aboutsummaryrefslogtreecommitdiff
path: root/pw_kvs/key_value_store_initialized_test.cc
blob: 2524a96dce8ce16ce377d61863943700bc57834b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.

#include <array>
#include <cstdio>
#include <cstring>

#include "gtest/gtest.h"
#include "pw_assert/check.h"
#include "pw_bytes/array.h"
#include "pw_checksum/crc16_ccitt.h"
#include "pw_kvs/crc16_checksum.h"
#include "pw_kvs/flash_memory.h"
#include "pw_kvs/flash_test_partition.h"
#include "pw_kvs/internal/entry.h"
#include "pw_kvs/key_value_store.h"
#include "pw_log/log.h"
#include "pw_span/span.h"
#include "pw_status/status.h"
#include "pw_string/string_builder.h"

namespace pw::kvs {
namespace {

using internal::EntryHeader;
using std::byte;

constexpr size_t kMaxEntries = 256;
constexpr size_t kMaxUsableSectors = 1024;

FlashPartition& test_partition = FlashTestPartition();

std::array<byte, 512> buffer;

size_t RoundUpForAlignment(size_t size) {
  return AlignUp(size, test_partition.alignment_bytes());
}

// This class gives attributes of KVS that we are testing against
class KvsAttributes {
 public:
  KvsAttributes(size_t key_size, size_t data_size)
      : chunk_header_size_(RoundUpForAlignment(sizeof(EntryHeader))),
        data_size_(RoundUpForAlignment(data_size)),
        key_size_(RoundUpForAlignment(key_size)),
        erase_size_(chunk_header_size_ + key_size_),
        min_put_size_(
            RoundUpForAlignment(chunk_header_size_ + key_size_ + data_size_)) {}

  size_t ChunkHeaderSize() { return chunk_header_size_; }
  size_t DataSize() { return data_size_; }
  size_t KeySize() { return key_size_; }
  size_t EraseSize() { return erase_size_; }
  size_t MinPutSize() { return min_put_size_; }

 private:
  const size_t chunk_header_size_;
  const size_t data_size_;
  const size_t key_size_;
  const size_t erase_size_;
  const size_t min_put_size_;
};

constexpr std::array<const char*, 3> keys{"TestKey1", "Key2", "TestKey3"};

ChecksumCrc16 checksum;
// For KVS magic value always use a random 32 bit integer rather than a
// human readable 4 bytes. See pw_kvs/format.h for more information.
constexpr EntryFormat default_format{.magic = 0x5b9a341e,
                                     .checksum = &checksum};

class EmptyInitializedKvs : public ::testing::Test {
 protected:
  EmptyInitializedKvs() : kvs_(&test_partition, default_format) {
    EXPECT_EQ(OkStatus(), test_partition.Erase());
    PW_CHECK_OK(kvs_.Init());
  }

  // Intention of this is to put and erase key-val to fill up sectors. It's a
  // helper function in testing how KVS handles cases where flash sector is full
  // or near full.
  void FillKvs(const char* key, size_t size_to_fill) {
    constexpr size_t kTestDataSize = 8;
    KvsAttributes kvs_attr(std::strlen(key), kTestDataSize);
    const size_t kMaxPutSize =
        buffer.size() + kvs_attr.ChunkHeaderSize() + kvs_attr.KeySize();

    ASSERT_GE(size_to_fill, kvs_attr.MinPutSize() + kvs_attr.EraseSize());

    // Saving enough space to perform erase after loop
    size_to_fill -= kvs_attr.EraseSize();
    // We start with possible small chunk to prevent too small of a Kvs.Put() at
    // the end.
    size_t chunk_len =
        std::max(kvs_attr.MinPutSize(), size_to_fill % buffer.size());
    std::memset(buffer.data(), 0, buffer.size());
    while (size_to_fill > 0) {
      // Changing buffer value so put actually does something
      buffer[0] = static_cast<byte>(static_cast<uint8_t>(buffer[0]) + 1);
      ASSERT_EQ(OkStatus(),
                kvs_.Put(key,
                         span(buffer.data(),
                              chunk_len - kvs_attr.ChunkHeaderSize() -
                                  kvs_attr.KeySize())));
      size_to_fill -= chunk_len;
      chunk_len = std::min(size_to_fill, kMaxPutSize);
    }
    ASSERT_EQ(OkStatus(), kvs_.Delete(key));
  }

  KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs_;
};

}  // namespace

TEST_F(EmptyInitializedKvs, Put_SameKeySameValueRepeatedly_AlignedEntries) {
  std::array<char, 8> value{'v', 'a', 'l', 'u', 'e', '6', '7', '\0'};

  for (int i = 0; i < 1000; ++i) {
    ASSERT_EQ(OkStatus(), kvs_.Put("The Key!", as_bytes(span(value))));
  }
}

