aboutsummaryrefslogtreecommitdiff
path: root/src/yuv_buffer.cc
blob: efb8016c29341bb5ab7282a8919feb56fa03a693 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/yuv_buffer.h"

#include <cassert>
#include <cstddef>
#include <new>

#include "src/frame_buffer_utils.h"
#include "src/utils/common.h"
#include "src/utils/compiler_attributes.h"
#include "src/utils/logging.h"

namespace libgav1 {

// Size conventions:
// * Widths, heights, and border sizes are in pixels.
// * Strides and plane sizes are in bytes.
//
// YuvBuffer objects may be reused through the BufferPool. Realloc() must
// assume that data members (except buffer_alloc_ and buffer_alloc_size_) may
// contain stale values from the previous use, and must set all data members
// from scratch. In particular, Realloc() must not rely on the initial values
// of data members set by the YuvBuffer constructor.
bool YuvBuffer::Realloc(int bitdepth, bool is_monochrome, int width, int height,
                        int8_t subsampling_x, int8_t subsampling_y,
                        int left_border, int right_border, int top_border,
                        int bottom_border,
                        GetFrameBufferCallback get_frame_buffer,
                        void* callback_private_data,
                        void** buffer_private_data) {
  // Only support allocating buffers that have borders that are a multiple of
  // 2. The border restriction is required because we may subsample the
  // borders in the chroma planes.
  if (((left_border | right_border | top_border | bottom_border) & 1) != 0) {
    LIBGAV1_DLOG(ERROR,
                 "Borders must be a multiple of 2: left_border = %d, "
                 "right_border = %d, top_border = %d, bottom_border = %d.",
                 left_border, right_border, top_border, bottom_border);
    return false;
  }

  // Every row in the plane buffers needs to be kFrameBufferRowAlignment-byte
  // aligned. Since the strides are multiples of kFrameBufferRowAlignment bytes,
  // it suffices to just make the plane buffers kFrameBufferRowAlignment-byte
  // aligned.
  const int plane_align = kFrameBufferRowAlignment;
  const int uv_width =
      is_monochrome ? 0 : SubsampledValue(width, subsampling_x);
  const int uv_height =
      is_monochrome ? 0 : SubsampledValue(height, subsampling_y);
  const int uv_left_border = is_monochrome ? 0 : left_border >> subsampling_x;
  const int uv_right_border = is_monochrome ? 0 : right_border >> subsampling_x;
  const int uv_top_border = is_monochrome ? 0 : top_border >> subsampling_y;
  const int uv_bottom_border =
      is_monochrome ? 0 : bottom_border >> subsampling_y;

  if (get_frame_buffer != nullptr) {
    assert(buffer_private_data != nullptr);

    const Libgav1ImageFormat image_format =
        ComposeImageFormat(is_monochrome, subsampling_x, subsampling_y);
    FrameBuffer frame_buffer;
    if (get_frame_buffer(callback_private_data, bitdepth, image_format, width,
                         height, left_border, right_border, top_border,
                         bottom_border, kFrameBufferRowAlignment,
                         &frame_buffer) != kStatusOk) {
      return false;
    }

    if (frame_buffer.plane[0] == nullptr ||
        (!is_monochrome && frame_buffer.plane[1] == nullptr) ||
        (!is_monochrome && frame_buffer.plane[2] == nullptr)) {
      assert(false && "The get_frame_buffer callback malfunctioned.");
      LIBGAV1_DLOG(ERROR, "The get_frame_buffer callback malfunctioned.");
      return false;
    }

    stride_[kPlaneY] = frame_buffer.stride[0];
    stride_[kPlaneU] = frame_buffer.stride[1];
    stride_[kPlaneV] = frame_buffer.stride[2];
    buffer_[kPlaneY] = frame_buffer.plane[0];
    buffer_[kPlaneU] = frame_buffer.plane[1];
    buffer_[kPlaneV] = frame_buffer.plane[2];
    *buffer_private_data = frame_buffer.private_data;
  } else {
    assert(callback_private_data == nullptr);
    assert(buffer_private_data == nullptr);

    // Calculate y_stride (in bytes). It is padded to a multiple of
    // kFrameBufferRowAlignment bytes.
    int y_stride = width + left_border + right_border;
#if LIBGAV1_MAX_BITDEPTH >= 10
    if (bitdepth > 8) y_stride *= sizeof(uint16_t);
#endif
    y_stride = Align(y_stride, kFrameBufferRowAlignment);
    // Size of the Y plane in bytes.
    const uint64_t y_plane_size = (height + top_border + bottom_border) *
                                      static_cast<uint64_t>(y_stride) +
                                  (plane_align - 1);

    // Calculate uv_stride (in bytes). It is padded to a multiple of
    // kFrameBufferRowAlignment bytes.
    int uv_stride = uv_width + uv_left_border + uv_right_border;
#if LIBGAV1_MAX_BITDEPTH >= 10
    if (bitdepth > 8) uv_stride *= sizeof(uint16_t);
#endif
    uv_stride = Align(uv_stride, kFrameBufferRowAlignment);
    // Size of the U or V plane in bytes.
    const uint64_t uv_plane_size =
        is_monochrome ? 0
                      : (uv_height + uv_top_border + uv_bottom_border) *
                                static_cast<uint64_t>(uv_stride) +
                            (plane_align - 1);

