subset of argument indices with vectorized parameters, letting us access
    //       vectorized arguments (anything not in this sequence is passed through)
    //     - BIndex is a incremental sequence (beginning at 0) of the same size as VIndex, so that
    //       we can store vectorized buffer_infos in an array (argument VIndex has its buffer at
    //       index BIndex in the array).
    template <size_t... Index, size_t... VIndex, size_t... BIndex>
    object run(typename vectorize_arg<Args>::type &...args,
               index_sequence<Index...> i_seq,
               index_sequence<VIndex...> vi_seq,
               index_sequence<BIndex...> bi_seq) {

        // Pointers to values the function was called with; the vectorized ones set here will start
        // out as array_t<T> pointers, but they will be changed them to T pointers before we make
        // call the wrapped function.  Non-vectorized pointers are left as-is.
        std::array<void *, N> params{{&args...}};

        // The array of `buffer_info`s of vectorized arguments:
        std::array<buffer_info, NVectorized> buffers{
            {reinterpret_cast<array *>(params[VIndex])->request()...}};

        /* Determine dimensions parameters of output array */
        ssize_t nd = 0;
        std::vector<ssize_t> shape(0);
        auto trivial = broadcast(buffers, nd, shape);
        auto ndim = (size_t) nd;

        size_t size
            = std::accumulate(shape.begin(), shape.end(), (size_t) 1, std::multiplies<size_t>());

        // If all arguments are 0-dimension arrays (i.e. single values) return a plain value (i.e.
        // not wrapped in an array).
        if (size == 1 && ndim == 0) {
            PYBIND11_EXPAND_SIDE_EFFECTS(params[VIndex] = buffers[BIndex].ptr);
            return cast(
                returned_array::call(f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...));
        }

        auto result = returned_array::create(trivial, shape);

        PYBIND11_WARNING_PUSH
#ifdef PYBIND11_DETECTED_CLANG_WITH_MISLEADING_CALL_STD_MOVE_EXPLICITLY_WARNING
        PYBIND11_WARNING_DISABLE_CLANG("-Wreturn-std-move")
#endif

        if (size == 0) {
            return result;
        }

        /* Call the function */
        auto *mutable_data = returned_array::mutable_data(result);
        if (trivial == broadcast_trivial::non_trivial) {
            apply_broadcast(buffers, params, mutable_data, size, shape, i_seq, vi_seq, bi_seq);
        } else {
            apply_trivial(buffers, params, mutable_data, size, i_seq, vi_seq, bi_seq);
        }

        return result;
        PYBIND11_WARNING_POP
    }

    template <size_t... Index, size_t... VIndex, size_t... BIndex>
    void apply_trivial(std::array<buffer_info, NVectorized> &buffers,
                       std::array<void *, N> &params,
                       Return *out,
                       size_t size,
                       index_sequence<Index...>,
                       index_sequence<VIndex...>,
                       index_sequence<BIndex...>) {

        // Initialize an array of mutable byte references and sizes with references set to the
        // appropriate pointer in `params`; as we iterate, we'll increment each pointer by its size
        // (except for singletons, which get an increment of 0).
        std::array<std::pair<unsigned char *&, const size_t>, NVectorized> vecparams{
            {std::pair<unsigned char *&, const size_t>(
                reinterpret_cast<unsigned char *&>(params[VIndex] = buffers[BIndex].ptr),
                buffers[BIndex].size == 1 ? 0 : sizeof(param_n_t<VIndex>))...}};

        for (size_t i = 0; i < size; ++i) {
            returned_array::call(
                out, i, f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...);
            for (auto &x : vecparams) {
                x.first += x.second;
            }
        }
    }

    template <size_t... Index, size_t... VIndex, size_t... BIndex>
    void apply_broadcast(std::array<buffer_info, NVectorized> &buffers,
                         std::array<void *, N> &params,
                         Return *out,
                         size_t size,
                         const std::vector<ssize_t> &output_shape,
                         index_sequence<Index...>,
                         index_sequence<VIndex...>,
                         index_sequence<BIndex...>) {

        multi_array_iterator<NVectorized> input_iter(buffers, output_shape);

        for (size_t i = 0; i < size; ++i, ++input_iter) {
            PYBIND11_EXPAND_SIDE_EFFECTS((params[VIndex] = input_iter.template data<BIndex>()));
            returned_array::call(
                out, i, f, *reinterpret_cast<param_n_t<Index> *>(std::get<Index>(params))...);
        }
    }
};

template <typename Func, typename Return, typename... Args>
vectorize_helper<Func, Return, Args...> vectorize_extractor(const Func &f, Return (*)(Args...)) {
    return detail::vectorize_helper<Func, Return, Args...>(f);
}

template <typename T, int Flags>
struct handle_type_name<array_t<T, Flags>> {
    static constexpr auto name
        = const_name("numpy.ndarray[") + npy_format_descriptor<T>::name + const_name("]");
};

PYBIND11_NAMESPACE_END(detail)

// Vanilla pointer vectorizer:
template <typename Return, typename... Args>
detail::vectorize_helper<Return (*)(Args...), Return, Args...> vectorize(Return (*f)(Args...)) {
    return detail::vectorize_helper<Return (*)(Args...), Return, Args...>(f);
}

// lambda vectorizer:
template <typename Func, detail::enable_if_t<detail::is_lambda<Func>::value, int> = 0>
auto vectorize(Func &&f)
    -> decltype(detail::vectorize_extractor(std::forward<Func>(f),
                                            (detail::function_signature_t<Func> *) nullptr)) {
    return detail::vectorize_extractor(std::forward<Func>(f),
                                       (detail::function_signature_t<Func> *) nullptr);
}

// Vectorize a class method (non-const):
template <typename Return,
          typename Class,
          typename... Args,
          typename Helper = detail::vectorize_helper<
              decltype(std::mem_fn(std::declval<Return (Class::*)(Args...)>())),
              Return,
              Class *,
              Args...>>
Helper vectorize(Return (Class::*f)(Args...)) {
    return Helper(std::mem_fn(f));
}

// Vectorize a class method (const):
template <typename Return,
          typename Class,
          typename... Args,
          typename Helper = detail::vectorize_helper<
              decltype(std::mem_fn(std::declval<Return (Class::*)(Args...) const>())),
              Return,
              const Class *,
              Args...>>
Helper vectorize(Return (Class::*f)(Args...) const) {
    return Helper(std::mem_fn(f));
}

PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)