aboutsummaryrefslogtreecommitdiff
path: root/pw_sync/counting_semaphore_facade_test.cc
blob: c7224b292e3b023679b4afa016fe276b6bfc6937 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.

#include <chrono>

#include "gtest/gtest.h"
#include "pw_chrono/system_clock.h"
#include "pw_sync/counting_semaphore.h"

using pw::chrono::SystemClock;
using namespace std::chrono_literals;

namespace pw::sync {
namespace {

extern "C" {

// Functions defined in counting_semaphore_facade_test_c.c which call the API
// from C.
void pw_sync_CountingSemaphore_CallRelease(
    pw_sync_CountingSemaphore* semaphore);
void pw_sync_CountingSemaphore_CallReleaseNum(
    pw_sync_CountingSemaphore* semaphore, ptrdiff_t update);
void pw_sync_CountingSemaphore_CallAcquire(
    pw_sync_CountingSemaphore* semaphore);
bool pw_sync_CountingSemaphore_CallTryAcquire(
    pw_sync_CountingSemaphore* semaphore);
bool pw_sync_CountingSemaphore_CallTryAcquireFor(
    pw_sync_CountingSemaphore* semaphore,
    pw_chrono_SystemClock_Duration timeout);
bool pw_sync_CountingSemaphore_CallTryAcquireUntil(
    pw_sync_CountingSemaphore* semaphore,
    pw_chrono_SystemClock_TimePoint deadline);
ptrdiff_t pw_sync_CountingSemaphore_CallMax(void);

}  // extern "C"

// We can't control the SystemClock's period configuration, so just in case
// duration cannot be accurately expressed in integer ticks, round the
// duration up.
constexpr SystemClock::duration kRoundedArbitraryDuration =
    SystemClock::for_at_least(42ms);
constexpr pw_chrono_SystemClock_Duration kRoundedArbitraryDurationInC =
    PW_SYSTEM_CLOCK_MS(42);

TEST(CountingSemaphore, EmptyInitialState) {
  CountingSemaphore semaphore;
  EXPECT_FALSE(semaphore.try_acquire());
}

// TODO(b/235284163): Add real concurrency tests once we have pw::thread.

TEST(CountingSemaphore, SingleRelease) {
  CountingSemaphore semaphore;
  semaphore.release();
  semaphore.release();
  semaphore.acquire();
  semaphore.acquire();
  // Ensure it fails when empty.
  EXPECT_FALSE(semaphore.try_acquire());
}

CountingSemaphore empty_initial_semaphore;
TEST(CountingSemaphore, EmptyInitialStateStatic) {
  EXPECT_FALSE(empty_initial_semaphore.try_acquire());
}

CountingSemaphore release_semaphore;
TEST(CountingSemaphore, ReleaseStatic) {
  release_semaphore.release();
  release_semaphore.release();
  release_semaphore.acquire();
  release_semaphore.acquire();
  // Ensure it fails when empty.
  EXPECT_FALSE(release_semaphore.try_acquire());
}

TEST(CountingSemaphore, MultiRelease) {
  CountingSemaphore semaphore;
  semaphore.release(2);
  semaphore.release(1);
  semaphore.acquire();
  semaphore.acquire();
  semaphore.acquire();
  // Ensure it fails when empty.
  EXPECT_FALSE(semaphore.try_acquire());
}

TEST(CountingSemaphore, TryAcquireForFull) {
  CountingSemaphore semaphore;
  semaphore.release();

  // Ensure it doesn't block and succeeds if not empty.
  SystemClock::time_point before = SystemClock::now();
  EXPECT_TRUE(semaphore.try_acquire_for(kRoundedArbitraryDuration));
  SystemClock::duration time_elapsed = SystemClock::now() - before;
  EXPECT_LT(time_elapsed, kRoundedArbitraryDuration);
}

TEST(CountingSemaphore, TryAcquireForEmptyPositiveTimeout) {
  CountingSemaphore semaphore;

  // Ensure it blocks and fails when empty.
  SystemClock::time_point before = SystemClock::now();
  EXPECT_FALSE(semaphore.try_acquire_for(kRoundedArbitraryDuration));
  SystemClock::duration time_elapsed = SystemClock::now() - before;
  EXPECT_GE(time_elapsed, kRoundedArbitraryDuration);
}

TEST(CountingSemaphore, TryAcquireForEmptyZeroLengthTimeout) {
  CountingSemaphore semaphore;