TEST_F(EmptyInitializedKvs, Put_SameKeySameValueRepeatedly_UnalignedEntries) {
  std::array<char, 7> value{'v', 'a', 'l', 'u', 'e', '6', '\0'};

  for (int i = 0; i < 1000; ++i) {
    ASSERT_EQ(OkStatus(), kvs_.Put("The Key!", as_bytes(span(value))));
  }
}

TEST_F(EmptyInitializedKvs, Put_SameKeyDifferentValuesRepeatedly) {
  std::array<char, 10> value{'v', 'a', 'l', 'u', 'e', '6', '7', '8', '9', '\0'};

  for (int i = 0; i < 100; ++i) {
    for (unsigned size = 0; size < value.size(); ++size) {
      ASSERT_EQ(OkStatus(), kvs_.Put("The Key!", i));
    }
  }
}

TEST_F(EmptyInitializedKvs, PutAndGetByValue_ConvertibleToSpan) {
  constexpr float input[] = {1.0, -3.5};
  ASSERT_EQ(OkStatus(), kvs_.Put("key", input));

  float output[2] = {};
  ASSERT_EQ(OkStatus(), kvs_.Get("key", &output));
  EXPECT_EQ(input[0], output[0]);
  EXPECT_EQ(input[1], output[1]);
}

TEST_F(EmptyInitializedKvs, PutAndGetByValue_Span) {
  float input[] = {1.0, -3.5};
  ASSERT_EQ(OkStatus(), kvs_.Put("key", span(input)));

  float output[2] = {};
  ASSERT_EQ(OkStatus(), kvs_.Get("key", &output));
  EXPECT_EQ(input[0], output[0]);
  EXPECT_EQ(input[1], output[1]);
}

TEST_F(EmptyInitializedKvs, PutAndGetByValue_NotConvertibleToSpan) {
  struct TestStruct {
    float a;
    bool b;
  };
  const TestStruct input{-1234.5, true};

  ASSERT_EQ(OkStatus(), kvs_.Put("key", input));

  TestStruct output;
  ASSERT_EQ(OkStatus(), kvs_.Get("key", &output));
  EXPECT_EQ(input.a, output.a);
  EXPECT_EQ(input.b, output.b);
}

TEST_F(EmptyInitializedKvs, Get_Simple) {
  ASSERT_EQ(OkStatus(), kvs_.Put("Charles", as_bytes(span("Mingus"))));

  char value[16];
  auto result = kvs_.Get("Charles", as_writable_bytes(span(value)));
  EXPECT_EQ(OkStatus(), result.status());
  EXPECT_EQ(sizeof("Mingus"), result.size());
  EXPECT_STREQ("Mingus", value);
}

TEST_F(EmptyInitializedKvs, Get_WithOffset) {
  ASSERT_EQ(OkStatus(), kvs_.Put("Charles", as_bytes(span("Mingus"))));

  char value[16];
  auto result = kvs_.Get("Charles", as_writable_bytes(span(value)), 4);
  EXPECT_EQ(OkStatus(), result.status());
  EXPECT_EQ(sizeof("Mingus") - 4, result.size());
  EXPECT_STREQ("us", value);
}

TEST_F(EmptyInitializedKvs, Get_WithOffset_FillBuffer) {
  ASSERT_EQ(OkStatus(), kvs_.Put("Charles", as_bytes(span("Mingus"))));

  char value[4] = {};
  auto result = kvs_.Get("Charles", as_writable_bytes(span(value, 3)), 1);
  EXPECT_EQ(Status::ResourceExhausted(), result.status());
  EXPECT_EQ(3u, result.size());
  EXPECT_STREQ("ing", value);
}

TEST_F(EmptyInitializedKvs, Get_WithOffset_PastEnd) {
  ASSERT_EQ(OkStatus(), kvs_.Put("Charles", as_bytes(span("Mingus"))));

  char value[16];
  auto result =
      kvs_.Get("Charles", as_writable_bytes(span(value)), sizeof("Mingus") + 1);
  EXPECT_EQ(Status::OutOfRange(), result.status());
  EXPECT_EQ(0u, result.size());
}

TEST_F(EmptyInitializedKvs, GetValue) {
  ASSERT_EQ(OkStatus(), kvs_.Put("key", uint32_t(0xfeedbeef)));

  uint32_t value = 0;
  EXPECT_EQ(OkStatus(), kvs_.Get("key", &value));
  EXPECT_EQ(uint32_t(0xfeedbeef), value);
}

TEST_F(EmptyInitializedKvs, GetValue_TooSmall) {
  ASSERT_EQ(OkStatus(), kvs_.Put("key", uint32_t(0xfeedbeef)));

  uint8_t value = 0;
  EXPECT_EQ(Status::InvalidArgument(), kvs_.Get("key", &value));
  EXPECT_EQ(0u, value);
}