    // Allocate unaligned y_buffer, u_buffer, and v_buffer.
    uint8_t* y_buffer = nullptr;
    uint8_t* u_buffer = nullptr;
    uint8_t* v_buffer = nullptr;

    const uint64_t frame_size = y_plane_size + 2 * uv_plane_size;
    if (frame_size > buffer_alloc_size_) {
      // Allocation to hold larger frame, or first allocation.
      if (frame_size != static_cast<size_t>(frame_size)) return false;

      buffer_alloc_.reset(new (std::nothrow)
                              uint8_t[static_cast<size_t>(frame_size)]);
      if (buffer_alloc_ == nullptr) {
        buffer_alloc_size_ = 0;
        return false;
      }

      buffer_alloc_size_ = static_cast<size_t>(frame_size);
    }

    y_buffer = buffer_alloc_.get();
    if (!is_monochrome) {
      u_buffer = y_buffer + y_plane_size;
      v_buffer = u_buffer + uv_plane_size;
    }

    stride_[kPlaneY] = y_stride;
    stride_[kPlaneU] = stride_[kPlaneV] = uv_stride;

    int left_border_bytes = left_border;
    int uv_left_border_bytes = uv_left_border;
#if LIBGAV1_MAX_BITDEPTH >= 10
    if (bitdepth > 8) {
      left_border_bytes *= sizeof(uint16_t);
      uv_left_border_bytes *= sizeof(uint16_t);
    }
#endif
    buffer_[kPlaneY] = AlignAddr(
        y_buffer + (top_border * y_stride) + left_border_bytes, plane_align);
    buffer_[kPlaneU] =
        AlignAddr(u_buffer + (uv_top_border * uv_stride) + uv_left_border_bytes,
                  plane_align);
    buffer_[kPlaneV] =
        AlignAddr(v_buffer + (uv_top_border * uv_stride) + uv_left_border_bytes,
                  plane_align);
  }

  y_width_ = width;
  y_height_ = height;
  left_border_[kPlaneY] = left_border;
  right_border_[kPlaneY] = right_border;
  top_border_[kPlaneY] = top_border;
  bottom_border_[kPlaneY] = bottom_border;

  uv_width_ = uv_width;
  uv_height_ = uv_height;
  left_border_[kPlaneU] = left_border_[kPlaneV] = uv_left_border;
  right_border_[kPlaneU] = right_border_[kPlaneV] = uv_right_border;
  top_border_[kPlaneU] = top_border_[kPlaneV] = uv_top_border;
  bottom_border_[kPlaneU] = bottom_border_[kPlaneV] = uv_bottom_border;

  subsampling_x_ = subsampling_x;
  subsampling_y_ = subsampling_y;

  bitdepth_ = bitdepth;
  is_monochrome_ = is_monochrome;
  assert(!is_monochrome || stride_[kPlaneU] == 0);
  assert(!is_monochrome || stride_[kPlaneV] == 0);
  assert(!is_monochrome || buffer_[kPlaneU] == nullptr);
  assert(!is_monochrome || buffer_[kPlaneV] == nullptr);

#if LIBGAV1_MSAN
  const int pixel_size = (bitdepth == 8) ? sizeof(uint8_t) : sizeof(uint16_t);
  int width_in_bytes = width * pixel_size;
  // The optimized loop restoration code will overread the visible frame buffer
  // into the right border. The optimized cfl subsambler uses the right border
  // as well. Initialize the right border and padding to prevent msan warnings.
  int right_border_size_in_bytes = right_border * pixel_size;
  // Calculate the padding bytes for the buffer. Note: The stride of the buffer
  // is always a multiple of 16. (see yuv_buffer.h)
  const int right_padding_in_bytes =
      stride_[kPlaneY] - (pixel_size * (width + left_border + right_border));
  const int padded_right_border_size =
      right_border_size_in_bytes + right_padding_in_bytes;
  constexpr uint8_t right_val = 0x55;
  uint8_t* rb = buffer_[kPlaneY] + width_in_bytes;
  for (int i = 0; i < height + bottom_border; ++i) {
    memset(rb, right_val, padded_right_border_size);
    rb += stride_[kPlaneY];
  }
  if (!is_monochrome) {
    int uv_width_in_bytes = uv_width * pixel_size;
    int uv_right_border_size_in_bytes = uv_right_border * pixel_size;
    const int u_right_padding_in_bytes =
        stride_[kPlaneU] -
        (pixel_size * (uv_width + uv_left_border + uv_right_border));
    const int u_padded_right_border_size =
        uv_right_border_size_in_bytes + u_right_padding_in_bytes;
    rb = buffer_[kPlaneU] + uv_width_in_bytes;
    for (int i = 0; i < uv_height; ++i) {
      memset(rb, right_val, u_padded_right_border_size);
      rb += stride_[kPlaneU];
    }
    const int v_right_padding_in_bytes =
        stride_[kPlaneV] -
        ((uv_width + uv_left_border + uv_right_border) * pixel_size);
    const int v_padded_right_border_size =
        uv_right_border_size_in_bytes + v_right_padding_in_bytes;
    rb = buffer_[kPlaneV] + uv_width_in_bytes;
    for (int i = 0; i < uv_height; ++i) {
      memset(rb, right_val, v_padded_right_border_size);
      rb += stride_[kPlaneV];
    }
  }

  // The optimized cfl subsampler will overread (to the right of the current
  // block) into the uninitialized visible area. The cfl subsampler can overread
  // into the bottom border as well. Initialize the both to quiet msan warnings.
  uint8_t* y_visible = buffer_[kPlaneY];
  for (int i = 0; i < height + bottom_border; ++i) {
    memset(y_visible, right_val, width_in_bytes);
    y_visible += stride_[kPlaneY];
  }
#endif

  return true;
}

}  // namespace libgav1