  // Ensure it doesn't block and fails when empty and a zero length duration is
  // used.
  SystemClock::time_point before = SystemClock::now();
  EXPECT_FALSE(semaphore.try_acquire_for(SystemClock::duration::zero()));
  SystemClock::duration time_elapsed = SystemClock::now() - before;
  EXPECT_LT(time_elapsed, kRoundedArbitraryDuration);
}

TEST(CountingSemaphore, TryAcquireForEmptyNegativeTimeout) {
  CountingSemaphore semaphore;

  // Ensure it doesn't block and fails when empty and a negative duration is
  // used.
  SystemClock::time_point before = SystemClock::now();
  EXPECT_FALSE(semaphore.try_acquire_for(-kRoundedArbitraryDuration));
  SystemClock::duration time_elapsed = SystemClock::now() - before;
  EXPECT_LT(time_elapsed, kRoundedArbitraryDuration);
}

TEST(CountingSemaphore, TryAcquireUntilFull) {
  CountingSemaphore semaphore;
  semaphore.release();

  // Ensure it doesn't block and succeeds if not empty.
  SystemClock::time_point deadline =
      SystemClock::now() + kRoundedArbitraryDuration;
  EXPECT_TRUE(semaphore.try_acquire_until(deadline));
  EXPECT_LT(SystemClock::now(), deadline);
}

TEST(CountingSemaphore, TryAcquireUntilEmptyFutureDeadline) {
  CountingSemaphore semaphore;

  // Ensure it blocks and fails when empty.
  SystemClock::time_point deadline =
      SystemClock::now() + kRoundedArbitraryDuration;
  EXPECT_FALSE(semaphore.try_acquire_until(deadline));
  EXPECT_GE(SystemClock::now(), deadline);
}

TEST(CountingSemaphore, TryAcquireUntilEmptyCurrentDeadline) {
  CountingSemaphore semaphore;

  // Ensure it doesn't block and fails when empty and now is used.
  SystemClock::time_point deadline =
      SystemClock::now() + kRoundedArbitraryDuration;
  EXPECT_FALSE(semaphore.try_acquire_until(SystemClock::now()));
  EXPECT_LT(SystemClock::now(), deadline);
}

TEST(CountingSemaphore, TryAcquireUntilEmptyPastDeadline) {
  CountingSemaphore semaphore;
  // Ensure it doesn't block and fails when empty and a timestamp in the past is
  // used.
  SystemClock::time_point deadline =
      SystemClock::now() + kRoundedArbitraryDuration;
  EXPECT_FALSE(semaphore.try_acquire_until(SystemClock::now() -
                                           kRoundedArbitraryDuration));
  EXPECT_LT(SystemClock::now(), deadline);
}

TEST(CountingSemaphore, EmptyInitialStateInC) {
  CountingSemaphore semaphore;
  EXPECT_FALSE(pw_sync_CountingSemaphore_CallTryAcquire(&semaphore));
}

TEST(CountingSemaphore, SingeReleaseInC) {
  CountingSemaphore semaphore;
  pw_sync_CountingSemaphore_CallRelease(&semaphore);
  pw_sync_CountingSemaphore_CallRelease(&semaphore);
  pw_sync_CountingSemaphore_CallAcquire(&semaphore);
  pw_sync_CountingSemaphore_CallAcquire(&semaphore);
  // Ensure it fails when empty.
  EXPECT_FALSE(pw_sync_CountingSemaphore_CallTryAcquire(&semaphore));
}

TEST(CountingSemaphore, MultiReleaseInC) {
  CountingSemaphore semaphore;
  pw_sync_CountingSemaphore_CallReleaseNum(&semaphore, 2);
  pw_sync_CountingSemaphore_CallReleaseNum(&semaphore, 1);
  pw_sync_CountingSemaphore_CallAcquire(&semaphore);
  pw_sync_CountingSemaphore_CallAcquire(&semaphore);
  pw_sync_CountingSemaphore_CallAcquire(&semaphore);
  // Ensure it fails when empty.
  EXPECT_FALSE(pw_sync_CountingSemaphore_CallTryAcquire(&semaphore));
}

TEST(CountingSemaphore, TryAcquireForFullInC) {
  CountingSemaphore semaphore;
  pw_sync_CountingSemaphore_CallRelease(&semaphore);

  // Ensure it doesn't block and succeeds if not empty.
  pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
  ASSERT_TRUE(pw_sync_CountingSemaphore_CallTryAcquireFor(
      &semaphore, kRoundedArbitraryDurationInC));
  pw_chrono_SystemClock_Duration time_elapsed =
      pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
  EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}