TEST_F(EmptyInitializedKvs, GetValue_TooLarge) {
  ASSERT_EQ(OkStatus(), kvs_.Put("key", uint32_t(0xfeedbeef)));

  uint64_t value = 0;
  EXPECT_EQ(Status::InvalidArgument(), kvs_.Get("key", &value));
  EXPECT_EQ(0u, value);
}

TEST_F(EmptyInitializedKvs, Delete_GetDeletedKey_ReturnsNotFound) {
  ASSERT_EQ(OkStatus(), kvs_.Put("kEy", as_bytes(span("123"))));
  ASSERT_EQ(OkStatus(), kvs_.Delete("kEy"));

  EXPECT_EQ(Status::NotFound(), kvs_.Get("kEy", {}).status());
  EXPECT_EQ(Status::NotFound(), kvs_.ValueSize("kEy").status());
}

TEST_F(EmptyInitializedKvs, Delete_AddBackKey_PersistsAfterInitialization) {
  ASSERT_EQ(OkStatus(), kvs_.Put("kEy", as_bytes(span("123"))));
  ASSERT_EQ(OkStatus(), kvs_.Delete("kEy"));

  EXPECT_EQ(OkStatus(), kvs_.Put("kEy", as_bytes(span("45678"))));
  char data[6] = {};
  ASSERT_EQ(OkStatus(), kvs_.Get("kEy", &data));
  EXPECT_STREQ(data, "45678");

  // Ensure that the re-added key is still present after reinitialization.
  KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> new_kvs(&test_partition,
                                                              default_format);
  ASSERT_EQ(OkStatus(), new_kvs.Init());

  EXPECT_EQ(OkStatus(), new_kvs.Put("kEy", as_bytes(span("45678"))));
  char new_data[6] = {};
  EXPECT_EQ(OkStatus(), new_kvs.Get("kEy", &new_data));
  EXPECT_STREQ(data, "45678");
}

TEST_F(EmptyInitializedKvs, Delete_AllItems_KvsIsEmpty) {
  ASSERT_EQ(OkStatus(), kvs_.Put("kEy", as_bytes(span("123"))));
  ASSERT_EQ(OkStatus(), kvs_.Delete("kEy"));

  EXPECT_EQ(0u, kvs_.size());
  EXPECT_TRUE(kvs_.empty());
}

TEST_F(EmptyInitializedKvs, Collision_WithPresentKey) {
  // Both hash to 0x19df36f0.
  constexpr std::string_view key1 = "D4";
  constexpr std::string_view key2 = "dFU6S";

  ASSERT_EQ(OkStatus(), kvs_.Put(key1, 1000));

  EXPECT_EQ(Status::AlreadyExists(), kvs_.Put(key2, 999));

  int value = 0;
  EXPECT_EQ(OkStatus(), kvs_.Get(key1, &value));
  EXPECT_EQ(1000, value);

  EXPECT_EQ(Status::NotFound(), kvs_.Get(key2, &value));
  EXPECT_EQ(Status::NotFound(), kvs_.ValueSize(key2).status());
  EXPECT_EQ(Status::NotFound(), kvs_.Delete(key2));
}

TEST_F(EmptyInitializedKvs, Collision_WithDeletedKey) {
  // Both hash to 0x4060f732.
  constexpr std::string_view key1 = "1U2";
  constexpr std::string_view key2 = "ahj9d";

  ASSERT_EQ(OkStatus(), kvs_.Put(key1, 1000));
  ASSERT_EQ(OkStatus(), kvs_.Delete(key1));

  // key2 collides with key1's tombstone.
  EXPECT_EQ(Status::AlreadyExists(), kvs_.Put(key2, 999));

  int value = 0;
  EXPECT_EQ(Status::NotFound(), kvs_.Get(key1, &value));

  EXPECT_EQ(Status::NotFound(), kvs_.Get(key2, &value));
  EXPECT_EQ(Status::NotFound(), kvs_.ValueSize(key2).status());
  EXPECT_EQ(Status::NotFound(), kvs_.Delete(key2));
}

TEST_F(EmptyInitializedKvs, Iteration_Empty_ByReference) {
  for (const KeyValueStore::Item& entry : kvs_) {
    FAIL();  // The KVS is empty; this shouldn't execute.
    static_cast<void>(entry);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_Empty_ByValue) {
  for (KeyValueStore::Item entry : kvs_) {
    FAIL();  // The KVS is empty; this shouldn't execute.
    static_cast<void>(entry);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_OneItem) {
  ASSERT_EQ(OkStatus(), kvs_.Put("kEy", as_bytes(span("123"))));

  for (KeyValueStore::Item entry : kvs_) {
    EXPECT_STREQ(entry.key(), "kEy");  // Make sure null-terminated.

