aboutsummaryrefslogtreecommitdiff
path: root/src/share/classes/com/sun/tools/javac/comp/Attr.java
blob: a88b6a0f9d347ce1cc6bb0c55bd37ce88bd9d790 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
/*
 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.tools.javac.comp;

import java.util.*;

import javax.lang.model.element.ElementKind;
import javax.tools.JavaFileObject;

import com.sun.source.tree.IdentifierTree;
import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
import com.sun.source.tree.MemberSelectTree;
import com.sun.source.tree.TreeVisitor;
import com.sun.source.util.SimpleTreeVisitor;
import com.sun.tools.javac.code.*;
import com.sun.tools.javac.code.Lint.LintCategory;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.comp.Check.CheckContext;
import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
import com.sun.tools.javac.comp.Infer.InferenceContext;
import com.sun.tools.javac.comp.Infer.FreeTypeListener;
import com.sun.tools.javac.jvm.*;
import com.sun.tools.javac.tree.*;
import com.sun.tools.javac.tree.JCTree.*;
import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
import com.sun.tools.javac.util.*;
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
import com.sun.tools.javac.util.List;
import static com.sun.tools.javac.code.Flags.*;
import static com.sun.tools.javac.code.Flags.ANNOTATION;
import static com.sun.tools.javac.code.Flags.BLOCK;
import static com.sun.tools.javac.code.Kinds.*;
import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
import static com.sun.tools.javac.code.TypeTag.*;
import static com.sun.tools.javac.code.TypeTag.WILDCARD;
import static com.sun.tools.javac.tree.JCTree.Tag.*;

/** This is the main context-dependent analysis phase in GJC. It
 *  encompasses name resolution, type checking and constant folding as
 *  subtasks. Some subtasks involve auxiliary classes.
 *  @see Check
 *  @see Resolve
 *  @see ConstFold
 *  @see Infer
 *
 *  <p><b>This is NOT part of any supported API.
 *  If you write code that depends on this, you do so at your own risk.
 *  This code and its internal interfaces are subject to change or
 *  deletion without notice.</b>
 */
public class Attr extends JCTree.Visitor {
    protected static final Context.Key<Attr> attrKey =
        new Context.Key<Attr>();

    final Names names;
    final Log log;
    final Symtab syms;
    final Resolve rs;
    final Infer infer;
    final DeferredAttr deferredAttr;
    final Check chk;
    final Flow flow;
    final MemberEnter memberEnter;
    final TreeMaker make;
    final ConstFold cfolder;
    final Enter enter;
    final Target target;
    final Types types;
    final JCDiagnostic.Factory diags;
    final Annotate annotate;
    final TypeAnnotations typeAnnotations;
    final DeferredLintHandler deferredLintHandler;
    final TypeEnvs typeEnvs;

    public static Attr instance(Context context) {
        Attr instance = context.get(attrKey);
        if (instance == null)
            instance = new Attr(context);
        return instance;
    }

    protected Attr(Context context) {
        context.put(attrKey, this);

        names = Names.instance(context);
        log = Log.instance(context);
        syms = Symtab.instance(context);
        rs = Resolve.instance(context);
        chk = Check.instance(context);
        flow = Flow.instance(context);
        memberEnter = MemberEnter.instance(context);
        make = TreeMaker.instance(context);
        enter = Enter.instance(context);
        infer = Infer.instance(context);
        deferredAttr = DeferredAttr.instance(context);
        cfolder = ConstFold.instance(context);
        target = Target.instance(context);
        types = Types.instance(context);
        diags = JCDiagnostic.Factory.instance(context);
        annotate = Annotate.instance(context);
        typeAnnotations = TypeAnnotations.instance(context);
        deferredLintHandler = DeferredLintHandler.instance(context);
        typeEnvs = TypeEnvs.instance(context);

        Options options = Options.instance(context);

        Source source = Source.instance(context);
        allowGenerics = source.allowGenerics();
        allowVarargs = source.allowVarargs();
        allowEnums = source.allowEnums();
        allowBoxing = source.allowBoxing();
        allowCovariantReturns = source.allowCovariantReturns();
        allowAnonOuterThis = source.allowAnonOuterThis();
        allowStringsInSwitch = source.allowStringsInSwitch();
        allowPoly = source.allowPoly();
        allowTypeAnnos = source.allowTypeAnnotations();
        allowLambda = source.allowLambda();
        allowDefaultMethods = source.allowDefaultMethods();
        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
        sourceName = source.name;
        relax = (options.isSet("-retrofit") ||
                 options.isSet("-relax"));
        findDiamonds = options.get("findDiamond") != null &&
                 source.allowDiamond();
        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
        identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);

        statInfo = new ResultInfo(NIL, Type.noType);
        varInfo = new ResultInfo(VAR, Type.noType);
        unknownExprInfo = new ResultInfo(VAL, Type.noType);
        unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
        unknownTypeInfo = new ResultInfo(TYP, Type.noType);
        unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);

        noCheckTree = make.at(-1).Skip();
    }

    /** Switch: relax some constraints for retrofit mode.
     */
    boolean relax;

    /** Switch: support target-typing inference
     */
    boolean allowPoly;

    /** Switch: support type annotations.
     */
    boolean allowTypeAnnos;

    /** Switch: support generics?
     */
    boolean allowGenerics;

    /** Switch: allow variable-arity methods.
     */
    boolean allowVarargs;

    /** Switch: support enums?
     */
    boolean allowEnums;

    /** Switch: support boxing and unboxing?
     */
    boolean allowBoxing;

    /** Switch: support covariant result types?
     */
    boolean allowCovariantReturns;

    /** Switch: support lambda expressions ?
     */
    boolean allowLambda;

    /** Switch: support default methods ?
     */
    boolean allowDefaultMethods;

    /** Switch: static interface methods enabled?
     */
    boolean allowStaticInterfaceMethods;

    /** Switch: allow references to surrounding object from anonymous
     * objects during constructor call?
     */
    boolean allowAnonOuterThis;

    /** Switch: generates a warning if diamond can be safely applied
     *  to a given new expression
     */
    boolean findDiamonds;

    /**
     * Internally enables/disables diamond finder feature
     */
    static final boolean allowDiamondFinder = true;

    /**
     * Switch: warn about use of variable before declaration?
     * RFE: 6425594
     */
    boolean useBeforeDeclarationWarning;

    /**
     * Switch: generate warnings whenever an anonymous inner class that is convertible
     * to a lambda expression is found
     */
    boolean identifyLambdaCandidate;

    /**
     * Switch: allow strings in switch?
     */
    boolean allowStringsInSwitch;

    /**
     * Switch: name of source level; used for error reporting.
     */
    String sourceName;

    /** Check kind and type of given tree against protokind and prototype.
     *  If check succeeds, store type in tree and return it.
     *  If check fails, store errType in tree and return it.
     *  No checks are performed if the prototype is a method type.
     *  It is not necessary in this case since we know that kind and type
     *  are correct.
     *
     *  @param tree     The tree whose kind and type is checked
     *  @param ownkind  The computed kind of the tree
     *  @param resultInfo  The expected result of the tree
     */
    Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
        Type owntype;
        boolean shouldCheck = !found.hasTag(ERROR) &&
                !resultInfo.pt.hasTag(METHOD) &&
                !resultInfo.pt.hasTag(FORALL);
        if (shouldCheck && (ownkind & ~resultInfo.pkind) != 0) {
            log.error(tree.pos(), "unexpected.type",
                        kindNames(resultInfo.pkind),
                        kindName(ownkind));
            owntype = types.createErrorType(found);
        } else if (allowPoly && inferenceContext.free(found)) {
            //delay the check if there are inference variables in the found type
            //this means we are dealing with a partially inferred poly expression
            owntype = shouldCheck ? resultInfo.pt : found;
            inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
                    @Override
                    public void typesInferred(InferenceContext inferenceContext) {
                        ResultInfo pendingResult =
                                resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
                        check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
                    }
            });
        } else {
            owntype = shouldCheck ?
            resultInfo.check(tree, found) :
            found;
        }
        if (tree != noCheckTree) {
            tree.type = owntype;
        }
        return owntype;
    }

    /** Is given blank final variable assignable, i.e. in a scope where it
     *  may be assigned to even though it is final?
     *  @param v      The blank final variable.
     *  @param env    The current environment.
     */
    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
        Symbol owner = env.info.scope.owner;
           // owner refers to the innermost variable, method or
           // initializer block declaration at this point.
        return
            v.owner == owner
            ||
            ((owner.name == names.init ||    // i.e. we are in a constructor
              owner.kind == VAR ||           // i.e. we are in a variable initializer
              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
             &&
             v.owner == owner.owner
             &&
             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
    }

    /** Check that variable can be assigned to.
     *  @param pos    The current source code position.
     *  @param v      The assigned varaible
     *  @param base   If the variable is referred to in a Select, the part
     *                to the left of the `.', null otherwise.
     *  @param env    The current environment.
     */
    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
        if ((v.flags() & FINAL) != 0 &&
            ((v.flags() & HASINIT) != 0
             ||
             !((base == null ||
               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
               isAssignableAsBlankFinal(v, env)))) {
            if (v.isResourceVariable()) { //TWR resource
                log.error(pos, "try.resource.may.not.be.assigned", v);
            } else {
                log.error(pos, "cant.assign.val.to.final.var", v);
            }
        }
    }

    /** Does tree represent a static reference to an identifier?
     *  It is assumed that tree is either a SELECT or an IDENT.
     *  We have to weed out selects from non-type names here.
     *  @param tree    The candidate tree.
     */
    boolean isStaticReference(JCTree tree) {
        if (tree.hasTag(SELECT)) {
            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
            if (lsym == null || lsym.kind != TYP) {
                return false;
            }
        }
        return true;
    }

    /** Is this symbol a type?
     */
    static boolean isType(Symbol sym) {
        return sym != null && sym.kind == TYP;
    }

    /** The current `this' symbol.
     *  @param env    The current environment.
     */
    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
    }

    /** Attribute a parsed identifier.
     * @param tree Parsed identifier name
     * @param topLevel The toplevel to use
     */
    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
                                           syms.errSymbol.name,
                                           null, null, null, null);
        localEnv.enclClass.sym = syms.errSymbol;
        return tree.accept(identAttributer, localEnv);
    }
    // where
        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
            @Override
            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
                Symbol site = visit(node.getExpression(), env);
                if (site.kind == ERR || site.kind == ABSENT_TYP)
                    return site;
                Name name = (Name)node.getIdentifier();
                if (site.kind == PCK) {
                    env.toplevel.packge = (PackageSymbol)site;
                    return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
                } else {
                    env.enclClass.sym = (ClassSymbol)site;
                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
                }
            }

            @Override
            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
                return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
            }
        }

    public Type coerce(Type etype, Type ttype) {
        return cfolder.coerce(etype, ttype);
    }

    public Type attribType(JCTree node, TypeSymbol sym) {
        Env<AttrContext> env = typeEnvs.get(sym);
        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
        return attribTree(node, localEnv, unknownTypeInfo);
    }

    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
        // Attribute qualifying package or class.
        JCFieldAccess s = (JCFieldAccess)tree.qualid;
        return attribTree(s.selected,
                       env,
                       new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
                       Type.noType));
    }

    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
        breakTree = tree;
        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
        try {
            attribExpr(expr, env);
        } catch (BreakAttr b) {
            return b.env;
        } catch (AssertionError ae) {
            if (ae.getCause() instanceof BreakAttr) {
                return ((BreakAttr)(ae.getCause())).env;
            } else {
                throw ae;
            }
        } finally {
            breakTree = null;
            log.useSource(prev);
        }
        return env;
    }

    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
        breakTree = tree;
        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
        try {
            attribStat(stmt, env);
        } catch (BreakAttr b) {
            return b.env;
        } catch (AssertionError ae) {
            if (ae.getCause() instanceof BreakAttr) {
                return ((BreakAttr)(ae.getCause())).env;
            } else {
                throw ae;
            }
        } finally {
            breakTree = null;
            log.useSource(prev);
        }
        return env;
    }

    private JCTree breakTree = null;

    private static class BreakAttr extends RuntimeException {
        static final long serialVersionUID = -6924771130405446405L;
        private Env<AttrContext> env;
        private BreakAttr(Env<AttrContext> env) {
            this.env = env;
        }
    }

    class ResultInfo {
        final int pkind;
        final Type pt;
        final CheckContext checkContext;

        ResultInfo(int pkind, Type pt) {
            this(pkind, pt, chk.basicHandler);
        }

        protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
            this.pkind = pkind;
            this.pt = pt;
            this.checkContext = checkContext;
        }

        protected Type check(final DiagnosticPosition pos, final Type found) {
            return chk.checkType(pos, found, pt, checkContext);
        }

        protected ResultInfo dup(Type newPt) {
            return new ResultInfo(pkind, newPt, checkContext);
        }

        protected ResultInfo dup(CheckContext newContext) {
            return new ResultInfo(pkind, pt, newContext);
        }

        protected ResultInfo dup(Type newPt, CheckContext newContext) {
            return new ResultInfo(pkind, newPt, newContext);
        }

        @Override
        public String toString() {
            if (pt != null) {
                return pt.toString();
            } else {
                return "";
            }
        }
    }

    class RecoveryInfo extends ResultInfo {

        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
            super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
                @Override
                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
                    return deferredAttrContext;
                }
                @Override
                public boolean compatible(Type found, Type req, Warner warn) {
                    return true;
                }
                @Override
                public void report(DiagnosticPosition pos, JCDiagnostic details) {
                    chk.basicHandler.report(pos, details);
                }
            });
        }
    }

    final ResultInfo statInfo;
    final ResultInfo varInfo;
    final ResultInfo unknownAnyPolyInfo;
    final ResultInfo unknownExprInfo;
    final ResultInfo unknownTypeInfo;
    final ResultInfo unknownTypeExprInfo;
    final ResultInfo recoveryInfo;

    Type pt() {
        return resultInfo.pt;
    }

    int pkind() {
        return resultInfo.pkind;
    }

/* ************************************************************************
 * Visitor methods
 *************************************************************************/

    /** Visitor argument: the current environment.
     */
    Env<AttrContext> env;

    /** Visitor argument: the currently expected attribution result.
     */
    ResultInfo resultInfo;

    /** Visitor result: the computed type.
     */
    Type result;

    /** Synthetic tree to be used during 'fake' checks.
     */
    JCTree noCheckTree;

    /** Visitor method: attribute a tree, catching any completion failure
     *  exceptions. Return the tree's type.
     *
     *  @param tree    The tree to be visited.
     *  @param env     The environment visitor argument.
     *  @param resultInfo   The result info visitor argument.
     */
    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
        Env<AttrContext> prevEnv = this.env;
        ResultInfo prevResult = this.resultInfo;
        try {
            this.env = env;
            this.resultInfo = resultInfo;
            tree.accept(this);
            if (tree == breakTree &&
                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
                throw new BreakAttr(copyEnv(env));
            }
            return result;
        } catch (CompletionFailure ex) {
            tree.type = syms.errType;
            return chk.completionError(tree.pos(), ex);
        } finally {
            this.env = prevEnv;
            this.resultInfo = prevResult;
        }
    }

    Env<AttrContext> copyEnv(Env<AttrContext> env) {
        Env<AttrContext> newEnv =
                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
        if (newEnv.outer != null) {
            newEnv.outer = copyEnv(newEnv.outer);
        }
        return newEnv;
    }

    Scope copyScope(Scope sc) {
        Scope newScope = new Scope(sc.owner);
        List<Symbol> elemsList = List.nil();
        while (sc != null) {
            for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
                elemsList = elemsList.prepend(e.sym);
            }
            sc = sc.next;
        }
        for (Symbol s : elemsList) {
            newScope.enter(s);
        }
        return newScope;
    }

    /** Derived visitor method: attribute an expression tree.
     */
    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
        return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
    }

    /** Derived visitor method: attribute an expression tree with
     *  no constraints on the computed type.
     */
    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
        return attribTree(tree, env, unknownExprInfo);
    }

    /** Derived visitor method: attribute a type tree.
     */
    public Type attribType(JCTree tree, Env<AttrContext> env) {
        Type result = attribType(tree, env, Type.noType);
        return result;
    }

    /** Derived visitor method: attribute a type tree.
     */
    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
        Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
        return result;
    }

    /** Derived visitor method: attribute a statement or definition tree.
     */
    public Type attribStat(JCTree tree, Env<AttrContext> env) {
        return attribTree(tree, env, statInfo);
    }

    /** Attribute a list of expressions, returning a list of types.
     */
    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
        ListBuffer<Type> ts = new ListBuffer<Type>();
        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
            ts.append(attribExpr(l.head, env, pt));
        return ts.toList();
    }

    /** Attribute a list of statements, returning nothing.
     */
    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
            attribStat(l.head, env);
    }

    /** Attribute the arguments in a method call, returning the method kind.
     */
    int attribArgs(int initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
        int kind = initialKind;
        for (JCExpression arg : trees) {
            Type argtype;
            if (allowPoly && deferredAttr.isDeferred(env, arg)) {
                argtype = deferredAttr.new DeferredType(arg, env);
                kind |= POLY;
            } else {
                argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
            }
            argtypes.append(argtype);
        }
        return kind;
    }

