aboutsummaryrefslogtreecommitdiff
path: root/include/pybind11/eigen.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/pybind11/eigen.h')
-rw-r--r--include/pybind11/eigen.h597
1 files changed, 1 insertions, 596 deletions
diff --git a/include/pybind11/eigen.h b/include/pybind11/eigen.h
index e8c6f633..273b9c93 100644
--- a/include/pybind11/eigen.h
+++ b/include/pybind11/eigen.h
@@ -9,599 +9,4 @@
#pragma once
-#include "numpy.h"
-
-#if defined(__INTEL_COMPILER)
-# pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
-#elif defined(__GNUG__) || defined(__clang__)
-# pragma GCC diagnostic push
-# pragma GCC diagnostic ignored "-Wconversion"
-# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
-# ifdef __clang__
-// Eigen generates a bunch of implicit-copy-constructor-is-deprecated warnings with -Wdeprecated
-// under Clang, so disable that warning here:
-# pragma GCC diagnostic ignored "-Wdeprecated"
-# endif
-# if __GNUC__ >= 7
-# pragma GCC diagnostic ignored "-Wint-in-bool-context"
-# endif
-#endif
-
-#if defined(_MSC_VER)
-# pragma warning(push)
-# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
-# pragma warning(disable: 4996) // warning C4996: std::unary_negate is deprecated in C++17
-#endif
-
-#include <Eigen/Core>
-#include <Eigen/SparseCore>
-
-// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
-// move constructors that break things. We could detect this an explicitly copy, but an extra copy
-// of matrices seems highly undesirable.
-static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7");
-
-PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
-
-// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
-using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
-template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
-template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
-
-PYBIND11_NAMESPACE_BEGIN(detail)
-
-#if EIGEN_VERSION_AT_LEAST(3,3,0)
-using EigenIndex = Eigen::Index;
-#else
-using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
-#endif
-
-// Matches Eigen::Map, Eigen::Ref, blocks, etc:
-template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
-template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
-template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
-template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
-// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
-// basically covers anything that can be assigned to a dense matrix but that don't have a typical
-// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
-// SelfAdjointView fall into this category.
-template <typename T> using is_eigen_other = all_of<
- is_template_base_of<Eigen::EigenBase, T>,
- negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>
->;
-
-// Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
-template <bool EigenRowMajor> struct EigenConformable {
- bool conformable = false;
- EigenIndex rows = 0, cols = 0;
- EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
- bool negativestrides = false; // If true, do not use stride!
-
- EigenConformable(bool fits = false) : conformable{fits} {}
- // Matrix type:
- EigenConformable(EigenIndex r, EigenIndex c,
- EigenIndex rstride, EigenIndex cstride) :
- conformable{true}, rows{r}, cols{c} {
- // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
- if (rstride < 0 || cstride < 0) {
- negativestrides = true;
- } else {
- stride = {EigenRowMajor ? rstride : cstride /* outer stride */,
- EigenRowMajor ? cstride : rstride /* inner stride */ };
- }
- }
- // Vector type:
- EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
- : EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {}
-
- template <typename props> bool stride_compatible() const {
- // To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
- // matching strides, or a dimension size of 1 (in which case the stride value is irrelevant)
- return
- !negativestrides &&
- (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() ||
- (EigenRowMajor ? cols : rows) == 1) &&
- (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() ||
- (EigenRowMajor ? rows : cols) == 1);
- }
- operator bool() const { return conformable; }
-};
-
-template <typename Type> struct eigen_extract_stride { using type = Type; };
-template <typename PlainObjectType, int MapOptions, typename StrideType>
-struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; };
-template <typename PlainObjectType, int Options, typename StrideType>
-struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; };
-
-// Helper struct for extracting information from an Eigen type
-template <typename Type_> struct EigenProps {
- using Type = Type_;
- using Scalar = typename Type::Scalar;
- using StrideType = typename eigen_extract_stride<Type>::type;
- static constexpr EigenIndex
- rows = Type::RowsAtCompileTime,
- cols = Type::ColsAtCompileTime,
- size = Type::SizeAtCompileTime;
- static constexpr bool
- row_major = Type::IsRowMajor,
- vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
- fixed_rows = rows != Eigen::Dynamic,
- fixed_cols = cols != Eigen::Dynamic,
- fixed = size != Eigen::Dynamic, // Fully-fixed size
- dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
-
- template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
- static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
- outer_stride = if_zero<StrideType::OuterStrideAtCompileTime,
- vector ? size : row_major ? cols : rows>::value;
- static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
- static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
- static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
-
- // Takes an input array and determines whether we can make it fit into the Eigen type. If
- // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
- // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
- static EigenConformable<row_major> conformable(const array &a) {
- const auto dims = a.ndim();
- if (dims < 1 || dims > 2)
- return false;
-
- if (dims == 2) { // Matrix type: require exact match (or dynamic)
-
- EigenIndex
- np_rows = a.shape(0),
- np_cols = a.shape(1),
- np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
- np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
- if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols))
- return false;
-
- return {np_rows, np_cols, np_rstride, np_cstride};
- }
-
- // Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever
- // is used, we want the (single) numpy stride value.