TEST(CountingSemaphore, TryAcquireForEmptyPositiveTimeoutInC) {
  CountingSemaphore semaphore;

  // Ensure it blocks and fails when empty.
  pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
  EXPECT_FALSE(pw_sync_CountingSemaphore_CallTryAcquireFor(
      &semaphore, kRoundedArbitraryDurationInC));
  pw_chrono_SystemClock_Duration time_elapsed =
      pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
  EXPECT_GE(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}

TEST(CountingSemaphore, TryAcquireForEmptyZeroLengthTimeoutInC) {
  CountingSemaphore semaphore;

  // Ensure it doesn't block and fails when empty and a zero length duration is
  // used.
  pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
  EXPECT_FALSE(pw_sync_CountingSemaphore_CallTryAcquireFor(
      &semaphore, PW_SYSTEM_CLOCK_MS(0)));
  pw_chrono_SystemClock_Duration time_elapsed =
      pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
  EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}

TEST(CountingSemaphore, TryAcquireForEmptyNegativeTimeoutInC) {
  CountingSemaphore semaphore;

  // Ensure it doesn't block and fails when empty and a negative duration is
  // used.
  pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
  EXPECT_FALSE(pw_sync_CountingSemaphore_CallTryAcquireFor(
      &semaphore, PW_SYSTEM_CLOCK_MS(-kRoundedArbitraryDurationInC.ticks)));
  pw_chrono_SystemClock_Duration time_elapsed =
      pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
  EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}

TEST(CountingSemaphore, TryAcquireUntilFullInC) {
  CountingSemaphore semaphore;
  pw_sync_CountingSemaphore_CallRelease(&semaphore);

  // Ensure it doesn't block and succeeds if not empty.
  pw_chrono_SystemClock_TimePoint deadline;
  deadline.duration_since_epoch.ticks =
      pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
      kRoundedArbitraryDurationInC.ticks;
  ASSERT_TRUE(
      pw_sync_CountingSemaphore_CallTryAcquireUntil(&semaphore, deadline));
  EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
            deadline.duration_since_epoch.ticks);
}

TEST(CountingSemaphore, TryAcquireUntilEmptyFutureDeadlineInC) {
  CountingSemaphore semaphore;

  // Ensure it blocks and fails when empty.
  pw_chrono_SystemClock_TimePoint deadline;
  deadline.duration_since_epoch.ticks =
      pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
      kRoundedArbitraryDurationInC.ticks;
  EXPECT_FALSE(
      pw_sync_CountingSemaphore_CallTryAcquireUntil(&semaphore, deadline));
  EXPECT_GE(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
            deadline.duration_since_epoch.ticks);
}

TEST(CountingSemaphore, TryAcquireUntilEmptyCurrentDeadlineInC) {
  CountingSemaphore semaphore;

  // Ensure it doesn't block and fails when empty and now is used.
  pw_chrono_SystemClock_TimePoint deadline;
  deadline.duration_since_epoch.ticks =
      pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
      kRoundedArbitraryDurationInC.ticks;
  EXPECT_FALSE(pw_sync_CountingSemaphore_CallTryAcquireUntil(
      &semaphore, pw_chrono_SystemClock_Now()));
  EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
            deadline.duration_since_epoch.ticks);
}

TEST(CountingSemaphore, TryAcquireUntilEmptyPastDeadlineInC) {
  CountingSemaphore semaphore;

  // Ensure it doesn't block and fails when empty and a timestamp in the past is
  // used.
  pw_chrono_SystemClock_TimePoint deadline;
  deadline.duration_since_epoch.ticks =
      pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
      kRoundedArbitraryDurationInC.ticks;
  pw_chrono_SystemClock_TimePoint old_timestamp;
  old_timestamp.duration_since_epoch.ticks =
      pw_chrono_SystemClock_Now().duration_since_epoch.ticks -
      kRoundedArbitraryDurationInC.ticks;
  EXPECT_FALSE(
      pw_sync_CountingSemaphore_CallTryAcquireUntil(&semaphore, old_timestamp));
  EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
            deadline.duration_since_epoch.ticks);
}

TEST(CountingSemaphore, MaxInC) {
  EXPECT_EQ(CountingSemaphore::max(), pw_sync_CountingSemaphore_Max());
}

}  // namespace
}  // namespace pw::sync