    /** Attribute a type argument list, returning a list of types.
     *  Caller is responsible for calling checkRefTypes.
     */
    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
        ListBuffer<Type> argtypes = new ListBuffer<Type>();
        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
            argtypes.append(attribType(l.head, env));
        return argtypes.toList();
    }

    /** Attribute a type argument list, returning a list of types.
     *  Check that all the types are references.
     */
    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
        List<Type> types = attribAnyTypes(trees, env);
        return chk.checkRefTypes(trees, types);
    }

    /**
     * Attribute type variables (of generic classes or methods).
     * Compound types are attributed later in attribBounds.
     * @param typarams the type variables to enter
     * @param env      the current environment
     */
    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
        for (JCTypeParameter tvar : typarams) {
            TypeVar a = (TypeVar)tvar.type;
            a.tsym.flags_field |= UNATTRIBUTED;
            a.bound = Type.noType;
            if (!tvar.bounds.isEmpty()) {
                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
                for (JCExpression bound : tvar.bounds.tail)
                    bounds = bounds.prepend(attribType(bound, env));
                types.setBounds(a, bounds.reverse());
            } else {
                // if no bounds are given, assume a single bound of
                // java.lang.Object.
                types.setBounds(a, List.of(syms.objectType));
            }
            a.tsym.flags_field &= ~UNATTRIBUTED;
        }
        for (JCTypeParameter tvar : typarams) {
            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
        }
    }

    /**
     * Attribute the type references in a list of annotations.
     */
    void attribAnnotationTypes(List<JCAnnotation> annotations,
                               Env<AttrContext> env) {
        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
            JCAnnotation a = al.head;
            attribType(a.annotationType, env);
        }
    }

    /**
     * Attribute a "lazy constant value".
     *  @param env         The env for the const value
     *  @param initializer The initializer for the const value
     *  @param type        The expected type, or null
     *  @see VarSymbol#setLazyConstValue
     */
    public Object attribLazyConstantValue(Env<AttrContext> env,
                                      JCVariableDecl variable,
                                      Type type) {

        DiagnosticPosition prevLintPos
                = deferredLintHandler.setPos(variable.pos());

        try {
            // Use null as symbol to not attach the type annotation to any symbol.
            // The initializer will later also be visited and then we'll attach
            // to the symbol.
            // This prevents having multiple type annotations, just because of
            // lazy constant value evaluation.
            memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
            annotate.flush();
            Type itype = attribExpr(variable.init, env, type);
            if (itype.constValue() != null) {
                return coerce(itype, type).constValue();
            } else {
                return null;
            }
        } finally {
            deferredLintHandler.setPos(prevLintPos);
        }
    }

    /** Attribute type reference in an `extends' or `implements' clause.
     *  Supertypes of anonymous inner classes are usually already attributed.
     *
     *  @param tree              The tree making up the type reference.
     *  @param env               The environment current at the reference.
     *  @param classExpected     true if only a class is expected here.
     *  @param interfaceExpected true if only an interface is expected here.
     */
    Type attribBase(JCTree tree,
                    Env<AttrContext> env,
                    boolean classExpected,
                    boolean interfaceExpected,
                    boolean checkExtensible) {
        Type t = tree.type != null ?
            tree.type :
            attribType(tree, env);
        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
    }
    Type checkBase(Type t,
                   JCTree tree,
                   Env<AttrContext> env,
                   boolean classExpected,
                   boolean interfaceExpected,
                   boolean checkExtensible) {
        if (t.tsym.isAnonymous()) {
            log.error(tree.pos(), "cant.inherit.from.anon");
            return types.createErrorType(t);
        }
        if (t.isErroneous())
            return t;
        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
            // check that type variable is already visible
            if (t.getUpperBound() == null) {
                log.error(tree.pos(), "illegal.forward.ref");
                return types.createErrorType(t);
            }
        } else {
            t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
        }
        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
            log.error(tree.pos(), "intf.expected.here");
            // return errType is necessary since otherwise there might
            // be undetected cycles which cause attribution to loop
            return types.createErrorType(t);
        } else if (checkExtensible &&
                   classExpected &&
                   (t.tsym.flags() & INTERFACE) != 0) {
            log.error(tree.pos(), "no.intf.expected.here");
            return types.createErrorType(t);
        }
        if (checkExtensible &&
            ((t.tsym.flags() & FINAL) != 0)) {
            log.error(tree.pos(),
                      "cant.inherit.from.final", t.tsym);
        }
        chk.checkNonCyclic(tree.pos(), t);
        return t;
    }

    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
        id.type = env.info.scope.owner.type;
        id.sym = env.info.scope.owner;
        return id.type;
    }

    public void visitClassDef(JCClassDecl tree) {
        // Local and anonymous classes have not been entered yet, so we need to
        // do it now.
        if ((env.info.scope.owner.kind & (VAR | MTH)) != 0) {
            enter.classEnter(tree, env);
        } else {
            // If this class declaration is part of a class level annotation,
            // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
            // order to simplify later steps and allow for sensible error
            // messages.
            if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
                enter.classEnter(tree, env);
        }

        ClassSymbol c = tree.sym;
        if (c == null) {
            // exit in case something drastic went wrong during enter.
            result = null;
        } else {
            // make sure class has been completed:
            c.complete();

            // If this class appears as an anonymous class
            // in a superclass constructor call where
            // no explicit outer instance is given,
            // disable implicit outer instance from being passed.
            // (This would be an illegal access to "this before super").
            if (env.info.isSelfCall &&
                env.tree.hasTag(NEWCLASS) &&
                ((JCNewClass) env.tree).encl == null)
            {
                c.flags_field |= NOOUTERTHIS;
            }
            attribClass(tree.pos(), c);
            result = tree.type = c.type;
        }
    }

    public void visitMethodDef(JCMethodDecl tree) {
        MethodSymbol m = tree.sym;
        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;

        Lint lint = env.info.lint.augment(m);
        Lint prevLint = chk.setLint(lint);
        MethodSymbol prevMethod = chk.setMethod(m);
        try {
            deferredLintHandler.flush(tree.pos());
            chk.checkDeprecatedAnnotation(tree.pos(), m);


            // Create a new environment with local scope
            // for attributing the method.
            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
            localEnv.info.lint = lint;

            attribStats(tree.typarams, localEnv);

            // If we override any other methods, check that we do so properly.
            // JLS ???
            if (m.isStatic()) {
                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
            } else {
                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
            }
            chk.checkOverride(tree, m);

            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
                log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
            }

            // Enter all type parameters into the local method scope.
            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);

            ClassSymbol owner = env.enclClass.sym;
            if ((owner.flags() & ANNOTATION) != 0 &&
                tree.params.nonEmpty())
                log.error(tree.params.head.pos(),
                          "intf.annotation.members.cant.have.params");

            // Attribute all value parameters.
            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
                attribStat(l.head, localEnv);
            }

            chk.checkVarargsMethodDecl(localEnv, tree);

            // Check that type parameters are well-formed.
            chk.validate(tree.typarams, localEnv);

            // Check that result type is well-formed.
            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
                chk.validate(tree.restype, localEnv);

            // Check that receiver type is well-formed.
            if (tree.recvparam != null) {
                // Use a new environment to check the receiver parameter.
                // Otherwise I get "might not have been initialized" errors.
                // Is there a better way?
                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
                attribType(tree.recvparam, newEnv);
                chk.validate(tree.recvparam, newEnv);
            }

            // annotation method checks
            if ((owner.flags() & ANNOTATION) != 0) {
                // annotation method cannot have throws clause
                if (tree.thrown.nonEmpty()) {
                    log.error(tree.thrown.head.pos(),
                            "throws.not.allowed.in.intf.annotation");
                }
                // annotation method cannot declare type-parameters
                if (tree.typarams.nonEmpty()) {
                    log.error(tree.typarams.head.pos(),
                            "intf.annotation.members.cant.have.type.params");
                }
                // validate annotation method's return type (could be an annotation type)
                chk.validateAnnotationType(tree.restype);
                // ensure that annotation method does not clash with members of Object/Annotation
                chk.validateAnnotationMethod(tree.pos(), m);
            }

            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);

            if (tree.body == null) {
                // Empty bodies are only allowed for
                // abstract, native, or interface methods, or for methods
                // in a retrofit signature class.
                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
                    !relax)
                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
                if (tree.defaultValue != null) {
                    if ((owner.flags() & ANNOTATION) == 0)
                        log.error(tree.pos(),
                                  "default.allowed.in.intf.annotation.member");
                }
            } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
                if ((owner.flags() & INTERFACE) != 0) {
                    log.error(tree.body.pos(), "intf.meth.cant.have.body");
                } else {
                    log.error(tree.pos(), "abstract.meth.cant.have.body");
                }
            } else if ((tree.mods.flags & NATIVE) != 0) {
                log.error(tree.pos(), "native.meth.cant.have.body");
            } else {
                // Add an implicit super() call unless an explicit call to
                // super(...) or this(...) is given
                // or we are compiling class java.lang.Object.
                if (tree.name == names.init && owner.type != syms.objectType) {
                    JCBlock body = tree.body;
                    if (body.stats.isEmpty() ||
                        !TreeInfo.isSelfCall(body.stats.head)) {
                        body.stats = body.stats.
                            prepend(memberEnter.SuperCall(make.at(body.pos),
                                                          List.<Type>nil(),
                                                          List.<JCVariableDecl>nil(),
                                                          false));
                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
                               (tree.mods.flags & GENERATEDCONSTR) == 0 &&
                               TreeInfo.isSuperCall(body.stats.head)) {
                        // enum constructors are not allowed to call super
                        // directly, so make sure there aren't any super calls
                        // in enum constructors, except in the compiler
                        // generated one.
                        log.error(tree.body.stats.head.pos(),
                                  "call.to.super.not.allowed.in.enum.ctor",
                                  env.enclClass.sym);
                    }
                }

                // Attribute all type annotations in the body
                memberEnter.typeAnnotate(tree.body, localEnv, m, null);
                annotate.flush();

                // Attribute method body.
                attribStat(tree.body, localEnv);
            }

            localEnv.info.scope.leave();
            result = tree.type = m.type;
        }
        finally {
            chk.setLint(prevLint);
            chk.setMethod(prevMethod);
        }
    }

    public void visitVarDef(JCVariableDecl tree) {
        // Local variables have not been entered yet, so we need to do it now:
        if (env.info.scope.owner.kind == MTH) {
            if (tree.sym != null) {
                // parameters have already been entered
                env.info.scope.enter(tree.sym);
            } else {
                try {
                    annotate.enterStart();
                    memberEnter.memberEnter(tree, env);
                } finally {
                    annotate.enterDone();
                }
            }
        } else {
            if (tree.init != null) {
                // Field initializer expression need to be entered.
                memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
                annotate.flush();
            }
        }

        VarSymbol v = tree.sym;
        Lint lint = env.info.lint.augment(v);
        Lint prevLint = chk.setLint(lint);

        // Check that the variable's declared type is well-formed.
        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
                (tree.sym.flags() & PARAMETER) != 0;
        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);

        try {
            v.getConstValue(); // ensure compile-time constant initializer is evaluated
            deferredLintHandler.flush(tree.pos());
            chk.checkDeprecatedAnnotation(tree.pos(), v);

            if (tree.init != null) {
                if ((v.flags_field & FINAL) == 0 ||
                    !memberEnter.needsLazyConstValue(tree.init)) {
                    // Not a compile-time constant
                    // Attribute initializer in a new environment
                    // with the declared variable as owner.
                    // Check that initializer conforms to variable's declared type.
                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
                    initEnv.info.lint = lint;
                    // In order to catch self-references, we set the variable's
                    // declaration position to maximal possible value, effectively
                    // marking the variable as undefined.
                    initEnv.info.enclVar = v;
                    attribExpr(tree.init, initEnv, v.type);
                }
            }
            result = tree.type = v.type;
        }
        finally {
            chk.setLint(prevLint);
        }
    }

    public void visitSkip(JCSkip tree) {
        result = null;
    }

    public void visitBlock(JCBlock tree) {
        if (env.info.scope.owner.kind == TYP) {
            // Block is a static or instance initializer;
            // let the owner of the environment be a freshly
            // created BLOCK-method.
            Env<AttrContext> localEnv =
                env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
            localEnv.info.scope.owner =
                new MethodSymbol(tree.flags | BLOCK |
                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
                    env.info.scope.owner);
            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;

            // Attribute all type annotations in the block
            memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
            annotate.flush();

            {
                // Store init and clinit type annotations with the ClassSymbol
                // to allow output in Gen.normalizeDefs.
                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
                if ((tree.flags & STATIC) != 0) {
                    cs.appendClassInitTypeAttributes(tas);
                } else {
                    cs.appendInitTypeAttributes(tas);
                }
            }

            attribStats(tree.stats, localEnv);
        } else {
            // Create a new local environment with a local scope.
            Env<AttrContext> localEnv =
                env.dup(tree, env.info.dup(env.info.scope.dup()));
            try {
                attribStats(tree.stats, localEnv);
            } finally {
                localEnv.info.scope.leave();
            }
        }
        result = null;
    }

    public void visitDoLoop(JCDoWhileLoop tree) {
        attribStat(tree.body, env.dup(tree));
        attribExpr(tree.cond, env, syms.booleanType);
        result = null;
    }

    public void visitWhileLoop(JCWhileLoop tree) {
        attribExpr(tree.cond, env, syms.booleanType);
        attribStat(tree.body, env.dup(tree));
        result = null;
    }

    public void visitForLoop(JCForLoop tree) {
        Env<AttrContext> loopEnv =
            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
        try {
            attribStats(tree.init, loopEnv);
            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
            loopEnv.tree = tree; // before, we were not in loop!
            attribStats(tree.step, loopEnv);
            attribStat(tree.body, loopEnv);
            result = null;
        }
        finally {
            loopEnv.info.scope.leave();
        }
    }

    public void visitForeachLoop(JCEnhancedForLoop tree) {
        Env<AttrContext> loopEnv =
            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
        try {
            //the Formal Parameter of a for-each loop is not in the scope when
            //attributing the for-each expression; we mimick this by attributing
            //the for-each expression first (against original scope).
            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
            attribStat(tree.var, loopEnv);
            chk.checkNonVoid(tree.pos(), exprType);
            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
            if (elemtype == null) {
                // or perhaps expr implements Iterable<T>?
                Type base = types.asSuper(exprType, syms.iterableType.tsym);
                if (base == null) {
                    log.error(tree.expr.pos(),
                            "foreach.not.applicable.to.type",
                            exprType,
                            diags.fragment("type.req.array.or.iterable"));
                    elemtype = types.createErrorType(exprType);
                } else {
                    List<Type> iterableParams = base.allparams();
                    elemtype = iterableParams.isEmpty()
                        ? syms.objectType
                        : types.wildUpperBound(iterableParams.head);
                }
            }
            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
            loopEnv.tree = tree; // before, we were not in loop!
            attribStat(tree.body, loopEnv);
            result = null;
        }
        finally {
            loopEnv.info.scope.leave();
        }
    }

    public void visitLabelled(JCLabeledStatement tree) {
        // Check that label is not used in an enclosing statement
        Env<AttrContext> env1 = env;
        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
            if (env1.tree.hasTag(LABELLED) &&
                ((JCLabeledStatement) env1.tree).label == tree.label) {
                log.error(tree.pos(), "label.already.in.use",
                          tree.label);
                break;
            }
            env1 = env1.next;
        }

        attribStat(tree.body, env.dup(tree));
        result = null;
    }

    public void visitSwitch(JCSwitch tree) {
        Type seltype = attribExpr(tree.selector, env);

        Env<AttrContext> switchEnv =
            env.dup(tree, env.info.dup(env.info.scope.dup()));

        try {

            boolean enumSwitch =
                allowEnums &&
                (seltype.tsym.flags() & Flags.ENUM) != 0;
            boolean stringSwitch = false;
            if (types.isSameType(seltype, syms.stringType)) {
                if (allowStringsInSwitch) {
                    stringSwitch = true;
                } else {
                    log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
                }
            }
            if (!enumSwitch && !stringSwitch)
                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);

