summaryrefslogtreecommitdiff
path: root/src/math/generic/explogxf.h
blob: f7d04f517ce57d77d51542d24fff1205535450c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
//===-- Single-precision general exp/log functions ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
#define LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H

#include "common_constants.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/CPP/optional.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/common.h"
#include "src/__support/macros/properties/cpu_features.h"

#include <errno.h>

namespace LIBC_NAMESPACE {

struct ExpBase {
  // Base = e
  static constexpr int MID_BITS = 5;
  static constexpr int MID_MASK = (1 << MID_BITS) - 1;
  // log2(e) * 2^5
  static constexpr double LOG2_B = 0x1.71547652b82fep+0 * (1 << MID_BITS);
  // High and low parts of -log(2) * 2^(-5)
  static constexpr double M_LOGB_2_HI = -0x1.62e42fefa0000p-1 / (1 << MID_BITS);
  static constexpr double M_LOGB_2_LO =
      -0x1.cf79abc9e3b3ap-40 / (1 << MID_BITS);
  // Look up table for bit fields of 2^(i/32) for i = 0..31, generated by Sollya
  // with:
  // > for i from 0 to 31 do printdouble(round(2^(i/32), D, RN));
  static constexpr int64_t EXP_2_MID[1 << MID_BITS] = {
      0x3ff0000000000000, 0x3ff059b0d3158574, 0x3ff0b5586cf9890f,
      0x3ff11301d0125b51, 0x3ff172b83c7d517b, 0x3ff1d4873168b9aa,
      0x3ff2387a6e756238, 0x3ff29e9df51fdee1, 0x3ff306fe0a31b715,
      0x3ff371a7373aa9cb, 0x3ff3dea64c123422, 0x3ff44e086061892d,
      0x3ff4bfdad5362a27, 0x3ff5342b569d4f82, 0x3ff5ab07dd485429,
      0x3ff6247eb03a5585, 0x3ff6a09e667f3bcd, 0x3ff71f75e8ec5f74,
      0x3ff7a11473eb0187, 0x3ff82589994cce13, 0x3ff8ace5422aa0db,
      0x3ff93737b0cdc5e5, 0x3ff9c49182a3f090, 0x3ffa5503b23e255d,
      0x3ffae89f995ad3ad, 0x3ffb7f76f2fb5e47, 0x3ffc199bdd85529c,
      0x3ffcb720dcef9069, 0x3ffd5818dcfba487, 0x3ffdfc97337b9b5f,
      0x3ffea4afa2a490da, 0x3fff50765b6e4540,
  };

  // Approximating e^dx with degree-5 minimax polynomial generated by Sollya:
  // > Q = fpminimax(expm1(x)/x, 4, [|1, D...|], [-log(2)/64, log(2)/64]);
  // Then:
  //   e^dx ~ P(dx) = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[3] * dx^5.
  static constexpr double COEFFS[4] = {
      0x1.ffffffffe5bc8p-2, 0x1.555555555cd67p-3, 0x1.5555c2a9b48b4p-5,
      0x1.11112a0e34bdbp-7};

  LIBC_INLINE static double powb_lo(double dx) {
    using fputil::multiply_add;
    double dx2 = dx * dx;
    double c0 = 1.0 + dx;
    // c1 = COEFFS[0] + COEFFS[1] * dx
    double c1 = multiply_add(dx, ExpBase::COEFFS[1], ExpBase::COEFFS[0]);
    // c2 = COEFFS[2] + COEFFS[3] * dx
    double c2 = multiply_add(dx, ExpBase::COEFFS[3], ExpBase::COEFFS[2]);
    // r = c4 + c5 * dx^4
    //   = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[5] * dx^7
    return fputil::polyeval(dx2, c0, c1, c2);
  }
};