    char temp[sizeof("123")] = {};
    EXPECT_EQ(OkStatus(), entry.Get(&temp));
    EXPECT_STREQ("123", temp);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_GetWithOffset) {
  ASSERT_EQ(OkStatus(), kvs_.Put("key", as_bytes(span("not bad!"))));

  for (KeyValueStore::Item entry : kvs_) {
    char temp[5];
    auto result = entry.Get(as_writable_bytes(span(temp)), 4);
    EXPECT_EQ(OkStatus(), result.status());
    EXPECT_EQ(5u, result.size());
    EXPECT_STREQ("bad!", temp);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_GetValue) {
  ASSERT_EQ(OkStatus(), kvs_.Put("key", uint32_t(0xfeedbeef)));

  for (KeyValueStore::Item entry : kvs_) {
    uint32_t value = 0;
    EXPECT_EQ(OkStatus(), entry.Get(&value));
    EXPECT_EQ(uint32_t(0xfeedbeef), value);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_GetValue_TooSmall) {
  ASSERT_EQ(OkStatus(), kvs_.Put("key", uint32_t(0xfeedbeef)));

  for (KeyValueStore::Item entry : kvs_) {
    uint8_t value = 0;
    EXPECT_EQ(Status::InvalidArgument(), entry.Get(&value));
    EXPECT_EQ(0u, value);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_GetValue_TooLarge) {
  ASSERT_EQ(OkStatus(), kvs_.Put("key", uint32_t(0xfeedbeef)));

  for (KeyValueStore::Item entry : kvs_) {
    uint64_t value = 0;
    EXPECT_EQ(Status::InvalidArgument(), entry.Get(&value));
    EXPECT_EQ(0u, value);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_EmptyAfterDeletion) {
  ASSERT_EQ(OkStatus(), kvs_.Put("kEy", as_bytes(span("123"))));
  ASSERT_EQ(OkStatus(), kvs_.Delete("kEy"));

  for (KeyValueStore::Item entry : kvs_) {
    static_cast<void>(entry);
    FAIL();
  }
}

TEST_F(EmptyInitializedKvs, Iterator) {
  ASSERT_EQ(OkStatus(), kvs_.Put("kEy", as_bytes(span("123"))));

  for (KeyValueStore::iterator it = kvs_.begin(); it != kvs_.end(); ++it) {
    EXPECT_STREQ(it->key(), "kEy");

    char temp[sizeof("123")] = {};
    EXPECT_EQ(OkStatus(), it->Get(&temp));
    EXPECT_STREQ("123", temp);
  }
}

TEST_F(EmptyInitializedKvs, Iterator_PostIncrement) {
  ASSERT_EQ(OkStatus(), kvs_.Put("kEy", as_bytes(span("123"))));

  KeyValueStore::iterator it = kvs_.begin();
  EXPECT_EQ(it++, kvs_.begin());
  EXPECT_EQ(it, kvs_.end());
}

TEST_F(EmptyInitializedKvs, Iterator_PreIncrement) {
  ASSERT_EQ(OkStatus(), kvs_.Put("kEy", as_bytes(span("123"))));

  KeyValueStore::iterator it = kvs_.begin();
  EXPECT_EQ(++it, kvs_.end());
  EXPECT_EQ(it, kvs_.end());
}

TEST_F(EmptyInitializedKvs, Basic) {
  // Add some data
  uint8_t value1 = 0xDA;
  ASSERT_EQ(OkStatus(),
            kvs_.Put(keys[0], as_bytes(span(&value1, sizeof(value1)))));

  uint32_t value2 = 0xBAD0301f;
  ASSERT_EQ(OkStatus(), kvs_.Put(keys[1], value2));

  // Verify data
  uint32_t test2;
  EXPECT_EQ(OkStatus(), kvs_.Get(keys[1], &test2));
  uint8_t test1;
  ASSERT_EQ(OkStatus(), kvs_.Get(keys[0], &test1));

  EXPECT_EQ(test1, value1);
  EXPECT_EQ(test2, value2);

  // Delete a key
  EXPECT_EQ(OkStatus(), kvs_.Delete(keys[0]));

  // Verify it was erased
  EXPECT_EQ(kvs_.Get(keys[0], &test1), Status::NotFound());
  test2 = 0;
  ASSERT_EQ(
      OkStatus(),
      kvs_.Get(keys[1], span(reinterpret_cast<byte*>(&test2), sizeof(test2)))
          .status());
  EXPECT_EQ(test2, value2);

  // Delete other key
  ASSERT_EQ(OkStatus(), kvs_.Delete(keys[1]));

  // Verify it was erased
  EXPECT_EQ(kvs_.size(), 0u);
}

}  // namespace pw::kvs