            // Attribute all cases and
            // check that there are no duplicate case labels or default clauses.
            Set<Object> labels = new HashSet<Object>(); // The set of case labels.
            boolean hasDefault = false;      // Is there a default label?
            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
                JCCase c = l.head;
                Env<AttrContext> caseEnv =
                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
                try {
                    if (c.pat != null) {
                        if (enumSwitch) {
                            Symbol sym = enumConstant(c.pat, seltype);
                            if (sym == null) {
                                log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
                            } else if (!labels.add(sym)) {
                                log.error(c.pos(), "duplicate.case.label");
                            }
                        } else {
                            Type pattype = attribExpr(c.pat, switchEnv, seltype);
                            if (!pattype.hasTag(ERROR)) {
                                if (pattype.constValue() == null) {
                                    log.error(c.pat.pos(),
                                              (stringSwitch ? "string.const.req" : "const.expr.req"));
                                } else if (labels.contains(pattype.constValue())) {
                                    log.error(c.pos(), "duplicate.case.label");
                                } else {
                                    labels.add(pattype.constValue());
                                }
                            }
                        }
                    } else if (hasDefault) {
                        log.error(c.pos(), "duplicate.default.label");
                    } else {
                        hasDefault = true;
                    }
                    attribStats(c.stats, caseEnv);
                } finally {
                    caseEnv.info.scope.leave();
                    addVars(c.stats, switchEnv.info.scope);
                }
            }

            result = null;
        }
        finally {
            switchEnv.info.scope.leave();
        }
    }
    // where
        /** Add any variables defined in stats to the switch scope. */
        private static void addVars(List<JCStatement> stats, Scope switchScope) {
            for (;stats.nonEmpty(); stats = stats.tail) {
                JCTree stat = stats.head;
                if (stat.hasTag(VARDEF))
                    switchScope.enter(((JCVariableDecl) stat).sym);
            }
        }
    // where
    /** Return the selected enumeration constant symbol, or null. */
    private Symbol enumConstant(JCTree tree, Type enumType) {
        if (!tree.hasTag(IDENT)) {
            log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
            return syms.errSymbol;
        }
        JCIdent ident = (JCIdent)tree;
        Name name = ident.name;
        for (Scope.Entry e = enumType.tsym.members().lookup(name);
             e.scope != null; e = e.next()) {
            if (e.sym.kind == VAR) {
                Symbol s = ident.sym = e.sym;
                ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
                ident.type = s.type;
                return ((s.flags_field & Flags.ENUM) == 0)
                    ? null : s;
            }
        }
        return null;
    }

    public void visitSynchronized(JCSynchronized tree) {
        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
        attribStat(tree.body, env);
        result = null;
    }

    public void visitTry(JCTry tree) {
        // Create a new local environment with a local
        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
        try {
            boolean isTryWithResource = tree.resources.nonEmpty();
            // Create a nested environment for attributing the try block if needed
            Env<AttrContext> tryEnv = isTryWithResource ?
                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
                localEnv;
            try {
                // Attribute resource declarations
                for (JCTree resource : tree.resources) {
                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
                        @Override
                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
                            chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
                        }
                    };
                    ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
                    if (resource.hasTag(VARDEF)) {
                        attribStat(resource, tryEnv);
                        twrResult.check(resource, resource.type);

                        //check that resource type cannot throw InterruptedException
                        checkAutoCloseable(resource.pos(), localEnv, resource.type);

                        VarSymbol var = ((JCVariableDecl) resource).sym;
                        var.setData(ElementKind.RESOURCE_VARIABLE);
                    } else {
                        attribTree(resource, tryEnv, twrResult);
                    }
                }
                // Attribute body
                attribStat(tree.body, tryEnv);
            } finally {
                if (isTryWithResource)
                    tryEnv.info.scope.leave();
            }

            // Attribute catch clauses
            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
                JCCatch c = l.head;
                Env<AttrContext> catchEnv =
                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
                try {
                    Type ctype = attribStat(c.param, catchEnv);
                    if (TreeInfo.isMultiCatch(c)) {
                        //multi-catch parameter is implicitly marked as final
                        c.param.sym.flags_field |= FINAL | UNION;
                    }
                    if (c.param.sym.kind == Kinds.VAR) {
                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
                    }
                    chk.checkType(c.param.vartype.pos(),
                                  chk.checkClassType(c.param.vartype.pos(), ctype),
                                  syms.throwableType);
                    attribStat(c.body, catchEnv);
                } finally {
                    catchEnv.info.scope.leave();
                }
            }

            // Attribute finalizer
            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
            result = null;
        }
        finally {
            localEnv.info.scope.leave();
        }
    }

    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
        if (!resource.isErroneous() &&
            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
            Symbol close = syms.noSymbol;
            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
            try {
                close = rs.resolveQualifiedMethod(pos,
                        env,
                        resource,
                        names.close,
                        List.<Type>nil(),
                        List.<Type>nil());
            }
            finally {
                log.popDiagnosticHandler(discardHandler);
            }
            if (close.kind == MTH &&
                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
                    env.info.lint.isEnabled(LintCategory.TRY)) {
                log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
            }
        }
    }

    public void visitConditional(JCConditional tree) {
        Type condtype = attribExpr(tree.cond, env, syms.booleanType);

        tree.polyKind = (!allowPoly ||
                pt().hasTag(NONE) && pt() != Type.recoveryType ||
                isBooleanOrNumeric(env, tree)) ?
                PolyKind.STANDALONE : PolyKind.POLY;

        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
            //cannot get here (i.e. it means we are returning from void method - which is already an error)
            resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
            result = tree.type = types.createErrorType(resultInfo.pt);
            return;
        }

        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
                unknownExprInfo :
                resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
                    //this will use enclosing check context to check compatibility of
                    //subexpression against target type; if we are in a method check context,
                    //depending on whether boxing is allowed, we could have incompatibilities
                    @Override
                    public void report(DiagnosticPosition pos, JCDiagnostic details) {
                        enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
                    }
                });

        Type truetype = attribTree(tree.truepart, env, condInfo);
        Type falsetype = attribTree(tree.falsepart, env, condInfo);

        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
        if (condtype.constValue() != null &&
                truetype.constValue() != null &&
                falsetype.constValue() != null &&
                !owntype.hasTag(NONE)) {
            //constant folding
            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
        }
        result = check(tree, owntype, VAL, resultInfo);
    }
    //where
        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
            switch (tree.getTag()) {
                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
                              ((JCLiteral)tree).typetag == BOOLEAN ||
                              ((JCLiteral)tree).typetag == BOT;
                case LAMBDA: case REFERENCE: return false;
                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
                case CONDEXPR:
                    JCConditional condTree = (JCConditional)tree;
                    return isBooleanOrNumeric(env, condTree.truepart) &&
                            isBooleanOrNumeric(env, condTree.falsepart);
                case APPLY:
                    JCMethodInvocation speculativeMethodTree =
                            (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
                    Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
                    return types.unboxedTypeOrType(owntype).isPrimitive();
                case NEWCLASS:
                    JCExpression className =
                            removeClassParams.translate(((JCNewClass)tree).clazz);
                    JCExpression speculativeNewClassTree =
                            (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
                    return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
                default:
                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
                    speculativeType = types.unboxedTypeOrType(speculativeType);
                    return speculativeType.isPrimitive();
            }
        }
        //where
            TreeTranslator removeClassParams = new TreeTranslator() {
                @Override
                public void visitTypeApply(JCTypeApply tree) {
                    result = translate(tree.clazz);
                }
            };

        /** Compute the type of a conditional expression, after
         *  checking that it exists.  See JLS 15.25. Does not take into
         *  account the special case where condition and both arms
         *  are constants.
         *
         *  @param pos      The source position to be used for error
         *                  diagnostics.
         *  @param thentype The type of the expression's then-part.
         *  @param elsetype The type of the expression's else-part.
         */
        private Type condType(DiagnosticPosition pos,
                               Type thentype, Type elsetype) {
            // If same type, that is the result
            if (types.isSameType(thentype, elsetype))
                return thentype.baseType();

            Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
                ? thentype : types.unboxedType(thentype);
            Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
                ? elsetype : types.unboxedType(elsetype);

            // Otherwise, if both arms can be converted to a numeric
            // type, return the least numeric type that fits both arms
            // (i.e. return larger of the two, or return int if one
            // arm is short, the other is char).
            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
                // If one arm has an integer subrange type (i.e., byte,
                // short, or char), and the other is an integer constant
                // that fits into the subrange, return the subrange type.
                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
                    elseUnboxed.hasTag(INT) &&
                    types.isAssignable(elseUnboxed, thenUnboxed)) {
                    return thenUnboxed.baseType();
                }
                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
                    thenUnboxed.hasTag(INT) &&
                    types.isAssignable(thenUnboxed, elseUnboxed)) {
                    return elseUnboxed.baseType();
                }

                for (TypeTag tag : primitiveTags) {
                    Type candidate = syms.typeOfTag[tag.ordinal()];
                    if (types.isSubtype(thenUnboxed, candidate) &&
                        types.isSubtype(elseUnboxed, candidate)) {
                        return candidate;
                    }
                }
            }

            // Those were all the cases that could result in a primitive
            if (allowBoxing) {
                if (thentype.isPrimitive())
                    thentype = types.boxedClass(thentype).type;
                if (elsetype.isPrimitive())
                    elsetype = types.boxedClass(elsetype).type;
            }

            if (types.isSubtype(thentype, elsetype))
                return elsetype.baseType();
            if (types.isSubtype(elsetype, thentype))
                return thentype.baseType();

            if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
                log.error(pos, "neither.conditional.subtype",
                          thentype, elsetype);
                return thentype.baseType();
            }

            // both are known to be reference types.  The result is
            // lub(thentype,elsetype). This cannot fail, as it will
            // always be possible to infer "Object" if nothing better.
            return types.lub(thentype.baseType(), elsetype.baseType());
        }

    final static TypeTag[] primitiveTags = new TypeTag[]{
        BYTE,
        CHAR,
        SHORT,
        INT,
        LONG,
        FLOAT,
        DOUBLE,
        BOOLEAN,
    };

    public void visitIf(JCIf tree) {
        attribExpr(tree.cond, env, syms.booleanType);
        attribStat(tree.thenpart, env);
        if (tree.elsepart != null)
            attribStat(tree.elsepart, env);
        chk.checkEmptyIf(tree);
        result = null;
    }

    public void visitExec(JCExpressionStatement tree) {
        //a fresh environment is required for 292 inference to work properly ---
        //see Infer.instantiatePolymorphicSignatureInstance()
        Env<AttrContext> localEnv = env.dup(tree);
        attribExpr(tree.expr, localEnv);
        result = null;
    }

    public void visitBreak(JCBreak tree) {
        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
        result = null;
    }

    public void visitContinue(JCContinue tree) {
        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
        result = null;
    }
    //where
        /** Return the target of a break or continue statement, if it exists,
         *  report an error if not.
         *  Note: The target of a labelled break or continue is the
         *  (non-labelled) statement tree referred to by the label,
         *  not the tree representing the labelled statement itself.
         *
         *  @param pos     The position to be used for error diagnostics
         *  @param tag     The tag of the jump statement. This is either
         *                 Tree.BREAK or Tree.CONTINUE.
         *  @param label   The label of the jump statement, or null if no
         *                 label is given.
         *  @param env     The environment current at the jump statement.
         */
        private JCTree findJumpTarget(DiagnosticPosition pos,
                                    JCTree.Tag tag,
                                    Name label,
                                    Env<AttrContext> env) {
            // Search environments outwards from the point of jump.
            Env<AttrContext> env1 = env;
            LOOP:
            while (env1 != null) {
                switch (env1.tree.getTag()) {
                    case LABELLED:
                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
                        if (label == labelled.label) {
                            // If jump is a continue, check that target is a loop.
                            if (tag == CONTINUE) {
                                if (!labelled.body.hasTag(DOLOOP) &&
                                        !labelled.body.hasTag(WHILELOOP) &&
                                        !labelled.body.hasTag(FORLOOP) &&
                                        !labelled.body.hasTag(FOREACHLOOP))
                                    log.error(pos, "not.loop.label", label);
                                // Found labelled statement target, now go inwards
                                // to next non-labelled tree.
                                return TreeInfo.referencedStatement(labelled);
                            } else {
                                return labelled;
                            }
                        }
                        break;
                    case DOLOOP:
                    case WHILELOOP:
                    case FORLOOP:
                    case FOREACHLOOP:
                        if (label == null) return env1.tree;
                        break;
                    case SWITCH:
                        if (label == null && tag == BREAK) return env1.tree;
                        break;
                    case LAMBDA:
                    case METHODDEF:
                    case CLASSDEF:
                        break LOOP;
                    default:
                }
                env1 = env1.next;
            }
            if (label != null)
                log.error(pos, "undef.label", label);
            else if (tag == CONTINUE)
                log.error(pos, "cont.outside.loop");
            else
                log.error(pos, "break.outside.switch.loop");
            return null;
        }

    public void visitReturn(JCReturn tree) {
        // Check that there is an enclosing method which is
        // nested within than the enclosing class.
        if (env.info.returnResult == null) {
            log.error(tree.pos(), "ret.outside.meth");
        } else {
            // Attribute return expression, if it exists, and check that
            // it conforms to result type of enclosing method.
            if (tree.expr != null) {
                if (env.info.returnResult.pt.hasTag(VOID)) {
                    env.info.returnResult.checkContext.report(tree.expr.pos(),
                              diags.fragment("unexpected.ret.val"));
                }
                attribTree(tree.expr, env, env.info.returnResult);
            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
                    !env.info.returnResult.pt.hasTag(NONE)) {
                env.info.returnResult.checkContext.report(tree.pos(),
                              diags.fragment("missing.ret.val"));
            }
        }
        result = null;
    }

    public void visitThrow(JCThrow tree) {
        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
        if (allowPoly) {
            chk.checkType(tree, owntype, syms.throwableType);
        }
        result = null;
    }

    public void visitAssert(JCAssert tree) {
        attribExpr(tree.cond, env, syms.booleanType);
        if (tree.detail != null) {
            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
        }
        result = null;
    }

     /** Visitor method for method invocations.
     *  NOTE: The method part of an application will have in its type field
     *        the return type of the method, not the method's type itself!
     */
    public void visitApply(JCMethodInvocation tree) {
        // The local environment of a method application is
        // a new environment nested in the current one.
        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());

        // The types of the actual method arguments.
        List<Type> argtypes;

        // The types of the actual method type arguments.
        List<Type> typeargtypes = null;

        Name methName = TreeInfo.name(tree.meth);

        boolean isConstructorCall =
            methName == names._this || methName == names._super;

        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
        if (isConstructorCall) {
            // We are seeing a ...this(...) or ...super(...) call.
            // Check that this is the first statement in a constructor.
            if (checkFirstConstructorStat(tree, env)) {

                // Record the fact
                // that this is a constructor call (using isSelfCall).
                localEnv.info.isSelfCall = true;

                // Attribute arguments, yielding list of argument types.
                int kind = attribArgs(MTH, tree.args, localEnv, argtypesBuf);
                argtypes = argtypesBuf.toList();
                typeargtypes = attribTypes(tree.typeargs, localEnv);

                // Variable `site' points to the class in which the called
                // constructor is defined.
                Type site = env.enclClass.sym.type;
                if (methName == names._super) {
                    if (site == syms.objectType) {
                        log.error(tree.meth.pos(), "no.superclass", site);
                        site = types.createErrorType(syms.objectType);
                    } else {
                        site = types.supertype(site);
                    }
                }

                if (site.hasTag(CLASS)) {
                    Type encl = site.getEnclosingType();
                    while (encl != null && encl.hasTag(TYPEVAR))
                        encl = encl.getUpperBound();
                    if (encl.hasTag(CLASS)) {
                        // we are calling a nested class

                        if (tree.meth.hasTag(SELECT)) {
                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;

                            // We are seeing a prefixed call, of the form
                            //     <expr>.super(...).
                            // Check that the prefix expression conforms
                            // to the outer instance type of the class.
                            chk.checkRefType(qualifier.pos(),
                                             attribExpr(qualifier, localEnv,
                                                        encl));
                        } else if (methName == names._super) {
                            // qualifier omitted; check for existence
                            // of an appropriate implicit qualifier.
                            rs.resolveImplicitThis(tree.meth.pos(),
                                                   localEnv, site, true);
                        }
                    } else if (tree.meth.hasTag(SELECT)) {
                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
                                  site.tsym);
                    }

                    // if we're calling a java.lang.Enum constructor,
                    // prefix the implicit String and int parameters
                    if (site.tsym == syms.enumSym && allowEnums)
                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);

                    // Resolve the called constructor under the assumption
                    // that we are referring to a superclass instance of the
                    // current instance (JLS ???).
                    boolean selectSuperPrev = localEnv.info.selectSuper;
                    localEnv.info.selectSuper = true;
                    localEnv.info.pendingResolutionPhase = null;
                    Symbol sym = rs.resolveConstructor(
                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
                    localEnv.info.selectSuper = selectSuperPrev;

                    // Set method symbol to resolved constructor...
                    TreeInfo.setSymbol(tree.meth, sym);

                    // ...and check that it is legal in the current context.
                    // (this will also set the tree's type)
                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
                    checkId(tree.meth, site, sym, localEnv, new ResultInfo(kind, mpt));
                }
                // Otherwise, `site' is an error type and we do nothing
            }
            result = tree.type = syms.voidType;
        } else {
            // Otherwise, we are seeing a regular method call.
            // Attribute the arguments, yielding list of argument types, ...
            int kind = attribArgs(VAL, tree.args, localEnv, argtypesBuf);
            argtypes = argtypesBuf.toList();
            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);

            // ... and attribute the method using as a prototype a methodtype
            // whose formal argument types is exactly the list of actual
            // arguments (this will also set the method symbol).
            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
            localEnv.info.pendingResolutionPhase = null;
            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));

            // Compute the result type.
            Type restype = mtype.getReturnType();
            if (restype.hasTag(WILDCARD))
                throw new AssertionError(mtype);

            Type qualifier = (tree.meth.hasTag(SELECT))
                    ? ((JCFieldAccess) tree.meth).selected.type
                    : env.enclClass.sym.type;
            restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);

            chk.checkRefTypes(tree.typeargs, typeargtypes);