struct Exp10Base : public ExpBase {
  // log2(10) * 2^5
  static constexpr double LOG2_B = 0x1.a934f0979a371p1 * (1 << MID_BITS);
  // High and low parts of -log10(2) * 2^(-5).
  // Notice that since |x * log2(10)| < 150:
  //   |k| = |round(x * log2(10) * 2^5)| < 2^8 * 2^5 = 2^13
  // So when the FMA instructions are not available, in order for the product
  //   k * M_LOGB_2_HI
  // to be exact, we only store the high part of log10(2) up to 38 bits
  // (= 53 - 15) of precision.
  // It is generated by Sollya with:
  // > round(log10(2), 44, RN);
  static constexpr double M_LOGB_2_HI = -0x1.34413509f8p-2 / (1 << MID_BITS);
  // > round(log10(2) - 0x1.34413509f8p-2, D, RN);
  static constexpr double M_LOGB_2_LO = 0x1.80433b83b532ap-44 / (1 << MID_BITS);

  // Approximating 10^dx with degree-5 minimax polynomial generated by Sollya:
  // > Q = fpminimax((10^x - 1)/x, 4, [|D...|], [-log10(2)/2^6, log10(2)/2^6]);
  // Then:
  //   10^dx ~ P(dx) = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5.
  static constexpr double COEFFS[5] = {0x1.26bb1bbb55515p1, 0x1.53524c73bd3eap1,
                                       0x1.0470591dff149p1, 0x1.2bd7c0a9fbc4dp0,
                                       0x1.1429e74a98f43p-1};

  static double powb_lo(double dx) {
    using fputil::multiply_add;
    double dx2 = dx * dx;
    // c0 = 1 + COEFFS[0] * dx
    double c0 = multiply_add(dx, Exp10Base::COEFFS[0], 1.0);
    // c1 = COEFFS[1] + COEFFS[2] * dx
    double c1 = multiply_add(dx, Exp10Base::COEFFS[2], Exp10Base::COEFFS[1]);
    // c2 = COEFFS[3] + COEFFS[4] * dx
    double c2 = multiply_add(dx, Exp10Base::COEFFS[4], Exp10Base::COEFFS[3]);
    // r = c0 + dx^2 * (c1 + c2 * dx^2)
    //   = c0 + c1 * dx^2 + c2 * dx^4
    //   = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5.
    return fputil::polyeval(dx2, c0, c1, c2);
  }
};

constexpr int LOG_P1_BITS = 6;
constexpr int LOG_P1_SIZE = 1 << LOG_P1_BITS;

// N[Table[Log[2, 1 + x], {x, 0/64, 63/64, 1/64}], 40]
extern const double LOG_P1_LOG2[LOG_P1_SIZE];

// N[Table[1/(1 + x), {x, 0/64, 63/64, 1/64}], 40]
extern const double LOG_P1_1_OVER[LOG_P1_SIZE];

// Taylor series expansion for Log[2, 1 + x] splitted to EVEN AND ODD numbers
// K_LOG2_ODD starts from x^3
extern const double K_LOG2_ODD[4];
extern const double K_LOG2_EVEN[4];

// Output of range reduction for exp_b: (2^(mid + hi), lo)
// where:
//   b^x = 2^(mid + hi) * b^lo
struct exp_b_reduc_t {
  double mh; // 2^(mid + hi)
  double lo;
};