- const EigenIndex n = a.shape(0),
- stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
-
- if (vector) { // Eigen type is a compile-time vector
- if (fixed && size != n)
- return false; // Vector size mismatch
- return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
- }
- else if (fixed) {
- // The type has a fixed size, but is not a vector: abort
- return false;
- }
- else if (fixed_cols) {
- // Since this isn't a vector, cols must be != 1. We allow this only if it exactly
- // equals the number of elements (rows is Dynamic, and so 1 row is allowed).
- if (cols != n) return false;
- return {1, n, stride};
- }
- else {
- // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
- if (fixed_rows && rows != n) return false;
- return {n, 1, stride};
- }
- }
-
- static constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
- static constexpr bool show_order = is_eigen_dense_map<Type>::value;
- static constexpr bool show_c_contiguous = show_order && requires_row_major;
- static constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major;
-
- static constexpr auto descriptor =
- _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name +
- _("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) +
- _(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) +
- _("]") +
- // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be
- // satisfied: writeable=True (for a mutable reference), and, depending on the map's stride
- // options, possibly f_contiguous or c_contiguous. We include them in the descriptor output
- // to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to
- // see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you
- // *gave* a numpy.ndarray of the right type and dimensions.
- _<show_writeable>(", flags.writeable", "") +
- _<show_c_contiguous>(", flags.c_contiguous", "") +
- _<show_f_contiguous>(", flags.f_contiguous", "") +
- _("]");
-};
-
-// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
-// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
-template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
- constexpr ssize_t elem_size = sizeof(typename props::Scalar);
- array a;
- if (props::vector)
- a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base);
- else
- a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() },
- src.data(), base);
-
- if (!writeable)
- array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
-
- return a.release();
-}
-
-// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
-// reference the Eigen object's data with `base` as the python-registered base class (if omitted,
-// the base will be set to None, and lifetime management is up to the caller). The numpy array is
-// non-writeable if the given type is const.
-template <typename props, typename Type>
-handle eigen_ref_array(Type &src, handle parent = none()) {
- // none here is to get past array's should-we-copy detection, which currently always
- // copies when there is no base. Setting the base to None should be harmless.
- return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
-}
-
-// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy
-// array that references the encapsulated data with a python-side reference to the capsule to tie
-// its destruction to that of any dependent python objects. Const-ness is determined by whether or
-// not the Type of the pointer given is const.
-template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
-handle eigen_encapsulate(Type *src) {
- capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
- return eigen_ref_array<props>(*src, base);
-}
-
-// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
-// types.
-template<typename Type>
-struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
- using Scalar = typename Type::Scalar;
- using props = EigenProps<Type>;
-
- bool load(handle src, bool convert) {
- // If we're in no-convert mode, only load if given an array of the correct type
- if (!convert && !isinstance<array_t<Scalar>>(src))
- return false;
-
- // Coerce into an array, but don't do type conversion yet; the copy below handles it.
- auto buf = array::ensure(src);
-
- if (!buf)
- return false;
-
- auto dims = buf.ndim();
- if (dims < 1 || dims > 2)
- return false;
-
- auto fits = props::conformable(buf);
- if (!fits)
- return false;
-
- // Allocate the new type, then build a numpy reference into it
- value = Type(fits.rows, fits.cols);
- auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
- if (dims == 1) ref = ref.squeeze();
- else if (ref.ndim() == 1) buf = buf.squeeze();
-
- int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
-
- if (result < 0) { // Copy failed!