            // Check that value of resulting type is admissible in the
            // current context.  Also, capture the return type
            result = check(tree, capture(restype), VAL, resultInfo);
        }
        chk.validate(tree.typeargs, localEnv);
    }
    //where
        Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
            if (allowCovariantReturns &&
                    methodName == names.clone &&
                types.isArray(qualifierType)) {
                // as a special case, array.clone() has a result that is
                // the same as static type of the array being cloned
                return qualifierType;
            } else if (allowGenerics &&
                    methodName == names.getClass &&
                    argtypes.isEmpty()) {
                // as a special case, x.getClass() has type Class<? extends |X|>
                return new ClassType(restype.getEnclosingType(),
                              List.<Type>of(new WildcardType(types.erasure(qualifierType),
                                                               BoundKind.EXTENDS,
                                                               syms.boundClass)),
                              restype.tsym);
            } else {
                return restype;
            }
        }

        /** Check that given application node appears as first statement
         *  in a constructor call.
         *  @param tree   The application node
         *  @param env    The environment current at the application.
         */
        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
            JCMethodDecl enclMethod = env.enclMethod;
            if (enclMethod != null && enclMethod.name == names.init) {
                JCBlock body = enclMethod.body;
                if (body.stats.head.hasTag(EXEC) &&
                    ((JCExpressionStatement) body.stats.head).expr == tree)
                    return true;
            }
            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
                      TreeInfo.name(tree.meth));
            return false;
        }

        /** Obtain a method type with given argument types.
         */
        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
            MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
        }

    public void visitNewClass(final JCNewClass tree) {
        Type owntype = types.createErrorType(tree.type);

        // The local environment of a class creation is
        // a new environment nested in the current one.
        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());

        // The anonymous inner class definition of the new expression,
        // if one is defined by it.
        JCClassDecl cdef = tree.def;

        // If enclosing class is given, attribute it, and
        // complete class name to be fully qualified
        JCExpression clazz = tree.clazz; // Class field following new
        JCExpression clazzid;            // Identifier in class field
        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
        annoclazzid = null;

        if (clazz.hasTag(TYPEAPPLY)) {
            clazzid = ((JCTypeApply) clazz).clazz;
            if (clazzid.hasTag(ANNOTATED_TYPE)) {
                annoclazzid = (JCAnnotatedType) clazzid;
                clazzid = annoclazzid.underlyingType;
            }
        } else {
            if (clazz.hasTag(ANNOTATED_TYPE)) {
                annoclazzid = (JCAnnotatedType) clazz;
                clazzid = annoclazzid.underlyingType;
            } else {
                clazzid = clazz;
            }
        }

        JCExpression clazzid1 = clazzid; // The same in fully qualified form

        if (tree.encl != null) {
            // We are seeing a qualified new, of the form
            //    <expr>.new C <...> (...) ...
            // In this case, we let clazz stand for the name of the
            // allocated class C prefixed with the type of the qualifier
            // expression, so that we can
            // resolve it with standard techniques later. I.e., if
            // <expr> has type T, then <expr>.new C <...> (...)
            // yields a clazz T.C.
            Type encltype = chk.checkRefType(tree.encl.pos(),
                                             attribExpr(tree.encl, env));
            // TODO 308: in <expr>.new C, do we also want to add the type annotations
            // from expr to the combined type, or not? Yes, do this.
            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
                                                 ((JCIdent) clazzid).name);

            EndPosTable endPosTable = this.env.toplevel.endPositions;
            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
            if (clazz.hasTag(ANNOTATED_TYPE)) {
                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
                List<JCAnnotation> annos = annoType.annotations;

                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
                    clazzid1 = make.at(tree.pos).
                        TypeApply(clazzid1,
                                  ((JCTypeApply) clazz).arguments);
                }

                clazzid1 = make.at(tree.pos).
                    AnnotatedType(annos, clazzid1);
            } else if (clazz.hasTag(TYPEAPPLY)) {
                clazzid1 = make.at(tree.pos).
                    TypeApply(clazzid1,
                              ((JCTypeApply) clazz).arguments);
            }

            clazz = clazzid1;
        }

        // Attribute clazz expression and store
        // symbol + type back into the attributed tree.
        Type clazztype = TreeInfo.isEnumInit(env.tree) ?
            attribIdentAsEnumType(env, (JCIdent)clazz) :
            attribType(clazz, env);

        clazztype = chk.checkDiamond(tree, clazztype);
        chk.validate(clazz, localEnv);
        if (tree.encl != null) {
            // We have to work in this case to store
            // symbol + type back into the attributed tree.
            tree.clazz.type = clazztype;
            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
            clazzid.type = ((JCIdent) clazzid).sym.type;
            if (annoclazzid != null) {
                annoclazzid.type = clazzid.type;
            }
            if (!clazztype.isErroneous()) {
                if (cdef != null && clazztype.tsym.isInterface()) {
                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
                } else if (clazztype.tsym.isStatic()) {
                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
                }
            }
        } else if (!clazztype.tsym.isInterface() &&
                   clazztype.getEnclosingType().hasTag(CLASS)) {
            // Check for the existence of an apropos outer instance
            rs.resolveImplicitThis(tree.pos(), env, clazztype);
        }

        // Attribute constructor arguments.
        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
        int pkind = attribArgs(VAL, tree.args, localEnv, argtypesBuf);
        List<Type> argtypes = argtypesBuf.toList();
        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);

        // If we have made no mistakes in the class type...
        if (clazztype.hasTag(CLASS)) {
            // Enums may not be instantiated except implicitly
            if (allowEnums &&
                (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
                (!env.tree.hasTag(VARDEF) ||
                 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
                 ((JCVariableDecl) env.tree).init != tree))
                log.error(tree.pos(), "enum.cant.be.instantiated");
            // Check that class is not abstract
            if (cdef == null &&
                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
                log.error(tree.pos(), "abstract.cant.be.instantiated",
                          clazztype.tsym);
            } else if (cdef != null && clazztype.tsym.isInterface()) {
                // Check that no constructor arguments are given to
                // anonymous classes implementing an interface
                if (!argtypes.isEmpty())
                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");

                if (!typeargtypes.isEmpty())
                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");

                // Error recovery: pretend no arguments were supplied.
                argtypes = List.nil();
                typeargtypes = List.nil();
            } else if (TreeInfo.isDiamond(tree)) {
                ClassType site = new ClassType(clazztype.getEnclosingType(),
                            clazztype.tsym.type.getTypeArguments(),
                            clazztype.tsym);

                Env<AttrContext> diamondEnv = localEnv.dup(tree);
                diamondEnv.info.selectSuper = cdef != null;
                diamondEnv.info.pendingResolutionPhase = null;

                //if the type of the instance creation expression is a class type
                //apply method resolution inference (JLS 15.12.2.7). The return type
                //of the resolved constructor will be a partially instantiated type
                Symbol constructor = rs.resolveDiamond(tree.pos(),
                            diamondEnv,
                            site,
                            argtypes,
                            typeargtypes);
                tree.constructor = constructor.baseSymbol();

                final TypeSymbol csym = clazztype.tsym;
                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
                    @Override
                    public void report(DiagnosticPosition _unused, JCDiagnostic details) {
                        enclosingContext.report(tree.clazz,
                                diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
                    }
                });
                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
                constructorType = checkId(noCheckTree, site,
                        constructor,
                        diamondEnv,
                        diamondResult);

                tree.clazz.type = types.createErrorType(clazztype);
                if (!constructorType.isErroneous()) {
                    tree.clazz.type = clazztype = constructorType.getReturnType();
                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
                }
                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
            }

            // Resolve the called constructor under the assumption
            // that we are referring to a superclass instance of the
            // current instance (JLS ???).
            else {
                //the following code alters some of the fields in the current
                //AttrContext - hence, the current context must be dup'ed in
                //order to avoid downstream failures
                Env<AttrContext> rsEnv = localEnv.dup(tree);
                rsEnv.info.selectSuper = cdef != null;
                rsEnv.info.pendingResolutionPhase = null;
                tree.constructor = rs.resolveConstructor(
                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
                if (cdef == null) { //do not check twice!
                    tree.constructorType = checkId(noCheckTree,
                            clazztype,
                            tree.constructor,
                            rsEnv,
                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
                    if (rsEnv.info.lastResolveVarargs())
                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
                }
                if (cdef == null &&
                        !clazztype.isErroneous() &&
                        clazztype.getTypeArguments().nonEmpty() &&
                        findDiamonds) {
                    findDiamond(localEnv, tree, clazztype);
                }
            }

            if (cdef != null) {
                // We are seeing an anonymous class instance creation.
                // In this case, the class instance creation
                // expression
                //
                //    E.new <typeargs1>C<typargs2>(args) { ... }
                //
                // is represented internally as
                //
                //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
                //
                // This expression is then *transformed* as follows:
                //
                // (1) add a STATIC flag to the class definition
                //     if the current environment is static
                // (2) add an extends or implements clause
                // (3) add a constructor.
                //
                // For instance, if C is a class, and ET is the type of E,
                // the expression
                //
                //    E.new <typeargs1>C<typargs2>(args) { ... }
                //
                // is translated to (where X is a fresh name and typarams is the
                // parameter list of the super constructor):
                //
                //   new <typeargs1>X(<*nullchk*>E, args) where
                //     X extends C<typargs2> {
                //       <typarams> X(ET e, args) {
                //         e.<typeargs1>super(args)
                //       }
                //       ...
                //     }
                if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;

                if (clazztype.tsym.isInterface()) {
                    cdef.implementing = List.of(clazz);
                } else {
                    cdef.extending = clazz;
                }

                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
                    isSerializable(clazztype)) {
                    localEnv.info.isSerializable = true;
                }

                attribStat(cdef, localEnv);

                checkLambdaCandidate(tree, cdef.sym, clazztype);

                // If an outer instance is given,
                // prefix it to the constructor arguments
                // and delete it from the new expression
                if (tree.encl != null && !clazztype.tsym.isInterface()) {
                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
                    argtypes = argtypes.prepend(tree.encl.type);
                    tree.encl = null;
                }

                // Reassign clazztype and recompute constructor.
                clazztype = cdef.sym.type;
                Symbol sym = tree.constructor = rs.resolveConstructor(
                    tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
                Assert.check(sym.kind < AMBIGUOUS);
                tree.constructor = sym;
                tree.constructorType = checkId(noCheckTree,
                    clazztype,
                    tree.constructor,
                    localEnv,
                    new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
            }

            if (tree.constructor != null && tree.constructor.kind == MTH)
                owntype = clazztype;
        }
        result = check(tree, owntype, VAL, resultInfo);
        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
            //we need to wait for inference to finish and then replace inference vars in the constructor type
            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
                    new FreeTypeListener() {
                        @Override
                        public void typesInferred(InferenceContext instantiatedContext) {
                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
                        }
                    });
        }
        chk.validate(tree.typeargs, localEnv);
    }
    //where
        void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
            JCTypeApply ta = (JCTypeApply)tree.clazz;
            List<JCExpression> prevTypeargs = ta.arguments;
            try {
                //create a 'fake' diamond AST node by removing type-argument trees
                ta.arguments = List.nil();
                ResultInfo findDiamondResult = new ResultInfo(VAL,
                        resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
                Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
                Type polyPt = allowPoly ?
                        syms.objectType :
                        clazztype;
                if (!inferred.isErroneous() &&
                    (allowPoly && pt() == Infer.anyPoly ?
                        types.isSameType(inferred, clazztype) :
                        types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
                    String key = types.isSameType(clazztype, inferred) ?
                        "diamond.redundant.args" :
                        "diamond.redundant.args.1";
                    log.warning(tree.clazz.pos(), key, clazztype, inferred);
                }
            } finally {
                ta.arguments = prevTypeargs;
            }
        }

            private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
                if (allowLambda &&
                        identifyLambdaCandidate &&
                        clazztype.hasTag(CLASS) &&
                        !pt().hasTag(NONE) &&
                        types.isFunctionalInterface(clazztype.tsym)) {
                    Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
                    int count = 0;
                    boolean found = false;
                    for (Symbol sym : csym.members().getElements()) {
                        if ((sym.flags() & SYNTHETIC) != 0 ||
                                sym.isConstructor()) continue;
                        count++;
                        if (sym.kind != MTH ||
                                !sym.name.equals(descriptor.name)) continue;
                        Type mtype = types.memberType(clazztype, sym);
                        if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
                            found = true;
                        }
                    }
                    if (found && count == 1) {
                        log.note(tree.def, "potential.lambda.found");
                    }
                }
            }

    /** Make an attributed null check tree.
     */
    public JCExpression makeNullCheck(JCExpression arg) {
        // optimization: X.this is never null; skip null check
        Name name = TreeInfo.name(arg);
        if (name == names._this || name == names._super) return arg;

        JCTree.Tag optag = NULLCHK;
        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
        tree.operator = syms.nullcheck;
        tree.type = arg.type;
        return tree;
    }

    public void visitNewArray(JCNewArray tree) {
        Type owntype = types.createErrorType(tree.type);
        Env<AttrContext> localEnv = env.dup(tree);
        Type elemtype;
        if (tree.elemtype != null) {
            elemtype = attribType(tree.elemtype, localEnv);
            chk.validate(tree.elemtype, localEnv);
            owntype = elemtype;
            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
                attribExpr(l.head, localEnv, syms.intType);
                owntype = new ArrayType(owntype, syms.arrayClass);
            }
        } else {
            // we are seeing an untyped aggregate { ... }
            // this is allowed only if the prototype is an array
            if (pt().hasTag(ARRAY)) {
                elemtype = types.elemtype(pt());
            } else {
                if (!pt().hasTag(ERROR)) {
                    log.error(tree.pos(), "illegal.initializer.for.type",
                              pt());
                }
                elemtype = types.createErrorType(pt());
            }
        }
        if (tree.elems != null) {
            attribExprs(tree.elems, localEnv, elemtype);
            owntype = new ArrayType(elemtype, syms.arrayClass);
        }
        if (!types.isReifiable(elemtype))
            log.error(tree.pos(), "generic.array.creation");
        result = check(tree, owntype, VAL, resultInfo);
    }

    /*
     * A lambda expression can only be attributed when a target-type is available.
     * In addition, if the target-type is that of a functional interface whose
     * descriptor contains inference variables in argument position the lambda expression
     * is 'stuck' (see DeferredAttr).
     */
    @Override
    public void visitLambda(final JCLambda that) {
        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
            if (pt().hasTag(NONE)) {
                //lambda only allowed in assignment or method invocation/cast context
                log.error(that.pos(), "unexpected.lambda");
            }
            result = that.type = types.createErrorType(pt());
            return;
        }
        //create an environment for attribution of the lambda expression
        final Env<AttrContext> localEnv = lambdaEnv(that, env);
        boolean needsRecovery =
                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
        try {
            Type currentTarget = pt();
            if (needsRecovery && isSerializable(currentTarget)) {
                localEnv.info.isSerializable = true;
            }
            List<Type> explicitParamTypes = null;
            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
                //attribute lambda parameters
                attribStats(that.params, localEnv);
                explicitParamTypes = TreeInfo.types(that.params);
            }

            Type lambdaType;
            if (pt() != Type.recoveryType) {
                /* We need to adjust the target. If the target is an
                 * intersection type, for example: SAM & I1 & I2 ...
                 * the target will be updated to SAM
                 */
                currentTarget = targetChecker.visit(currentTarget, that);
                if (explicitParamTypes != null) {
                    currentTarget = infer.instantiateFunctionalInterface(that,
                            currentTarget, explicitParamTypes, resultInfo.checkContext);
                }
                currentTarget = types.removeWildcards(currentTarget);
                lambdaType = types.findDescriptorType(currentTarget);
            } else {
                currentTarget = Type.recoveryType;
                lambdaType = fallbackDescriptorType(that);
            }

            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);

            if (lambdaType.hasTag(FORALL)) {
                //lambda expression target desc cannot be a generic method
                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
                result = that.type = types.createErrorType(pt());
                return;
            }

            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
                //add param type info in the AST
                List<Type> actuals = lambdaType.getParameterTypes();
                List<JCVariableDecl> params = that.params;

                boolean arityMismatch = false;

                while (params.nonEmpty()) {
                    if (actuals.isEmpty()) {
                        //not enough actuals to perform lambda parameter inference
                        arityMismatch = true;
                    }
                    //reset previously set info
                    Type argType = arityMismatch ?
                            syms.errType :
                            actuals.head;
                    params.head.vartype = make.at(params.head).Type(argType);
                    params.head.sym = null;
                    actuals = actuals.isEmpty() ?
                            actuals :
                            actuals.tail;
                    params = params.tail;
                }

                //attribute lambda parameters
                attribStats(that.params, localEnv);

                if (arityMismatch) {
                    resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
                        result = that.type = types.createErrorType(currentTarget);
                        return;
                }
            }

            //from this point on, no recovery is needed; if we are in assignment context
            //we will be able to attribute the whole lambda body, regardless of errors;
            //if we are in a 'check' method context, and the lambda is not compatible
            //with the target-type, it will be recovered anyway in Attr.checkId
            needsRecovery = false;

            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
                    new FunctionalReturnContext(resultInfo.checkContext);

            ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
                recoveryInfo :
                new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
            localEnv.info.returnResult = bodyResultInfo;