// The function correctly calculates b^x value with at least float precision
// in a limited range.
// Range reduction:
//   b^x = 2^(hi + mid) * b^lo
// where:
//   x = (hi + mid) * log_b(2) + lo
//   hi is an integer,
//   0 <= mid * 2^MID_BITS < 2^MID_BITS is an integer
//   -2^(-MID_BITS - 1) <= lo * log2(b) <= 2^(-MID_BITS - 1)
// Base class needs to provide the following constants:
//   - MID_BITS    : number of bits after decimal points used for mid
//   - MID_MASK    : 2^MID_BITS - 1, mask to extract mid bits
//   - LOG2_B      : log2(b) * 2^MID_BITS for scaling
//   - M_LOGB_2_HI : high part of -log_b(2) * 2^(-MID_BITS)
//   - M_LOGB_2_LO : low part of -log_b(2) * 2^(-MID_BITS)
//   - EXP_2_MID   : look up table for bit fields of 2^mid
// Return:
//   { 2^(hi + mid), lo }
template <class Base> LIBC_INLINE exp_b_reduc_t exp_b_range_reduc(float x) {
  double xd = static_cast<double>(x);
  // kd = round((hi + mid) * log2(b) * 2^MID_BITS)
  double kd = fputil::nearest_integer(Base::LOG2_B * xd);
  // k = round((hi + mid) * log2(b) * 2^MID_BITS)
  int k = static_cast<int>(kd);
  // hi = floor(kd * 2^(-MID_BITS))
  // exp_hi = shift hi to the exponent field of double precision.
  int64_t exp_hi = static_cast<int64_t>((k >> Base::MID_BITS))
                   << fputil::FPBits<double>::FRACTION_LEN;
  // mh = 2^hi * 2^mid
  // mh_bits = bit field of mh
  int64_t mh_bits = Base::EXP_2_MID[k & Base::MID_MASK] + exp_hi;
  double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val();
  // dx = lo = x - (hi + mid) * log(2)
  double dx = fputil::multiply_add(
      kd, Base::M_LOGB_2_LO, fputil::multiply_add(kd, Base::M_LOGB_2_HI, xd));
  return {mh, dx};
}

// The function correctly calculates sinh(x) and cosh(x) by calculating exp(x)
// and exp(-x) simultaneously.
// To compute e^x, we perform the following range
// reduction: find hi, mid, lo such that:
//   x = (hi + mid) * log(2) + lo, in which
//     hi is an integer,
//     0 <= mid * 2^5 < 32 is an integer
//     -2^(-6) <= lo * log2(e) <= 2^-6.
// In particular,
//   hi + mid = round(x * log2(e) * 2^5) * 2^(-5).
// Then,
//   e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo.
// 2^mid is stored in the lookup table of 32 elements.
// e^lo is computed using a degree-5 minimax polynomial
// generated by Sollya:
//   e^lo ~ P(lo) = 1 + lo + c2 * lo^2 + ... + c5 * lo^5
//        = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4)
//        = P_even + lo * P_odd
// We perform 2^hi * 2^mid by simply add hi to the exponent field
// of 2^mid.
// To compute e^(-x), notice that:
//   e^(-x) = 2^(-(hi + mid)) * e^(-lo)
//          ~ 2^(-(hi + mid)) * P(-lo)
//          = 2^(-(hi + mid)) * (P_even - lo * P_odd)
// So:
//   sinh(x) = (e^x - e^(-x)) / 2
//           ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) -
//                    2^(-(hi + mid)) * (P_even - lo * P_odd))
//           = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) +
//                    lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid))))
// And similarly:
//   cosh(x) = (e^x + e^(-x)) / 2
//           ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) +
//                    lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid))))
// The main point of these formulas is that the expensive part of calculating
// the polynomials approximating lower parts of e^(x) and e^(-x) are shared
// and only done once.
template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) {
  double xd = static_cast<double>(x);

  // kd = round(x * log2(e) * 2^5)
  // k_p = round(x * log2(e) * 2^5)
  // k_m = round(-x * log2(e) * 2^5)
  double kd;
  int k_p, k_m;

#ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
  kd = fputil::nearest_integer(ExpBase::LOG2_B * xd);
  k_p = static_cast<int>(kd);
  k_m = -k_p;
#else
  constexpr double HALF_WAY[2] = {0.5, -0.5};

  k_p = static_cast<int>(
      fputil::multiply_add(xd, ExpBase::LOG2_B, HALF_WAY[x < 0.0f]));
  k_m = -k_p;
  kd = static_cast<double>(k_p);
#endif // LIBC_TARGET_CPU_HAS_NEAREST_INT