- PyErr_Clear();
- return false;
- }
-
- return true;
- }
-
-private:
-
- // Cast implementation
- template <typename CType>
- static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
- switch (policy) {
- case return_value_policy::take_ownership:
- case return_value_policy::automatic:
- return eigen_encapsulate<props>(src);
- case return_value_policy::move:
- return eigen_encapsulate<props>(new CType(std::move(*src)));
- case return_value_policy::copy:
- return eigen_array_cast<props>(*src);
- case return_value_policy::reference:
- case return_value_policy::automatic_reference:
- return eigen_ref_array<props>(*src);
- case return_value_policy::reference_internal:
- return eigen_ref_array<props>(*src, parent);
- default:
- throw cast_error("unhandled return_value_policy: should not happen!");
- };
- }
-
-public:
-
- // Normal returned non-reference, non-const value:
- static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
- return cast_impl(&src, return_value_policy::move, parent);
- }
- // If you return a non-reference const, we mark the numpy array readonly:
- static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
- return cast_impl(&src, return_value_policy::move, parent);
- }
- // lvalue reference return; default (automatic) becomes copy
- static handle cast(Type &src, return_value_policy policy, handle parent) {
- if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
- policy = return_value_policy::copy;
- return cast_impl(&src, policy, parent);
- }
- // const lvalue reference return; default (automatic) becomes copy
- static handle cast(const Type &src, return_value_policy policy, handle parent) {
- if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
- policy = return_value_policy::copy;
- return cast(&src, policy, parent);
- }
- // non-const pointer return
- static handle cast(Type *src, return_value_policy policy, handle parent) {
- return cast_impl(src, policy, parent);
- }
- // const pointer return
- static handle cast(const Type *src, return_value_policy policy, handle parent) {
- return cast_impl(src, policy, parent);
- }
-
- static constexpr auto name = props::descriptor;
-
- operator Type*() { return &value; }
- operator Type&() { return value; }
- operator Type&&() && { return std::move(value); }
- template <typename T> using cast_op_type = movable_cast_op_type<T>;
-
-private:
- Type value;
-};
-
-// Base class for casting reference/map/block/etc. objects back to python.
-template <typename MapType> struct eigen_map_caster {
-private:
- using props = EigenProps<MapType>;
-
-public:
-
- // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
- // to stay around), but we'll allow it under the assumption that you know what you're doing (and
- // have an appropriate keep_alive in place). We return a numpy array pointing directly at the
- // ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note
- // that this means you need to ensure you don't destroy the object in some other way (e.g. with
- // an appropriate keep_alive, or with a reference to a statically allocated matrix).
- static handle cast(const MapType &src, return_value_policy policy, handle parent) {
- switch (policy) {
- case return_value_policy::copy:
- return eigen_array_cast<props>(src);
- case return_value_policy::reference_internal:
- return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
- case return_value_policy::reference:
- case return_value_policy::automatic:
- case return_value_policy::automatic_reference:
- return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
- default:
- // move, take_ownership don't make any sense for a ref/map:
- pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
- }
- }
-
- static constexpr auto name = props::descriptor;
-
- // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
- // types but not bound arguments). We still provide them (with an explicitly delete) so that
- // you end up here if you try anyway.
- bool load(handle, bool) = delete;
- operator MapType() = delete;
- template <typename> using cast_op_type = MapType;
-};
-
-// We can return any map-like object (but can only load Refs, specialized next):
-template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>>
- : eigen_map_caster<Type> {};
-
-// Loader for Ref<...> arguments. See the documentation for info on how to make this work without
-// copying (it requires some extra effort in many cases).
-template <typename PlainObjectType, typename StrideType>
-struct type_caster<
- Eigen::Ref<PlainObjectType, 0, StrideType>,
- enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>
-> : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
-private:
- using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
- using props = EigenProps<Type>;
- using Scalar = typename props::Scalar;
- using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
- using Array = array_t<Scalar, array::forcecast |
- ((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style :
- (props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>;
- static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
- // Delay construction (these have no default constructor)
- std::unique_ptr<MapType> map;
- std::unique_ptr<Type> ref;
- // Our array. When possible, this is just a numpy array pointing to the source data, but
- // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible
- // layout, or is an array of a type that needs to be converted). Using a numpy temporary
- // (rather than an Eigen temporary) saves an extra copy when we need both type conversion and
- // storage order conversion. (Note that we refuse to use this temporary copy when loading an
- // argument for a Ref<M> with M non-const, i.e. a read-write reference).
- Array copy_or_ref;
-public:
- bool load(handle src, bool convert) {
- // First check whether what we have is already an array of the right type. If not, we can't
- // avoid a copy (because the copy is also going to do type conversion).