            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
                attribTree(that.getBody(), localEnv, bodyResultInfo);
            } else {
                JCBlock body = (JCBlock)that.body;
                attribStats(body.stats, localEnv);
            }

            result = check(that, currentTarget, VAL, resultInfo);

            boolean isSpeculativeRound =
                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;

            preFlow(that);
            flow.analyzeLambda(env, that, make, isSpeculativeRound);

            that.type = currentTarget; //avoids recovery at this stage
            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);

            if (!isSpeculativeRound) {
                //add thrown types as bounds to the thrown types free variables if needed:
                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());

                    chk.unhandled(inferredThrownTypes, thrownTypes);
                }

                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
            }
            result = check(that, currentTarget, VAL, resultInfo);
        } catch (Types.FunctionDescriptorLookupError ex) {
            JCDiagnostic cause = ex.getDiagnostic();
            resultInfo.checkContext.report(that, cause);
            result = that.type = types.createErrorType(pt());
            return;
        } finally {
            localEnv.info.scope.leave();
            if (needsRecovery) {
                attribTree(that, env, recoveryInfo);
            }
        }
    }
    //where
        void preFlow(JCLambda tree) {
            new PostAttrAnalyzer() {
                @Override
                public void scan(JCTree tree) {
                    if (tree == null ||
                            (tree.type != null &&
                            tree.type == Type.stuckType)) {
                        //don't touch stuck expressions!
                        return;
                    }
                    super.scan(tree);
                }
            }.scan(tree);
        }

        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {

            @Override
            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
                return t.isIntersection() ?
                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
            }

            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
                Type target = null;
                for (Type bound : ict.getExplicitComponents()) {
                    TypeSymbol boundSym = bound.tsym;
                    if (types.isFunctionalInterface(boundSym) &&
                            types.findDescriptorSymbol(boundSym) == desc) {
                        target = bound;
                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
                        //bound must be an interface
                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
                    }
                }
                return target != null ?
                        target :
                        ict.getExplicitComponents().head; //error recovery
            }

            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
                ListBuffer<Type> targs = new ListBuffer<>();
                ListBuffer<Type> supertypes = new ListBuffer<>();
                for (Type i : ict.interfaces_field) {
                    if (i.isParameterized()) {
                        targs.appendList(i.tsym.type.allparams());
                    }
                    supertypes.append(i.tsym.type);
                }
                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
                notionalIntf.allparams_field = targs.toList();
                notionalIntf.tsym.flags_field |= INTERFACE;
                return notionalIntf.tsym;
            }

            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
                resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
                        diags.fragment(key, args)));
            }
        };

        private Type fallbackDescriptorType(JCExpression tree) {
            switch (tree.getTag()) {
                case LAMBDA:
                    JCLambda lambda = (JCLambda)tree;
                    List<Type> argtypes = List.nil();
                    for (JCVariableDecl param : lambda.params) {
                        argtypes = param.vartype != null ?
                                argtypes.append(param.vartype.type) :
                                argtypes.append(syms.errType);
                    }
                    return new MethodType(argtypes, Type.recoveryType,
                            List.of(syms.throwableType), syms.methodClass);
                case REFERENCE:
                    return new MethodType(List.<Type>nil(), Type.recoveryType,
                            List.of(syms.throwableType), syms.methodClass);
                default:
                    Assert.error("Cannot get here!");
            }
            return null;
        }

        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
                final InferenceContext inferenceContext, final Type... ts) {
            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
        }

        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
                final InferenceContext inferenceContext, final List<Type> ts) {
            if (inferenceContext.free(ts)) {
                inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
                    @Override
                    public void typesInferred(InferenceContext inferenceContext) {
                        checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
                    }
                });
            } else {
                for (Type t : ts) {
                    rs.checkAccessibleType(env, t);
                }
            }
        }

        /**
         * Lambda/method reference have a special check context that ensures
         * that i.e. a lambda return type is compatible with the expected
         * type according to both the inherited context and the assignment
         * context.
         */
        class FunctionalReturnContext extends Check.NestedCheckContext {

            FunctionalReturnContext(CheckContext enclosingContext) {
                super(enclosingContext);
            }

            @Override
            public boolean compatible(Type found, Type req, Warner warn) {
                //return type must be compatible in both current context and assignment context
                return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
            }

            @Override
            public void report(DiagnosticPosition pos, JCDiagnostic details) {
                enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
            }
        }

        class ExpressionLambdaReturnContext extends FunctionalReturnContext {

            JCExpression expr;

            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
                super(enclosingContext);
                this.expr = expr;
            }

            @Override
            public boolean compatible(Type found, Type req, Warner warn) {
                //a void return is compatible with an expression statement lambda
                return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
                        super.compatible(found, req, warn);
            }
        }

        /**
        * Lambda compatibility. Check that given return types, thrown types, parameter types
        * are compatible with the expected functional interface descriptor. This means that:
        * (i) parameter types must be identical to those of the target descriptor; (ii) return
        * types must be compatible with the return type of the expected descriptor.
        */
        private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());

            //return values have already been checked - but if lambda has no return
            //values, we must ensure that void/value compatibility is correct;
            //this amounts at checking that, if a lambda body can complete normally,
            //the descriptor's return type must be void
            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
                checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
                        diags.fragment("missing.ret.val", returnType)));
            }

            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
                checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
            }
        }

        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
         * static field and that lambda has type annotations, these annotations will
         * also be stored at these fake clinit methods.
         *
         * LambdaToMethod also use fake clinit methods so they can be reused.
         * Also as LTM is a phase subsequent to attribution, the methods from
         * clinits can be safely removed by LTM to save memory.
         */
        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();

        public MethodSymbol removeClinit(ClassSymbol sym) {
            return clinits.remove(sym);
        }

        /* This method returns an environment to be used to attribute a lambda
         * expression.
         *
         * The owner of this environment is a method symbol. If the current owner
         * is not a method, for example if the lambda is used to initialize
         * a field, then if the field is:
         *
         * - an instance field, we use the first constructor.
         * - a static field, we create a fake clinit method.
         */
        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
            Env<AttrContext> lambdaEnv;
            Symbol owner = env.info.scope.owner;
            if (owner.kind == VAR && owner.owner.kind == TYP) {
                //field initializer
                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
                ClassSymbol enclClass = owner.enclClass();
                /* if the field isn't static, then we can get the first constructor
                 * and use it as the owner of the environment. This is what
                 * LTM code is doing to look for type annotations so we are fine.
                 */
                if ((owner.flags() & STATIC) == 0) {
                    for (Symbol s : enclClass.members_field.getElementsByName(names.init)) {
                        lambdaEnv.info.scope.owner = s;
                        break;
                    }
                } else {
                    /* if the field is static then we need to create a fake clinit
                     * method, this method can later be reused by LTM.
                     */
                    MethodSymbol clinit = clinits.get(enclClass);
                    if (clinit == null) {
                        Type clinitType = new MethodType(List.<Type>nil(),
                                syms.voidType, List.<Type>nil(), syms.methodClass);
                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
                                names.clinit, clinitType, enclClass);
                        clinit.params = List.<VarSymbol>nil();
                        clinits.put(enclClass, clinit);
                    }
                    lambdaEnv.info.scope.owner = clinit;
                }
            } else {
                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
            }
            return lambdaEnv;
        }

    @Override
    public void visitReference(final JCMemberReference that) {
        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
            if (pt().hasTag(NONE)) {
                //method reference only allowed in assignment or method invocation/cast context
                log.error(that.pos(), "unexpected.mref");
            }
            result = that.type = types.createErrorType(pt());
            return;
        }
        final Env<AttrContext> localEnv = env.dup(that);
        try {
            //attribute member reference qualifier - if this is a constructor
            //reference, the expected kind must be a type
            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));

            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
                exprType = chk.checkConstructorRefType(that.expr, exprType);
                if (!exprType.isErroneous() &&
                    exprType.isRaw() &&
                    that.typeargs != null) {
                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
                        diags.fragment("mref.infer.and.explicit.params"));
                    exprType = types.createErrorType(exprType);
                }
            }

            if (exprType.isErroneous()) {
                //if the qualifier expression contains problems,
                //give up attribution of method reference
                result = that.type = exprType;
                return;
            }

            if (TreeInfo.isStaticSelector(that.expr, names)) {
                //if the qualifier is a type, validate it; raw warning check is
                //omitted as we don't know at this stage as to whether this is a
                //raw selector (because of inference)
                chk.validate(that.expr, env, false);
            }

            //attrib type-arguments
            List<Type> typeargtypes = List.nil();
            if (that.typeargs != null) {
                typeargtypes = attribTypes(that.typeargs, localEnv);
            }

            Type desc;
            Type currentTarget = pt();
            boolean isTargetSerializable =
                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
                    isSerializable(currentTarget);
            if (currentTarget != Type.recoveryType) {
                currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
                desc = types.findDescriptorType(currentTarget);
            } else {
                currentTarget = Type.recoveryType;
                desc = fallbackDescriptorType(that);
            }

            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
            List<Type> argtypes = desc.getParameterTypes();
            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;

            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
            }

            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
            try {
                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
                        that.name, argtypes, typeargtypes, referenceCheck,
                        resultInfo.checkContext.inferenceContext(),
                        resultInfo.checkContext.deferredAttrContext().mode);
            } finally {
                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
            }

            Symbol refSym = refResult.fst;
            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;

            if (refSym.kind != MTH) {
                boolean targetError;
                switch (refSym.kind) {
                    case ABSENT_MTH:
                        targetError = false;
                        break;
                    case WRONG_MTH:
                    case WRONG_MTHS:
                    case AMBIGUOUS:
                    case HIDDEN:
                    case STATICERR:
                    case MISSING_ENCL:
                    case WRONG_STATICNESS:
                        targetError = true;
                        break;
                    default:
                        Assert.error("unexpected result kind " + refSym.kind);
                        targetError = false;
                }

                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);

                JCDiagnostic.DiagnosticType diagKind = targetError ?
                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;

                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);

                if (targetError && currentTarget == Type.recoveryType) {
                    //a target error doesn't make sense during recovery stage
                    //as we don't know what actual parameter types are
                    result = that.type = currentTarget;
                    return;
                } else {
                    if (targetError) {
                        resultInfo.checkContext.report(that, diag);
                    } else {
                        log.report(diag);
                    }
                    result = that.type = types.createErrorType(currentTarget);
                    return;
                }
            }

            that.sym = refSym.baseSymbol();
            that.kind = lookupHelper.referenceKind(that.sym);
            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());

            if (desc.getReturnType() == Type.recoveryType) {
                // stop here
                result = that.type = currentTarget;
                return;
            }

            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {

                if (that.getMode() == ReferenceMode.INVOKE &&
                        TreeInfo.isStaticSelector(that.expr, names) &&
                        that.kind.isUnbound() &&
                        !desc.getParameterTypes().head.isParameterized()) {
                    chk.checkRaw(that.expr, localEnv);
                }

                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
                        exprType.getTypeArguments().nonEmpty()) {
                    //static ref with class type-args
                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
                            diags.fragment("static.mref.with.targs"));
                    result = that.type = types.createErrorType(currentTarget);
                    return;
                }

                if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
                        !that.kind.isUnbound()) {
                    //no static bound mrefs
                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
                            diags.fragment("static.bound.mref"));
                    result = that.type = types.createErrorType(currentTarget);
                    return;
                }

                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
                    // Check that super-qualified symbols are not abstract (JLS)
                    rs.checkNonAbstract(that.pos(), that.sym);
                }

                if (isTargetSerializable) {
                    chk.checkElemAccessFromSerializableLambda(that);
                }
            }

            ResultInfo checkInfo =
                    resultInfo.dup(newMethodTemplate(
                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
                        new FunctionalReturnContext(resultInfo.checkContext));

            Type refType = checkId(noCheckTree, lookupHelper.site, refSym, localEnv, checkInfo);

            if (that.kind.isUnbound() &&
                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
                //re-generate inference constraints for unbound receiver
                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
                    //cannot happen as this has already been checked - we just need
                    //to regenerate the inference constraints, as that has been lost
                    //as a result of the call to inferenceContext.save()
                    Assert.error("Can't get here");
                }
            }

            if (!refType.isErroneous()) {
                refType = types.createMethodTypeWithReturn(refType,
                        adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
            }

            //go ahead with standard method reference compatibility check - note that param check
            //is a no-op (as this has been taken care during method applicability)
            boolean isSpeculativeRound =
                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;

            that.type = currentTarget; //avoids recovery at this stage
            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
            if (!isSpeculativeRound) {
                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
            }
            result = check(that, currentTarget, VAL, resultInfo);
        } catch (Types.FunctionDescriptorLookupError ex) {
            JCDiagnostic cause = ex.getDiagnostic();
            resultInfo.checkContext.report(that, cause);
            result = that.type = types.createErrorType(pt());
            return;
        }
    }
    //where
        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
            //if this is a constructor reference, the expected kind must be a type
            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
        }


    @SuppressWarnings("fallthrough")
    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
        Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());

        Type resType;
        switch (tree.getMode()) {
            case NEW:
                if (!tree.expr.type.isRaw()) {
                    resType = tree.expr.type;
                    break;
                }
            default:
                resType = refType.getReturnType();
        }

        Type incompatibleReturnType = resType;

        if (returnType.hasTag(VOID)) {
            incompatibleReturnType = null;
        }

        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
            if (resType.isErroneous() ||
                    new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
                incompatibleReturnType = null;
            }
        }

        if (incompatibleReturnType != null) {
            checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
                    diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
        }

        if (!speculativeAttr) {
            List<Type> thrownTypes = checkContext.inferenceContext().asUndetVars(descriptor.getThrownTypes());
            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
                log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
            }
        }
    }

    /**
     * Set functional type info on the underlying AST. Note: as the target descriptor
     * might contain inference variables, we might need to register an hook in the
     * current inference context.
     */
    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
        if (checkContext.inferenceContext().free(descriptorType)) {
            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
                public void typesInferred(InferenceContext inferenceContext) {
                    setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
                            inferenceContext.asInstType(primaryTarget), checkContext);
                }
            });
        } else {
            ListBuffer<Type> targets = new ListBuffer<>();
            if (pt.hasTag(CLASS)) {
                if (pt.isCompound()) {
                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
                        if (t != primaryTarget) {
                            targets.append(types.removeWildcards(t));
                        }
                    }
                } else {
                    targets.append(types.removeWildcards(primaryTarget));
                }
            }
            fExpr.targets = targets.toList();
            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
                    pt != Type.recoveryType) {
                //check that functional interface class is well-formed
                try {
                    /* Types.makeFunctionalInterfaceClass() may throw an exception
                     * when it's executed post-inference. See the listener code
                     * above.
                     */
                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
                    if (csym != null) {
                        chk.checkImplementations(env.tree, csym, csym);
                    }
                } catch (Types.FunctionDescriptorLookupError ex) {
                    JCDiagnostic cause = ex.getDiagnostic();
                    resultInfo.checkContext.report(env.tree, cause);
                }
            }
        }
    }

    public void visitParens(JCParens tree) {
        Type owntype = attribTree(tree.expr, env, resultInfo);
        result = check(tree, owntype, pkind(), resultInfo);
        Symbol sym = TreeInfo.symbol(tree);
        if (sym != null && (sym.kind&(TYP|PCK)) != 0)
            log.error(tree.pos(), "illegal.start.of.type");
    }

    public void visitAssign(JCAssign tree) {
        Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
        Type capturedType = capture(owntype);
        attribExpr(tree.rhs, env, owntype);
        result = check(tree, capturedType, VAL, resultInfo);
    }

    public void visitAssignop(JCAssignOp tree) {
        // Attribute arguments.
        Type owntype = attribTree(tree.lhs, env, varInfo);
        Type operand = attribExpr(tree.rhs, env);
        // Find operator.
        Symbol operator = tree.operator = rs.resolveBinaryOperator(
            tree.pos(), tree.getTag().noAssignOp(), env,
            owntype, operand);

        if (operator.kind == MTH &&
                !owntype.isErroneous() &&
                !operand.isErroneous()) {
            chk.checkOperator(tree.pos(),
                              (OperatorSymbol)operator,
                              tree.getTag().noAssignOp(),
                              owntype,
                              operand);
            chk.checkDivZero(tree.rhs.pos(), operator, operand);
            chk.checkCastable(tree.rhs.pos(),
                              operator.type.getReturnType(),
                              owntype);
        }
        result = check(tree, owntype, VAL, resultInfo);
    }

    public void visitUnary(JCUnary tree) {
        // Attribute arguments.
        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
            ? attribTree(tree.arg, env, varInfo)
            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));

        // Find operator.
        Symbol operator = tree.operator =
            rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);

        Type owntype = types.createErrorType(tree.type);
        if (operator.kind == MTH &&
                !argtype.isErroneous()) {
            owntype = (tree.getTag().isIncOrDecUnaryOp())
                ? tree.arg.type
                : operator.type.getReturnType();
            int opc = ((OperatorSymbol)operator).opcode;

            // If the argument is constant, fold it.
            if (argtype.constValue() != null) {
                Type ctype = cfolder.fold1(opc, argtype);
                if (ctype != null) {
                    owntype = cfolder.coerce(ctype, owntype);
                }
            }
        }
        result = check(tree, owntype, VAL, resultInfo);
    }

    public void visitBinary(JCBinary tree) {
        // Attribute arguments.
        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
        Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));

        // Find operator.
        Symbol operator = tree.operator =
            rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);