  // hi = floor(kf * 2^(-5))
  // exp_hi = shift hi to the exponent field of double precision.
  int64_t exp_hi_p = static_cast<int64_t>((k_p >> ExpBase::MID_BITS))
                     << fputil::FPBits<double>::FRACTION_LEN;
  int64_t exp_hi_m = static_cast<int64_t>((k_m >> ExpBase::MID_BITS))
                     << fputil::FPBits<double>::FRACTION_LEN;
  // mh_p = 2^(hi + mid)
  // mh_m = 2^(-(hi + mid))
  // mh_bits_* = bit field of mh_*
  int64_t mh_bits_p = ExpBase::EXP_2_MID[k_p & ExpBase::MID_MASK] + exp_hi_p;
  int64_t mh_bits_m = ExpBase::EXP_2_MID[k_m & ExpBase::MID_MASK] + exp_hi_m;
  double mh_p = fputil::FPBits<double>(uint64_t(mh_bits_p)).get_val();
  double mh_m = fputil::FPBits<double>(uint64_t(mh_bits_m)).get_val();
  // mh_sum = 2^(hi + mid) + 2^(-(hi + mid))
  double mh_sum = mh_p + mh_m;
  // mh_diff = 2^(hi + mid) - 2^(-(hi + mid))
  double mh_diff = mh_p - mh_m;

  // dx = lo = x - (hi + mid) * log(2)
  double dx =
      fputil::multiply_add(kd, ExpBase::M_LOGB_2_LO,
                           fputil::multiply_add(kd, ExpBase::M_LOGB_2_HI, xd));
  double dx2 = dx * dx;

  // c0 = 1 + COEFFS[0] * lo^2
  // P_even = (1 + COEFFS[0] * lo^2 + COEFFS[2] * lo^4) / 2
  double p_even = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[0] * 0.5,
                                   ExpBase::COEFFS[2] * 0.5);
  // P_odd = (1 + COEFFS[1] * lo^2 + COEFFS[3] * lo^4) / 2
  double p_odd = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[1] * 0.5,
                                  ExpBase::COEFFS[3] * 0.5);

  double r;
  if constexpr (is_sinh)
    r = fputil::multiply_add(dx * mh_sum, p_odd, p_even * mh_diff);
  else
    r = fputil::multiply_add(dx * mh_diff, p_odd, p_even * mh_sum);
  return r;
}

// x should be positive, normal finite value
LIBC_INLINE static double log2_eval(double x) {
  using FPB = fputil::FPBits<double>;
  FPB bs(x);

  double result = 0;
  result += bs.get_exponent();

  int p1 = (bs.get_mantissa() >> (FPB::FRACTION_LEN - LOG_P1_BITS)) &
           (LOG_P1_SIZE - 1);

  bs.set_uintval(bs.uintval() & (FPB::FRACTION_MASK >> LOG_P1_BITS));
  bs.set_biased_exponent(FPB::EXP_BIAS);
  double dx = (bs.get_val() - 1.0) * LOG_P1_1_OVER[p1];

  // Taylor series for log(2,1+x)
  double c1 = fputil::multiply_add(dx, K_LOG2_ODD[0], K_LOG2_EVEN[0]);
  double c2 = fputil::multiply_add(dx, K_LOG2_ODD[1], K_LOG2_EVEN[1]);
  double c3 = fputil::multiply_add(dx, K_LOG2_ODD[2], K_LOG2_EVEN[2]);
  double c4 = fputil::multiply_add(dx, K_LOG2_ODD[3], K_LOG2_EVEN[3]);