- bool need_copy = !isinstance<Array>(src);
-
- EigenConformable<props::row_major> fits;
- if (!need_copy) {
- // We don't need a converting copy, but we also need to check whether the strides are
- // compatible with the Ref's stride requirements
- auto aref = reinterpret_borrow<Array>(src);
-
- if (aref && (!need_writeable || aref.writeable())) {
- fits = props::conformable(aref);
- if (!fits) return false; // Incompatible dimensions
- if (!fits.template stride_compatible<props>())
- need_copy = true;
- else
- copy_or_ref = std::move(aref);
- }
- else {
- need_copy = true;
- }
- }
-
- if (need_copy) {
- // We need to copy: If we need a mutable reference, or we're not supposed to convert
- // (either because we're in the no-convert overload pass, or because we're explicitly
- // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
- if (!convert || need_writeable) return false;
-
- Array copy = Array::ensure(src);
- if (!copy) return false;
- fits = props::conformable(copy);
- if (!fits || !fits.template stride_compatible<props>())
- return false;
- copy_or_ref = std::move(copy);
- loader_life_support::add_patient(copy_or_ref);
- }
-
- ref.reset();
- map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner())));
- ref.reset(new Type(*map));
-
- return true;
- }
-
- operator Type*() { return ref.get(); }
- operator Type&() { return *ref; }
- template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
-
-private:
- template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
- Scalar *data(Array &a) { return a.mutable_data(); }
-
- template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
- const Scalar *data(Array &a) { return a.data(); }
-
- // Attempt to figure out a constructor of `Stride` that will work.
- // If both strides are fixed, use a default constructor:
- template <typename S> using stride_ctor_default = bool_constant<
- S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
- std::is_default_constructible<S>::value>;
- // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
- // Eigen::Stride, and use it:
- template <typename S> using stride_ctor_dual = bool_constant<
- !stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
- // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
- // it (passing whichever stride is dynamic).
- template <typename S> using stride_ctor_outer = bool_constant<
- !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
- S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic &&
- std::is_constructible<S, EigenIndex>::value>;
- template <typename S> using stride_ctor_inner = bool_constant<
- !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
- S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
- std::is_constructible<S, EigenIndex>::value>;
-
- template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
- static S make_stride(EigenIndex, EigenIndex) { return S(); }
- template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
- static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); }
- template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
- static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); }
- template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
- static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); }
-
-};
-
-// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
-// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
-// load() is not supported, but we can cast them into the python domain by first copying to a
-// regular Eigen::Matrix, then casting that.
-template <typename Type>
-struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
-protected:
- using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
- using props = EigenProps<Matrix>;
-public:
- static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
- handle h = eigen_encapsulate<props>(new Matrix(src));
- return h;
- }
- static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); }
-
- static constexpr auto name = props::descriptor;
-
- // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
- // types but not bound arguments). We still provide them (with an explicitly delete) so that
- // you end up here if you try anyway.
- bool load(handle, bool) = delete;
- operator Type() = delete;
- template <typename> using cast_op_type = Type;
-};
-
-template<typename Type>
-struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
- using Scalar = typename Type::Scalar;
- using StorageIndex = remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())>;
- using Index = typename Type::Index;
- static constexpr bool rowMajor = Type::IsRowMajor;
-
- bool load(handle src, bool) {
- if (!src)
- return false;
-
- auto obj = reinterpret_borrow<object>(src);
- object sparse_module = module_::import("scipy.sparse");
- object matrix_type = sparse_module.attr(
- rowMajor ? "csr_matrix" : "csc_matrix");
-
- if (!type::handle_of(obj).is(matrix_type)) {
- try {
- obj = matrix_type(obj);
- } catch (const error_already_set &) {
- return false;
- }
- }
-
- auto values = array_t<Scalar>((object) obj.attr("data"));
- auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
- auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
- auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
- auto nnz = obj.attr("nnz").cast<Index>();
-
- if (!values || !innerIndices || !outerIndices)
- return false;
-
- value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>(
- shape[0].cast<Index>(), shape[1].cast<Index>(), nnz,
- outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data());
-
- return true;
- }
-
- static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
- const_cast<Type&>(src).makeCompressed();
-
- object matrix_type = module_::import("scipy.sparse").attr(
- rowMajor ? "csr_matrix" : "csc_matrix");
-
- array data(src.nonZeros(), src.valuePtr());
- array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
- array innerIndices(src.nonZeros(), src.innerIndexPtr());
-
- return matrix_type(
- std::make_tuple(data, innerIndices, outerIndices),
- std::make_pair(src.rows(), src.cols())
- ).release();
- }
-
- PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[")
- + npy_format_descriptor<Scalar>::name + _("]"));
-};
-
-PYBIND11_NAMESPACE_END(detail)
-PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
-
-#if defined(__GNUG__) || defined(__clang__)
-# pragma GCC diagnostic pop
-#elif defined(_MSC_VER)
-# pragma warning(pop)
-#endif
+#include "eigen/matrix.h"