        Type owntype = types.createErrorType(tree.type);
        if (operator.kind == MTH &&
                !left.isErroneous() &&
                !right.isErroneous()) {
            owntype = operator.type.getReturnType();
            // This will figure out when unboxing can happen and
            // choose the right comparison operator.
            int opc = chk.checkOperator(tree.lhs.pos(),
                                        (OperatorSymbol)operator,
                                        tree.getTag(),
                                        left,
                                        right);

            // If both arguments are constants, fold them.
            if (left.constValue() != null && right.constValue() != null) {
                Type ctype = cfolder.fold2(opc, left, right);
                if (ctype != null) {
                    owntype = cfolder.coerce(ctype, owntype);
                }
            }

            // Check that argument types of a reference ==, != are
            // castable to each other, (JLS 15.21).  Note: unboxing
            // comparisons will not have an acmp* opc at this point.
            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
                if (!types.isEqualityComparable(left, right,
                                                new Warner(tree.pos()))) {
                    log.error(tree.pos(), "incomparable.types", left, right);
                }
            }

            chk.checkDivZero(tree.rhs.pos(), operator, right);
        }
        result = check(tree, owntype, VAL, resultInfo);
    }

    public void visitTypeCast(final JCTypeCast tree) {
        Type clazztype = attribType(tree.clazz, env);
        chk.validate(tree.clazz, env, false);
        //a fresh environment is required for 292 inference to work properly ---
        //see Infer.instantiatePolymorphicSignatureInstance()
        Env<AttrContext> localEnv = env.dup(tree);
        //should we propagate the target type?
        final ResultInfo castInfo;
        JCExpression expr = TreeInfo.skipParens(tree.expr);
        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
        if (isPoly) {
            //expression is a poly - we need to propagate target type info
            castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
                @Override
                public boolean compatible(Type found, Type req, Warner warn) {
                    return types.isCastable(found, req, warn);
                }
            });
        } else {
            //standalone cast - target-type info is not propagated
            castInfo = unknownExprInfo;
        }
        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
        if (exprtype.constValue() != null)
            owntype = cfolder.coerce(exprtype, owntype);
        result = check(tree, capture(owntype), VAL, resultInfo);
        if (!isPoly)
            chk.checkRedundantCast(localEnv, tree);
    }

    public void visitTypeTest(JCInstanceOf tree) {
        Type exprtype = chk.checkNullOrRefType(
            tree.expr.pos(), attribExpr(tree.expr, env));
        Type clazztype = attribType(tree.clazz, env);
        if (!clazztype.hasTag(TYPEVAR)) {
            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
        }
        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
            log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
            clazztype = types.createErrorType(clazztype);
        }
        chk.validate(tree.clazz, env, false);
        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
        result = check(tree, syms.booleanType, VAL, resultInfo);
    }

    public void visitIndexed(JCArrayAccess tree) {
        Type owntype = types.createErrorType(tree.type);
        Type atype = attribExpr(tree.indexed, env);
        attribExpr(tree.index, env, syms.intType);
        if (types.isArray(atype))
            owntype = types.elemtype(atype);
        else if (!atype.hasTag(ERROR))
            log.error(tree.pos(), "array.req.but.found", atype);
        if ((pkind() & VAR) == 0) owntype = capture(owntype);
        result = check(tree, owntype, VAR, resultInfo);
    }

    public void visitIdent(JCIdent tree) {
        Symbol sym;

        // Find symbol
        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
            // If we are looking for a method, the prototype `pt' will be a
            // method type with the type of the call's arguments as parameters.
            env.info.pendingResolutionPhase = null;
            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
        } else if (tree.sym != null && tree.sym.kind != VAR) {
            sym = tree.sym;
        } else {
            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
        }
        tree.sym = sym;

        // (1) Also find the environment current for the class where
        //     sym is defined (`symEnv').
        // Only for pre-tiger versions (1.4 and earlier):
        // (2) Also determine whether we access symbol out of an anonymous
        //     class in a this or super call.  This is illegal for instance
        //     members since such classes don't carry a this$n link.
        //     (`noOuterThisPath').
        Env<AttrContext> symEnv = env;
        boolean noOuterThisPath = false;
        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
            (sym.kind & (VAR | MTH | TYP)) != 0 &&
            sym.owner.kind == TYP &&
            tree.name != names._this && tree.name != names._super) {

            // Find environment in which identifier is defined.
            while (symEnv.outer != null &&
                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
                    noOuterThisPath = !allowAnonOuterThis;
                symEnv = symEnv.outer;
            }
        }

        // If symbol is a variable, ...
        if (sym.kind == VAR) {
            VarSymbol v = (VarSymbol)sym;

            // ..., evaluate its initializer, if it has one, and check for
            // illegal forward reference.
            checkInit(tree, env, v, false);

            // If we are expecting a variable (as opposed to a value), check
            // that the variable is assignable in the current environment.
            if (pkind() == VAR)
                checkAssignable(tree.pos(), v, null, env);
        }

        // In a constructor body,
        // if symbol is a field or instance method, check that it is
        // not accessed before the supertype constructor is called.
        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
            (sym.kind & (VAR | MTH)) != 0 &&
            sym.owner.kind == TYP &&
            (sym.flags() & STATIC) == 0) {
            chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
        }
        Env<AttrContext> env1 = env;
        if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
            // If the found symbol is inaccessible, then it is
            // accessed through an enclosing instance.  Locate this
            // enclosing instance:
            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
                env1 = env1.outer;
        }

        if (env.info.isSerializable) {
            chk.checkElemAccessFromSerializableLambda(tree);
        }

        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
    }

    public void visitSelect(JCFieldAccess tree) {
        // Determine the expected kind of the qualifier expression.
        int skind = 0;
        if (tree.name == names._this || tree.name == names._super ||
            tree.name == names._class)
        {
            skind = TYP;
        } else {
            if ((pkind() & PCK) != 0) skind = skind | PCK;
            if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
            if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
        }

        // Attribute the qualifier expression, and determine its symbol (if any).
        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
        if ((pkind() & (PCK | TYP)) == 0)
            site = capture(site); // Capture field access

        // don't allow T.class T[].class, etc
        if (skind == TYP) {
            Type elt = site;
            while (elt.hasTag(ARRAY))
                elt = ((ArrayType)elt.unannotatedType()).elemtype;
            if (elt.hasTag(TYPEVAR)) {
                log.error(tree.pos(), "type.var.cant.be.deref");
                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
                tree.sym = tree.type.tsym;
                return ;
            }
        }

        // If qualifier symbol is a type or `super', assert `selectSuper'
        // for the selection. This is relevant for determining whether
        // protected symbols are accessible.
        Symbol sitesym = TreeInfo.symbol(tree.selected);
        boolean selectSuperPrev = env.info.selectSuper;
        env.info.selectSuper =
            sitesym != null &&
            sitesym.name == names._super;

        // Determine the symbol represented by the selection.
        env.info.pendingResolutionPhase = null;
        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
            log.error(tree.selected.pos(), "not.encl.class", site.tsym);
            sym = syms.errSymbol;
        }
        if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
            site = capture(site);
            sym = selectSym(tree, sitesym, site, env, resultInfo);
        }
        boolean varArgs = env.info.lastResolveVarargs();
        tree.sym = sym;

        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
            while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
            site = capture(site);
        }

        // If that symbol is a variable, ...
        if (sym.kind == VAR) {
            VarSymbol v = (VarSymbol)sym;

            // ..., evaluate its initializer, if it has one, and check for
            // illegal forward reference.
            checkInit(tree, env, v, true);

            // If we are expecting a variable (as opposed to a value), check
            // that the variable is assignable in the current environment.
            if (pkind() == VAR)
                checkAssignable(tree.pos(), v, tree.selected, env);
        }

        if (sitesym != null &&
                sitesym.kind == VAR &&
                ((VarSymbol)sitesym).isResourceVariable() &&
                sym.kind == MTH &&
                sym.name.equals(names.close) &&
                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
                env.info.lint.isEnabled(LintCategory.TRY)) {
            log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
        }

        // Disallow selecting a type from an expression
        if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
            tree.type = check(tree.selected, pt(),
                              sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
        }

        if (isType(sitesym)) {
            if (sym.name == names._this) {
                // If `C' is the currently compiled class, check that
                // C.this' does not appear in a call to a super(...)
                if (env.info.isSelfCall &&
                    site.tsym == env.enclClass.sym) {
                    chk.earlyRefError(tree.pos(), sym);
                }
            } else {
                // Check if type-qualified fields or methods are static (JLS)
                if ((sym.flags() & STATIC) == 0 &&
                    !env.next.tree.hasTag(REFERENCE) &&
                    sym.name != names._super &&
                    (sym.kind == VAR || sym.kind == MTH)) {
                    rs.accessBase(rs.new StaticError(sym),
                              tree.pos(), site, sym.name, true);
                }
            }
            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
                    sym.isStatic() && sym.kind == MTH) {
                log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
            }
        } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
            // If the qualified item is not a type and the selected item is static, report
            // a warning. Make allowance for the class of an array type e.g. Object[].class)
            chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
        }

        // If we are selecting an instance member via a `super', ...
        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {

            // Check that super-qualified symbols are not abstract (JLS)
            rs.checkNonAbstract(tree.pos(), sym);

            if (site.isRaw()) {
                // Determine argument types for site.
                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
                if (site1 != null) site = site1;
            }
        }

        if (env.info.isSerializable) {
            chk.checkElemAccessFromSerializableLambda(tree);
        }

        env.info.selectSuper = selectSuperPrev;
        result = checkId(tree, site, sym, env, resultInfo);
    }
    //where
        /** Determine symbol referenced by a Select expression,
         *
         *  @param tree   The select tree.
         *  @param site   The type of the selected expression,
         *  @param env    The current environment.
         *  @param resultInfo The current result.
         */
        private Symbol selectSym(JCFieldAccess tree,
                                 Symbol location,
                                 Type site,
                                 Env<AttrContext> env,
                                 ResultInfo resultInfo) {
            DiagnosticPosition pos = tree.pos();
            Name name = tree.name;
            switch (site.getTag()) {
            case PACKAGE:
                return rs.accessBase(
                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
                    pos, location, site, name, true);
            case ARRAY:
            case CLASS:
                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
                    return rs.resolveQualifiedMethod(
                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
                } else if (name == names._this || name == names._super) {
                    return rs.resolveSelf(pos, env, site.tsym, name);
                } else if (name == names._class) {
                    // In this case, we have already made sure in
                    // visitSelect that qualifier expression is a type.
                    Type t = syms.classType;
                    List<Type> typeargs = allowGenerics
                        ? List.of(types.erasure(site))
                        : List.<Type>nil();
                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
                    return new VarSymbol(
                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
                } else {
                    // We are seeing a plain identifier as selector.
                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
                    if ((resultInfo.pkind & ERRONEOUS) == 0)
                        sym = rs.accessBase(sym, pos, location, site, name, true);
                    return sym;
                }
            case WILDCARD:
                throw new AssertionError(tree);
            case TYPEVAR:
                // Normally, site.getUpperBound() shouldn't be null.
                // It should only happen during memberEnter/attribBase
                // when determining the super type which *must* beac
                // done before attributing the type variables.  In
                // other words, we are seeing this illegal program:
                // class B<T> extends A<T.foo> {}
                Symbol sym = (site.getUpperBound() != null)
                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
                    : null;
                if (sym == null) {
                    log.error(pos, "type.var.cant.be.deref");
                    return syms.errSymbol;
                } else {
                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
                        rs.new AccessError(env, site, sym) :
                                sym;
                    rs.accessBase(sym2, pos, location, site, name, true);
                    return sym;
                }
            case ERROR:
                // preserve identifier names through errors
                return types.createErrorType(name, site.tsym, site).tsym;
            default:
                // The qualifier expression is of a primitive type -- only
                // .class is allowed for these.
                if (name == names._class) {
                    // In this case, we have already made sure in Select that
                    // qualifier expression is a type.
                    Type t = syms.classType;
                    Type arg = types.boxedClass(site).type;
                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
                    return new VarSymbol(
                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
                } else {
                    log.error(pos, "cant.deref", site);
                    return syms.errSymbol;
                }
            }
        }

        /** Determine type of identifier or select expression and check that
         *  (1) the referenced symbol is not deprecated
         *  (2) the symbol's type is safe (@see checkSafe)
         *  (3) if symbol is a variable, check that its type and kind are
         *      compatible with the prototype and protokind.
         *  (4) if symbol is an instance field of a raw type,
         *      which is being assigned to, issue an unchecked warning if its
         *      type changes under erasure.
         *  (5) if symbol is an instance method of a raw type, issue an
         *      unchecked warning if its argument types change under erasure.
         *  If checks succeed:
         *    If symbol is a constant, return its constant type
         *    else if symbol is a method, return its result type
         *    otherwise return its type.
         *  Otherwise return errType.
         *
         *  @param tree       The syntax tree representing the identifier
         *  @param site       If this is a select, the type of the selected
         *                    expression, otherwise the type of the current class.
         *  @param sym        The symbol representing the identifier.
         *  @param env        The current environment.
         *  @param resultInfo    The expected result
         */
        Type checkId(JCTree tree,
                     Type site,
                     Symbol sym,
                     Env<AttrContext> env,
                     ResultInfo resultInfo) {
            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
                    checkMethodId(tree, site, sym, env, resultInfo) :
                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
        }

        Type checkMethodId(JCTree tree,
                     Type site,
                     Symbol sym,
                     Env<AttrContext> env,
                     ResultInfo resultInfo) {
            boolean isPolymorhicSignature =
                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
            return isPolymorhicSignature ?
                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
        }

        Type checkSigPolyMethodId(JCTree tree,
                     Type site,
                     Symbol sym,
                     Env<AttrContext> env,
                     ResultInfo resultInfo) {
            //recover original symbol for signature polymorphic methods
            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
            return sym.type;
        }

        Type checkMethodIdInternal(JCTree tree,
                     Type site,
                     Symbol sym,
                     Env<AttrContext> env,
                     ResultInfo resultInfo) {
            if ((resultInfo.pkind & POLY) != 0) {
                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
                return owntype;
            } else {
                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
            }
        }

        Type checkIdInternal(JCTree tree,
                     Type site,
                     Symbol sym,
                     Type pt,
                     Env<AttrContext> env,
                     ResultInfo resultInfo) {
            if (pt.isErroneous()) {
                return types.createErrorType(site);
            }
            Type owntype; // The computed type of this identifier occurrence.
            switch (sym.kind) {
            case TYP:
                // For types, the computed type equals the symbol's type,
                // except for two situations:
                owntype = sym.type;
                if (owntype.hasTag(CLASS)) {
                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
                    Type ownOuter = owntype.getEnclosingType();

                    // (a) If the symbol's type is parameterized, erase it
                    // because no type parameters were given.
                    // We recover generic outer type later in visitTypeApply.
                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
                        owntype = types.erasure(owntype);
                    }

                    // (b) If the symbol's type is an inner class, then
                    // we have to interpret its outer type as a superclass
                    // of the site type. Example:
                    //
                    // class Tree<A> { class Visitor { ... } }
                    // class PointTree extends Tree<Point> { ... }
                    // ...PointTree.Visitor...
                    //
                    // Then the type of the last expression above is
                    // Tree<Point>.Visitor.
                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
                        Type normOuter = site;
                        if (normOuter.hasTag(CLASS)) {
                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
                        }
                        if (normOuter == null) // perhaps from an import
                            normOuter = types.erasure(ownOuter);
                        if (normOuter != ownOuter)
                            owntype = new ClassType(
                                normOuter, List.<Type>nil(), owntype.tsym);
                    }
                }
                break;
            case VAR:
                VarSymbol v = (VarSymbol)sym;
                // Test (4): if symbol is an instance field of a raw type,
                // which is being assigned to, issue an unchecked warning if
                // its type changes under erasure.
                if (allowGenerics &&
                    resultInfo.pkind == VAR &&
                    v.owner.kind == TYP &&
                    (v.flags() & STATIC) == 0 &&
                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
                    Type s = types.asOuterSuper(site, v.owner);
                    if (s != null &&
                        s.isRaw() &&
                        !types.isSameType(v.type, v.erasure(types))) {
                        chk.warnUnchecked(tree.pos(),
                                          "unchecked.assign.to.var",
                                          v, s);
                    }
                }
                // The computed type of a variable is the type of the
                // variable symbol, taken as a member of the site type.
                owntype = (sym.owner.kind == TYP &&
                           sym.name != names._this && sym.name != names._super)
                    ? types.memberType(site, sym)
                    : sym.type;

                // If the variable is a constant, record constant value in
                // computed type.
                if (v.getConstValue() != null && isStaticReference(tree))
                    owntype = owntype.constType(v.getConstValue());

                if (resultInfo.pkind == VAL) {
                    owntype = capture(owntype); // capture "names as expressions"
                }
                break;
            case MTH: {
                owntype = checkMethod(site, sym,
                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
                        resultInfo.pt.getTypeArguments());
                break;
            }
            case PCK: case ERR:
                owntype = sym.type;
                break;
            default:
                throw new AssertionError("unexpected kind: " + sym.kind +
                                         " in tree " + tree);
            }

            // Test (1): emit a `deprecation' warning if symbol is deprecated.
            // (for constructors, the error was given when the constructor was
            // resolved)

            if (sym.name != names.init) {
                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
                chk.checkSunAPI(tree.pos(), sym);
                chk.checkProfile(tree.pos(), sym);
            }