  // c0 = dx * (1.0 / ln(2)) + LOG_P1_LOG2[p1]
  double c0 = fputil::multiply_add(dx, 0x1.71547652b82fep+0, LOG_P1_LOG2[p1]);
  result += LIBC_NAMESPACE::fputil::polyeval(dx * dx, c0, c1, c2, c3, c4);
  return result;
}

// x should be positive, normal finite value
LIBC_INLINE static double log_eval(double x) {
  // For x = 2^ex * (1 + mx)
  //   log(x) = ex * log(2) + log(1 + mx)
  using FPB = fputil::FPBits<double>;
  FPB bs(x);

  double ex = static_cast<double>(bs.get_exponent());

  // p1 is the leading 7 bits of mx, i.e.
  // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7).
  int p1 = static_cast<int>(bs.get_mantissa() >> (FPB::FRACTION_LEN - 7));

  // Set bs to (1 + (mx - p1*2^(-7))
  bs.set_uintval(bs.uintval() & (FPB::FRACTION_MASK >> 7));
  bs.set_biased_exponent(FPB::EXP_BIAS);
  // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)).
  double dx = (bs.get_val() - 1.0) * ONE_OVER_F[p1];

  // Minimax polynomial of log(1 + dx) generated by Sollya with:
  // > P = fpminimax(log(1 + x)/x, 6, [|D...|], [0, 2^-7]);
  const double COEFFS[6] = {-0x1.ffffffffffffcp-2, 0x1.5555555552ddep-2,
                            -0x1.ffffffefe562dp-3, 0x1.9999817d3a50fp-3,
                            -0x1.554317b3f67a5p-3, 0x1.1dc5c45e09c18p-3};
  double dx2 = dx * dx;
  double c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]);
  double c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]);
  double c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]);

  double p = fputil::polyeval(dx2, dx, c1, c2, c3);
  double result =
      fputil::multiply_add(ex, /*log(2)*/ 0x1.62e42fefa39efp-1, LOG_F[p1] + p);
  return result;
}

// Rounding tests for 2^hi * (mid + lo) when the output might be denormal. We
// assume further that 1 <= mid < 2, mid + lo < 2, and |lo| << mid.
// Notice that, if 0 < x < 2^-1022,
//   double(2^-1022 + x) - 2^-1022 = double(x).
// So if we scale x up by 2^1022, we can use
//   double(1.0 + 2^1022 * x) - 1.0 to test how x is rounded in denormal range.
LIBC_INLINE cpp::optional<double> ziv_test_denorm(int hi, double mid, double lo,
                                                  double err) {
  using FPBits = typename fputil::FPBits<double>;

  // Scaling factor = 1/(min normal number) = 2^1022
  int64_t exp_hi = static_cast<int64_t>(hi + 1022) << FPBits::FRACTION_LEN;
  double mid_hi = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(mid));
  double lo_scaled =
      (lo != 0.0) ? cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(lo))
                  : 0.0;

  double extra_factor = 0.0;
  uint64_t scale_down = 0x3FE0'0000'0000'0000; // 1022 in the exponent field.

  // Result is denormal if (mid_hi + lo_scale < 1.0).
  if ((1.0 - mid_hi) > lo_scaled) {
    // Extra rounding step is needed, which adds more rounding errors.
    err += 0x1.0p-52;
    extra_factor = 1.0;
    scale_down = 0x3FF0'0000'0000'0000; // 1023 in the exponent field.
  }

  double err_scaled =
      cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(err));

  double lo_u = lo_scaled + err_scaled;
  double lo_l = lo_scaled - err_scaled;

  // By adding 1.0, the results will have similar rounding points as denormal
  // outputs.
  double upper = extra_factor + (mid_hi + lo_u);
  double lower = extra_factor + (mid_hi + lo_l);

  if (LIBC_LIKELY(upper == lower)) {
    return cpp::bit_cast<double>(cpp::bit_cast<uint64_t>(upper) - scale_down);
  }

  return cpp::nullopt;
}

} // namespace LIBC_NAMESPACE

#endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H