            // Test (3): if symbol is a variable, check that its type and
            // kind are compatible with the prototype and protokind.
            return check(tree, owntype, sym.kind, resultInfo);
        }

        /** Check that variable is initialized and evaluate the variable's
         *  initializer, if not yet done. Also check that variable is not
         *  referenced before it is defined.
         *  @param tree    The tree making up the variable reference.
         *  @param env     The current environment.
         *  @param v       The variable's symbol.
         */
        private void checkInit(JCTree tree,
                               Env<AttrContext> env,
                               VarSymbol v,
                               boolean onlyWarning) {
//          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
//                             tree.pos + " " + v.pos + " " +
//                             Resolve.isStatic(env));//DEBUG

            // A forward reference is diagnosed if the declaration position
            // of the variable is greater than the current tree position
            // and the tree and variable definition occur in the same class
            // definition.  Note that writes don't count as references.
            // This check applies only to class and instance
            // variables.  Local variables follow different scope rules,
            // and are subject to definite assignment checking.
            if ((env.info.enclVar == v || v.pos > tree.pos) &&
                v.owner.kind == TYP &&
                enclosingInitEnv(env) != null &&
                v.owner == env.info.scope.owner.enclClass() &&
                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
                (!env.tree.hasTag(ASSIGN) ||
                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
                String suffix = (env.info.enclVar == v) ?
                                "self.ref" : "forward.ref";
                if (!onlyWarning || isStaticEnumField(v)) {
                    log.error(tree.pos(), "illegal." + suffix);
                } else if (useBeforeDeclarationWarning) {
                    log.warning(tree.pos(), suffix, v);
                }
            }

            v.getConstValue(); // ensure initializer is evaluated

            checkEnumInitializer(tree, env, v);
        }

        /**
         * Returns the enclosing init environment associated with this env (if any). An init env
         * can be either a field declaration env or a static/instance initializer env.
         */
        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
            while (true) {
                switch (env.tree.getTag()) {
                    case VARDEF:
                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
                        if (vdecl.sym.owner.kind == TYP) {
                            //field
                            return env;
                        }
                        break;
                    case BLOCK:
                        if (env.next.tree.hasTag(CLASSDEF)) {
                            //instance/static initializer
                            return env;
                        }
                        break;
                    case METHODDEF:
                    case CLASSDEF:
                    case TOPLEVEL:
                        return null;
                }
                Assert.checkNonNull(env.next);
                env = env.next;
            }
        }

        /**
         * Check for illegal references to static members of enum.  In
         * an enum type, constructors and initializers may not
         * reference its static members unless they are constant.
         *
         * @param tree    The tree making up the variable reference.
         * @param env     The current environment.
         * @param v       The variable's symbol.
         * @jls  section 8.9 Enums
         */
        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
            // JLS:
            //
            // "It is a compile-time error to reference a static field
            // of an enum type that is not a compile-time constant
            // (15.28) from constructors, instance initializer blocks,
            // or instance variable initializer expressions of that
            // type. It is a compile-time error for the constructors,
            // instance initializer blocks, or instance variable
            // initializer expressions of an enum constant e to refer
            // to itself or to an enum constant of the same type that
            // is declared to the right of e."
            if (isStaticEnumField(v)) {
                ClassSymbol enclClass = env.info.scope.owner.enclClass();

                if (enclClass == null || enclClass.owner == null)
                    return;

                // See if the enclosing class is the enum (or a
                // subclass thereof) declaring v.  If not, this
                // reference is OK.
                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
                    return;

                // If the reference isn't from an initializer, then
                // the reference is OK.
                if (!Resolve.isInitializer(env))
                    return;

                log.error(tree.pos(), "illegal.enum.static.ref");
            }
        }

        /** Is the given symbol a static, non-constant field of an Enum?
         *  Note: enum literals should not be regarded as such
         */
        private boolean isStaticEnumField(VarSymbol v) {
            return Flags.isEnum(v.owner) &&
                   Flags.isStatic(v) &&
                   !Flags.isConstant(v) &&
                   v.name != names._class;
        }

    Warner noteWarner = new Warner();

    /**
     * Check that method arguments conform to its instantiation.
     **/
    public Type checkMethod(Type site,
                            final Symbol sym,
                            ResultInfo resultInfo,
                            Env<AttrContext> env,
                            final List<JCExpression> argtrees,
                            List<Type> argtypes,
                            List<Type> typeargtypes) {
        // Test (5): if symbol is an instance method of a raw type, issue
        // an unchecked warning if its argument types change under erasure.
        if (allowGenerics &&
            (sym.flags() & STATIC) == 0 &&
            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
            Type s = types.asOuterSuper(site, sym.owner);
            if (s != null && s.isRaw() &&
                !types.isSameTypes(sym.type.getParameterTypes(),
                                   sym.erasure(types).getParameterTypes())) {
                chk.warnUnchecked(env.tree.pos(),
                                  "unchecked.call.mbr.of.raw.type",
                                  sym, s);
            }
        }

        if (env.info.defaultSuperCallSite != null) {
            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
                List<MethodSymbol> icand_sup =
                        types.interfaceCandidates(sup, (MethodSymbol)sym);
                if (icand_sup.nonEmpty() &&
                        icand_sup.head != sym &&
                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
                    log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
                        diags.fragment("overridden.default", sym, sup));
                    break;
                }
            }
            env.info.defaultSuperCallSite = null;
        }

        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
            JCMethodInvocation app = (JCMethodInvocation)env.tree;
            if (app.meth.hasTag(SELECT) &&
                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
                log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
            }
        }

        // Compute the identifier's instantiated type.
        // For methods, we need to compute the instance type by
        // Resolve.instantiate from the symbol's type as well as
        // any type arguments and value arguments.
        noteWarner.clear();
        try {
            Type owntype = rs.checkMethod(
                    env,
                    site,
                    sym,
                    resultInfo,
                    argtypes,
                    typeargtypes,
                    noteWarner);

            DeferredAttr.DeferredTypeMap checkDeferredMap =
                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);

            argtypes = Type.map(argtypes, checkDeferredMap);

            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
                chk.warnUnchecked(env.tree.pos(),
                        "unchecked.meth.invocation.applied",
                        kindName(sym),
                        sym.name,
                        rs.methodArguments(sym.type.getParameterTypes()),
                        rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
                        kindName(sym.location()),
                        sym.location());
               owntype = new MethodType(owntype.getParameterTypes(),
                       types.erasure(owntype.getReturnType()),
                       types.erasure(owntype.getThrownTypes()),
                       syms.methodClass);
            }

            return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
                    resultInfo.checkContext.inferenceContext());
        } catch (Infer.InferenceException ex) {
            //invalid target type - propagate exception outwards or report error
            //depending on the current check context
            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
            return types.createErrorType(site);
        } catch (Resolve.InapplicableMethodException ex) {
            final JCDiagnostic diag = ex.getDiagnostic();
            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
                @Override
                protected Pair<Symbol, JCDiagnostic> errCandidate() {
                    return new Pair<Symbol, JCDiagnostic>(sym, diag);
                }
            };
            List<Type> argtypes2 = Type.map(argtypes,
                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
            log.report(errDiag);
            return types.createErrorType(site);
        }
    }

    public void visitLiteral(JCLiteral tree) {
        result = check(
            tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
    }
    //where
    /** Return the type of a literal with given type tag.
     */
    Type litType(TypeTag tag) {
        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
    }

    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
    }

    public void visitTypeArray(JCArrayTypeTree tree) {
        Type etype = attribType(tree.elemtype, env);
        Type type = new ArrayType(etype, syms.arrayClass);
        result = check(tree, type, TYP, resultInfo);
    }

    /** Visitor method for parameterized types.
     *  Bound checking is left until later, since types are attributed
     *  before supertype structure is completely known
     */
    public void visitTypeApply(JCTypeApply tree) {
        Type owntype = types.createErrorType(tree.type);

        // Attribute functor part of application and make sure it's a class.
        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));

        // Attribute type parameters
        List<Type> actuals = attribTypes(tree.arguments, env);

        if (clazztype.hasTag(CLASS)) {
            List<Type> formals = clazztype.tsym.type.getTypeArguments();
            if (actuals.isEmpty()) //diamond
                actuals = formals;

            if (actuals.length() == formals.length()) {
                List<Type> a = actuals;
                List<Type> f = formals;
                while (a.nonEmpty()) {
                    a.head = a.head.withTypeVar(f.head);
                    a = a.tail;
                    f = f.tail;
                }
                // Compute the proper generic outer
                Type clazzOuter = clazztype.getEnclosingType();
                if (clazzOuter.hasTag(CLASS)) {
                    Type site;
                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
                    if (clazz.hasTag(IDENT)) {
                        site = env.enclClass.sym.type;
                    } else if (clazz.hasTag(SELECT)) {
                        site = ((JCFieldAccess) clazz).selected.type;
                    } else throw new AssertionError(""+tree);
                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
                        if (site.hasTag(CLASS))
                            site = types.asOuterSuper(site, clazzOuter.tsym);
                        if (site == null)
                            site = types.erasure(clazzOuter);
                        clazzOuter = site;
                    }
                }
                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
            } else {
                if (formals.length() != 0) {
                    log.error(tree.pos(), "wrong.number.type.args",
                              Integer.toString(formals.length()));
                } else {
                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
                }
                owntype = types.createErrorType(tree.type);
            }
        }
        result = check(tree, owntype, TYP, resultInfo);
    }

    public void visitTypeUnion(JCTypeUnion tree) {
        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
        for (JCExpression typeTree : tree.alternatives) {
            Type ctype = attribType(typeTree, env);
            ctype = chk.checkType(typeTree.pos(),
                          chk.checkClassType(typeTree.pos(), ctype),
                          syms.throwableType);
            if (!ctype.isErroneous()) {
                //check that alternatives of a union type are pairwise
                //unrelated w.r.t. subtyping
                if (chk.intersects(ctype,  multicatchTypes.toList())) {
                    for (Type t : multicatchTypes) {
                        boolean sub = types.isSubtype(ctype, t);
                        boolean sup = types.isSubtype(t, ctype);
                        if (sub || sup) {
                            //assume 'a' <: 'b'
                            Type a = sub ? ctype : t;
                            Type b = sub ? t : ctype;
                            log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
                        }
                    }
                }
                multicatchTypes.append(ctype);
                if (all_multicatchTypes != null)
                    all_multicatchTypes.append(ctype);
            } else {
                if (all_multicatchTypes == null) {
                    all_multicatchTypes = new ListBuffer<>();
                    all_multicatchTypes.appendList(multicatchTypes);
                }
                all_multicatchTypes.append(ctype);
            }
        }
        Type t = check(noCheckTree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
        if (t.hasTag(CLASS)) {
            List<Type> alternatives =
                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
            t = new UnionClassType((ClassType) t, alternatives);
        }
        tree.type = result = t;
    }

    public void visitTypeIntersection(JCTypeIntersection tree) {
        attribTypes(tree.bounds, env);
        tree.type = result = checkIntersection(tree, tree.bounds);
    }

    public void visitTypeParameter(JCTypeParameter tree) {
        TypeVar typeVar = (TypeVar) tree.type;

        if (tree.annotations != null && tree.annotations.nonEmpty()) {
            annotateType(tree, tree.annotations);
        }

        if (!typeVar.bound.isErroneous()) {
            //fixup type-parameter bound computed in 'attribTypeVariables'
            typeVar.bound = checkIntersection(tree, tree.bounds);
        }
    }

    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
        Set<Type> boundSet = new HashSet<Type>();
        if (bounds.nonEmpty()) {
            // accept class or interface or typevar as first bound.
            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
            boundSet.add(types.erasure(bounds.head.type));
            if (bounds.head.type.isErroneous()) {
                return bounds.head.type;
            }
            else if (bounds.head.type.hasTag(TYPEVAR)) {
                // if first bound was a typevar, do not accept further bounds.
                if (bounds.tail.nonEmpty()) {
                    log.error(bounds.tail.head.pos(),
                              "type.var.may.not.be.followed.by.other.bounds");
                    return bounds.head.type;
                }
            } else {
                // if first bound was a class or interface, accept only interfaces
                // as further bounds.
                for (JCExpression bound : bounds.tail) {
                    bound.type = checkBase(bound.type, bound, env, false, true, false);
                    if (bound.type.isErroneous()) {
                        bounds = List.of(bound);
                    }
                    else if (bound.type.hasTag(CLASS)) {
                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
                    }
                }
            }
        }

        if (bounds.length() == 0) {
            return syms.objectType;
        } else if (bounds.length() == 1) {
            return bounds.head.type;
        } else {
            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
            // ... the variable's bound is a class type flagged COMPOUND
            // (see comment for TypeVar.bound).
            // In this case, generate a class tree that represents the
            // bound class, ...
            JCExpression extending;
            List<JCExpression> implementing;
            if (!bounds.head.type.isInterface()) {
                extending = bounds.head;
                implementing = bounds.tail;
            } else {
                extending = null;
                implementing = bounds;
            }
            JCClassDecl cd = make.at(tree).ClassDef(
                make.Modifiers(PUBLIC | ABSTRACT),
                names.empty, List.<JCTypeParameter>nil(),
                extending, implementing, List.<JCTree>nil());

            ClassSymbol c = (ClassSymbol)owntype.tsym;
            Assert.check((c.flags() & COMPOUND) != 0);
            cd.sym = c;
            c.sourcefile = env.toplevel.sourcefile;

            // ... and attribute the bound class
            c.flags_field |= UNATTRIBUTED;
            Env<AttrContext> cenv = enter.classEnv(cd, env);
            typeEnvs.put(c, cenv);
            attribClass(c);
            return owntype;
        }
    }

    public void visitWildcard(JCWildcard tree) {
        //- System.err.println("visitWildcard("+tree+");");//DEBUG
        Type type = (tree.kind.kind == BoundKind.UNBOUND)
            ? syms.objectType
            : attribType(tree.inner, env);
        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
                                              tree.kind.kind,
                                              syms.boundClass),
                       TYP, resultInfo);
    }

    public void visitAnnotation(JCAnnotation tree) {
        Assert.error("should be handled in Annotate");
    }

    public void visitAnnotatedType(JCAnnotatedType tree) {
        Type underlyingType = attribType(tree.getUnderlyingType(), env);
        this.attribAnnotationTypes(tree.annotations, env);
        annotateType(tree, tree.annotations);
        result = tree.type = underlyingType;
    }

    /**
     * Apply the annotations to the particular type.
     */
    public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
        annotate.typeAnnotation(new Annotate.Worker() {
            @Override
            public String toString() {
                return "annotate " + annotations + " onto " + tree;
            }
            @Override
            public void run() {
                List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
                if (annotations.size() == compounds.size()) {
                    // All annotations were successfully converted into compounds
                    tree.type = tree.type.unannotatedType().annotatedType(compounds);
                }
            }
        });
    }

    private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
        if (annotations.isEmpty()) {
            return List.nil();
        }

        ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
        for (JCAnnotation anno : annotations) {
            if (anno.attribute != null) {
                // TODO: this null-check is only needed for an obscure
                // ordering issue, where annotate.flush is called when
                // the attribute is not set yet. For an example failure
                // try the referenceinfos/NestedTypes.java test.
                // Any better solutions?
                buf.append((Attribute.TypeCompound) anno.attribute);
            }
            // Eventually we will want to throw an exception here, but
            // we can't do that just yet, because it gets triggered
            // when attempting to attach an annotation that isn't
            // defined.
        }
        return buf.toList();
    }

    public void visitErroneous(JCErroneous tree) {
        if (tree.errs != null)
            for (JCTree err : tree.errs)
                attribTree(err, env, new ResultInfo(ERR, pt()));
        result = tree.type = syms.errType;
    }

    /** Default visitor method for all other trees.
     */
    public void visitTree(JCTree tree) {
        throw new AssertionError();
    }

    /**
     * Attribute an env for either a top level tree or class declaration.
     */
    public void attrib(Env<AttrContext> env) {
        if (env.tree.hasTag(TOPLEVEL))
            attribTopLevel(env);
        else
            attribClass(env.tree.pos(), env.enclClass.sym);
    }

    /**
     * Attribute a top level tree. These trees are encountered when the
     * package declaration has annotations.
     */
    public void attribTopLevel(Env<AttrContext> env) {
        JCCompilationUnit toplevel = env.toplevel;
        try {
            annotate.flush();
        } catch (CompletionFailure ex) {
            chk.completionError(toplevel.pos(), ex);
        }
    }

    /** Main method: attribute class definition associated with given class symbol.
     *  reporting completion failures at the given position.
     *  @param pos The source position at which completion errors are to be
     *             reported.
     *  @param c   The class symbol whose definition will be attributed.
     */
    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
        try {
            annotate.flush();
            attribClass(c);
        } catch (CompletionFailure ex) {
            chk.completionError(pos, ex);
        }
    }

    /** Attribute class definition associated with given class symbol.
     *  @param c   The class symbol whose definition will be attributed.
     */
    void attribClass(ClassSymbol c) throws CompletionFailure {
        if (c.type.hasTag(ERROR)) return;

        // Check for cycles in the inheritance graph, which can arise from
        // ill-formed class files.
        chk.checkNonCyclic(null, c.type);

        Type st = types.supertype(c.type);
        if ((c.flags_field & Flags.COMPOUND) == 0) {
            // First, attribute superclass.
            if (st.hasTag(CLASS))
                attribClass((ClassSymbol)st.tsym);

            // Next attribute owner, if it is a class.
            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
                attribClass((ClassSymbol)c.owner);
        }

        // The previous operations might have attributed the current class
        // if there was a cycle. So we test first whether the class is still
        // UNATTRIBUTED.
        if ((c.flags_field & UNATTRIBUTED) != 0) {
            c.flags_field &= ~UNATTRIBUTED;

            // Get environment current at the point of class definition.
            Env<AttrContext> env = typeEnvs.get(c);

            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
            // because the annotations were not available at the time the env was created. Therefore,
            // we look up the environment chain for the first enclosing environment for which the
            // lint value is set. Typically, this is the parent env, but might be further if there
            // are any envs created as a result of TypeParameter nodes.
            Env<AttrContext> lintEnv = env;
            while (lintEnv.info.lint == null)
                lintEnv = lintEnv.next;

            // Having found the enclosing lint value, we can initialize the lint value for this class
            env.info.lint = lintEnv.info.lint.augment(c);

            Lint prevLint = chk.setLint(env.info.lint);
            JavaFileObject prev = log.useSource(c.sourcefile);
            ResultInfo prevReturnRes = env.info.returnResult;

            try {
                deferredLintHandler.flush(env.tree);
                env.info.returnResult = null;
                // java.lang.Enum may not be subclassed by a non-enum
                if (st.tsym == syms.enumSym &&
                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
                    log.error(env.tree.pos(), "enum.no.subclassing");

                // Enums may not be extended by source-level classes
                if (st.tsym != null &&
                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
                    log.error(env.tree.pos(), "enum.types.not.extensible");
                }

                if (isSerializable(c.type)) {
                    env.info.isSerializable = true;
                }

                attribClassBody(env, c);

                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
            } finally {
                env.info.returnResult = prevReturnRes;
                log.useSource(prev);
                chk.setLint(prevLint);
            }

        }
    }

    public void visitImport(JCImport tree) {
        // nothing to do
    }

    /** Finish the attribution of a class. */
    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
        JCClassDecl tree = (JCClassDecl)env.tree;
        Assert.check(c == tree.sym);

        // Validate type parameters, supertype and interfaces.
        attribStats(tree.typarams, env);
        if (!c.isAnonymous()) {
            //already checked if anonymous
            chk.validate(tree.typarams, env);
            chk.validate(tree.extending, env);
            chk.validate(tree.implementing, env);
        }

        c.markAbstractIfNeeded(types);

        // If this is a non-abstract class, check that it has no abstract
        // methods or unimplemented methods of an implemented interface.
        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
            if (!relax)
                chk.checkAllDefined(tree.pos(), c);
        }

        if ((c.flags() & ANNOTATION) != 0) {
            if (tree.implementing.nonEmpty())
                log.error(tree.implementing.head.pos(),
                          "cant.extend.intf.annotation");
            if (tree.typarams.nonEmpty())
                log.error(tree.typarams.head.pos(),
                          "intf.annotation.cant.have.type.params");

            // If this annotation has a @Repeatable, validate
            Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
            if (repeatable != null) {
                // get diagnostic position for error reporting
                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
                Assert.checkNonNull(cbPos);

                chk.validateRepeatable(c, repeatable, cbPos);
            }
        } else {
            // Check that all extended classes and interfaces
            // are compatible (i.e. no two define methods with same arguments
            // yet different return types).  (JLS 8.4.6.3)
            chk.checkCompatibleSupertypes(tree.pos(), c.type);
            if (allowDefaultMethods) {
                chk.checkDefaultMethodClashes(tree.pos(), c.type);
            }
        }

        // Check that class does not import the same parameterized interface
        // with two different argument lists.
        chk.checkClassBounds(tree.pos(), c.type);

        tree.type = c.type;

        for (List<JCTypeParameter> l = tree.typarams;
             l.nonEmpty(); l = l.tail) {
             Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
        }

        // Check that a generic class doesn't extend Throwable
        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
            log.error(tree.extending.pos(), "generic.throwable");

        // Check that all methods which implement some
        // method conform to the method they implement.
        chk.checkImplementations(tree);

        //check that a resource implementing AutoCloseable cannot throw InterruptedException
        checkAutoCloseable(tree.pos(), env, c.type);

        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
            // Attribute declaration
            attribStat(l.head, env);
            // Check that declarations in inner classes are not static (JLS 8.1.2)
            // Make an exception for static constants.
            if (c.owner.kind != PCK &&
                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
                Symbol sym = null;
                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
                if (sym == null ||
                    sym.kind != VAR ||
                    ((VarSymbol) sym).getConstValue() == null)
                    log.error(l.head.pos(), "icls.cant.have.static.decl", c);
            }
        }

        // Check for cycles among non-initial constructors.
        chk.checkCyclicConstructors(tree);

        // Check for cycles among annotation elements.
        chk.checkNonCyclicElements(tree);

        // Check for proper use of serialVersionUID
        if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
            isSerializable(c.type) &&
            (c.flags() & Flags.ENUM) == 0 &&
            checkForSerial(c)) {
            checkSerialVersionUID(tree, c);
        }
        if (allowTypeAnnos) {
            // Correctly organize the postions of the type annotations
            typeAnnotations.organizeTypeAnnotationsBodies(tree);

            // Check type annotations applicability rules
            validateTypeAnnotations(tree, false);
        }
    }
        // where
        boolean checkForSerial(ClassSymbol c) {
            if ((c.flags() & ABSTRACT) == 0) {
                return true;
            } else {
                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
            }
        }

        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
            @Override
            public boolean accepts(Symbol s) {
                return s.kind == Kinds.MTH &&
                       (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
            }
        };

        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
                if (types.isSameType(al.head.annotationType.type, t))
                    return al.head.pos();
            }

            return null;
        }

        /** check if a type is a subtype of Serializable, if that is available. */
        boolean isSerializable(Type t) {
            try {
                syms.serializableType.complete();
            }
            catch (CompletionFailure e) {
                return false;
            }
            return types.isSubtype(t, syms.serializableType);
        }

        /** Check that an appropriate serialVersionUID member is defined. */
        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {

            // check for presence of serialVersionUID
            Scope.Entry e = c.members().lookup(names.serialVersionUID);
            while (e.scope != null && e.sym.kind != VAR) e = e.next();
            if (e.scope == null) {
                log.warning(LintCategory.SERIAL,
                        tree.pos(), "missing.SVUID", c);
                return;
            }

            // check that it is static final
            VarSymbol svuid = (VarSymbol)e.sym;
            if ((svuid.flags() & (STATIC | FINAL)) !=
                (STATIC | FINAL))
                log.warning(LintCategory.SERIAL,
                        TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);

            // check that it is long
            else if (!svuid.type.hasTag(LONG))
                log.warning(LintCategory.SERIAL,
                        TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);

            // check constant
            else if (svuid.getConstValue() == null)
                log.warning(LintCategory.SERIAL,
                        TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
        }

    private Type capture(Type type) {
        return types.capture(type);
    }

    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
        tree.accept(new TypeAnnotationsValidator(sigOnly));
    }
    //where
    private final class TypeAnnotationsValidator extends TreeScanner {

        private final boolean sigOnly;
        public TypeAnnotationsValidator(boolean sigOnly) {
            this.sigOnly = sigOnly;
        }

        public void visitAnnotation(JCAnnotation tree) {
            chk.validateTypeAnnotation(tree, false);
            super.visitAnnotation(tree);
        }
        public void visitAnnotatedType(JCAnnotatedType tree) {
            if (!tree.underlyingType.type.isErroneous()) {
                super.visitAnnotatedType(tree);
            }
        }
        public void visitTypeParameter(JCTypeParameter tree) {
            chk.validateTypeAnnotations(tree.annotations, true);
            scan(tree.bounds);
            // Don't call super.
            // This is needed because above we call validateTypeAnnotation with
            // false, which would forbid annotations on type parameters.
            // super.visitTypeParameter(tree);
        }
        public void visitMethodDef(JCMethodDecl tree) {
            if (tree.recvparam != null &&
                    !tree.recvparam.vartype.type.isErroneous()) {
                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
                        tree.recvparam.vartype.type.tsym);
            }
            if (tree.restype != null && tree.restype.type != null) {
                validateAnnotatedType(tree.restype, tree.restype.type);
            }
            if (sigOnly) {
                scan(tree.mods);
                scan(tree.restype);
                scan(tree.typarams);
                scan(tree.recvparam);
                scan(tree.params);
                scan(tree.thrown);
            } else {
                scan(tree.defaultValue);
                scan(tree.body);
            }
        }
        public void visitVarDef(final JCVariableDecl tree) {
            if (tree.sym != null && tree.sym.type != null)
                validateAnnotatedType(tree.vartype, tree.sym.type);
            scan(tree.mods);
            scan(tree.vartype);
            if (!sigOnly) {
                scan(tree.init);
            }
        }
        public void visitTypeCast(JCTypeCast tree) {
            if (tree.clazz != null && tree.clazz.type != null)
                validateAnnotatedType(tree.clazz, tree.clazz.type);
            super.visitTypeCast(tree);
        }
        public void visitTypeTest(JCInstanceOf tree) {
            if (tree.clazz != null && tree.clazz.type != null)
                validateAnnotatedType(tree.clazz, tree.clazz.type);
            super.visitTypeTest(tree);
        }
        public void visitNewClass(JCNewClass tree) {
            if (tree.clazz != null && tree.clazz.type != null) {
                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
                            tree.clazz.type.tsym);
                }
                if (tree.def != null) {
                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
                }

                validateAnnotatedType(tree.clazz, tree.clazz.type);
            }
            super.visitNewClass(tree);
        }
        public void visitNewArray(JCNewArray tree) {
            if (tree.elemtype != null && tree.elemtype.type != null) {
                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
                            tree.elemtype.type.tsym);
                }
                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
            }
            super.visitNewArray(tree);
        }
        public void visitClassDef(JCClassDecl tree) {
            if (sigOnly) {
                scan(tree.mods);
                scan(tree.typarams);
                scan(tree.extending);
                scan(tree.implementing);
            }
            for (JCTree member : tree.defs) {
                if (member.hasTag(Tag.CLASSDEF)) {
                    continue;
                }
                scan(member);
            }
        }
        public void visitBlock(JCBlock tree) {
            if (!sigOnly) {
                scan(tree.stats);
            }
        }

        /* I would want to model this after
         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
         * and override visitSelect and visitTypeApply.
         * However, we only set the annotated type in the top-level type
         * of the symbol.
         * Therefore, we need to override each individual location where a type
         * can occur.
         */
        private void validateAnnotatedType(final JCTree errtree, final Type type) {
            // System.out.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);

            if (type.isPrimitiveOrVoid()) {
                return;
            }

            JCTree enclTr = errtree;
            Type enclTy = type;

            boolean repeat = true;
            while (repeat) {
                if (enclTr.hasTag(TYPEAPPLY)) {
                    List<Type> tyargs = enclTy.getTypeArguments();
                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
                    if (trargs.length() > 0) {
                        // Nothing to do for diamonds
                        if (tyargs.length() == trargs.length()) {
                            for (int i = 0; i < tyargs.length(); ++i) {
                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
                            }
                        }
                        // If the lengths don't match, it's either a diamond
                        // or some nested type that redundantly provides
                        // type arguments in the tree.
                    }

                    // Look at the clazz part of a generic type
                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
                }

                if (enclTr.hasTag(SELECT)) {
                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
                    if (enclTy != null &&
                            !enclTy.hasTag(NONE)) {
                        enclTy = enclTy.getEnclosingType();
                    }
                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
                    if (enclTy == null ||
                            enclTy.hasTag(NONE)) {
                        if (at.getAnnotations().size() == 1) {
                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
                        } else {
                            ListBuffer<Attribute.Compound> comps = new ListBuffer<Attribute.Compound>();
                            for (JCAnnotation an : at.getAnnotations()) {
                                comps.add(an.attribute);
                            }
                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
                        }
                        repeat = false;
                    }
                    enclTr = at.underlyingType;
                    // enclTy doesn't need to be changed
                } else if (enclTr.hasTag(IDENT)) {
                    repeat = false;
                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
                    JCWildcard wc = (JCWildcard) enclTr;
                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getExtendsBound());
                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getSuperBound());
                    } else {
                        // Nothing to do for UNBOUND
                    }
                    repeat = false;
                } else if (enclTr.hasTag(TYPEARRAY)) {
                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy.unannotatedType()).getComponentType());
                    repeat = false;
                } else if (enclTr.hasTag(TYPEUNION)) {
                    JCTypeUnion ut = (JCTypeUnion) enclTr;
                    for (JCTree t : ut.getTypeAlternatives()) {
                        validateAnnotatedType(t, t.type);
                    }
                    repeat = false;
                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
                    for (JCTree t : it.getBounds()) {
                        validateAnnotatedType(t, t.type);
                    }
                    repeat = false;
                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
                    repeat = false;
                } else {
                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
                            " within: "+ errtree + " with kind: " + errtree.getKind());
                }
            }
        }

        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
                Symbol sym) {
            // Ensure that no declaration annotations are present.
            // Note that a tree type might be an AnnotatedType with
            // empty annotations, if only declaration annotations were given.
            // This method will raise an error for such a type.
            for (JCAnnotation ai : annotations) {
                if (!ai.type.isErroneous() &&
                        typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
                    log.error(ai.pos(), "annotation.type.not.applicable");
                }
            }
        }
    };

    // <editor-fold desc="post-attribution visitor">

    /**
     * Handle missing types/symbols in an AST. This routine is useful when
     * the compiler has encountered some errors (which might have ended up
     * terminating attribution abruptly); if the compiler is used in fail-over
     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
     * prevents NPE to be progagated during subsequent compilation steps.
     */
    public void postAttr(JCTree tree) {
        new PostAttrAnalyzer().scan(tree);
    }

    class PostAttrAnalyzer extends TreeScanner {

        private void initTypeIfNeeded(JCTree that) {
            if (that.type == null) {
                if (that.hasTag(METHODDEF)) {
                    that.type = dummyMethodType((JCMethodDecl)that);
                } else {
                    that.type = syms.unknownType;
                }
            }
        }

        /* Construct a dummy method type. If we have a method declaration,
         * and the declared return type is void, then use that return type
         * instead of UNKNOWN to avoid spurious error messages in lambda
         * bodies (see:JDK-8041704).
         */
        private Type dummyMethodType(JCMethodDecl md) {
            Type restype = syms.unknownType;
            if (md != null && md.restype.hasTag(TYPEIDENT)) {
                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
                if (prim.typetag == VOID)
                    restype = syms.voidType;
            }
            return new MethodType(List.<Type>nil(), restype,
                                  List.<Type>nil(), syms.methodClass);
        }
        private Type dummyMethodType() {
            return dummyMethodType(null);
        }

        @Override
        public void scan(JCTree tree) {
            if (tree == null) return;
            if (tree instanceof JCExpression) {
                initTypeIfNeeded(tree);
            }
            super.scan(tree);
        }

        @Override
        public void visitIdent(JCIdent that) {
            if (that.sym == null) {
                that.sym = syms.unknownSymbol;
            }
        }

        @Override
        public void visitSelect(JCFieldAccess that) {
            if (that.sym == null) {
                that.sym = syms.unknownSymbol;
            }
            super.visitSelect(that);
        }

        @Override
        public void visitClassDef(JCClassDecl that) {
            initTypeIfNeeded(that);
            if (that.sym == null) {
                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
            }
            super.visitClassDef(that);
        }

        @Override
        public void visitMethodDef(JCMethodDecl that) {
            initTypeIfNeeded(that);
            if (that.sym == null) {
                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
            }
            super.visitMethodDef(that);
        }

        @Override
        public void visitVarDef(JCVariableDecl that) {
            initTypeIfNeeded(that);
            if (that.sym == null) {
                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
                that.sym.adr = 0;
            }
            super.visitVarDef(that);
        }

        @Override
        public void visitNewClass(JCNewClass that) {
            if (that.constructor == null) {
                that.constructor = new MethodSymbol(0, names.init,
                        dummyMethodType(), syms.noSymbol);
            }
            if (that.constructorType == null) {
                that.constructorType = syms.unknownType;
            }
            super.visitNewClass(that);
        }

        @Override
        public void visitAssignop(JCAssignOp that) {
            if (that.operator == null) {
                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
                        -1, syms.noSymbol);
            }
            super.visitAssignop(that);
        }

        @Override
        public void visitBinary(JCBinary that) {
            if (that.operator == null) {
                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
                        -1, syms.noSymbol);
            }
            super.visitBinary(that);
        }

        @Override
        public void visitUnary(JCUnary that) {
            if (that.operator == null) {
                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
                        -1, syms.noSymbol);
            }
            super.visitUnary(that);
        }

        @Override
        public void visitLambda(JCLambda that) {
            super.visitLambda(that);
            if (that.targets == null) {
                that.targets = List.nil();
            }
        }

        @Override
        public void visitReference(JCMemberReference that) {
            super.visitReference(that);
            if (that.sym == null) {
                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
                        syms.noSymbol);
            }
            if (that.targets == null) {
                that.targets = List.nil();
            }
        }
    }
    // </editor-fold>
}