aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/gc_implementation/parNew/parNewGeneration.cpp
blob: 4d407dbfa92ef4e98b2d1c6df28f7be035d832e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
/*
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
#include "gc_implementation/parNew/parNewGeneration.hpp"
#include "gc_implementation/parNew/parOopClosures.inline.hpp"
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
#include "gc_implementation/shared/ageTable.hpp"
#include "gc_implementation/shared/copyFailedInfo.hpp"
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
#include "gc_implementation/shared/parGCAllocBuffer.inline.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "memory/defNewGeneration.inline.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generation.hpp"
#include "memory/generation.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "memory/sharedHeap.hpp"
#include "memory/space.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/handles.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/copy.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/workgroup.hpp"

PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC

#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif
ParScanThreadState::ParScanThreadState(Space* to_space_,
                                       ParNewGeneration* gen_,
                                       Generation* old_gen_,
                                       int thread_num_,
                                       ObjToScanQueueSet* work_queue_set_,
                                       Stack<oop, mtGC>* overflow_stacks_,
                                       size_t desired_plab_sz_,
                                       ParallelTaskTerminator& term_) :
  _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
  _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
  _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  _ageTable(false), // false ==> not the global age table, no perf data.
  _to_space_alloc_buffer(desired_plab_sz_),
  _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
  _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
  _older_gen_closure(gen_, this),
  _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
                      &_to_space_root_closure, gen_, &_old_gen_root_closure,
                      work_queue_set_, &term_),
  _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
  _keep_alive_closure(&_scan_weak_ref_closure),
  _strong_roots_time(0.0), _term_time(0.0)
{
  #if TASKQUEUE_STATS
  _term_attempts = 0;
  _overflow_refills = 0;
  _overflow_refill_objs = 0;
  #endif // TASKQUEUE_STATS

  _survivor_chunk_array =
    (ChunkArray*) old_gen()->get_data_recorder(thread_num());
  _hash_seed = 17;  // Might want to take time-based random value.
  _start = os::elapsedTime();
  _old_gen_closure.set_generation(old_gen_);
  _old_gen_root_closure.set_generation(old_gen_);
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif

void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
                                              size_t plab_word_size) {
  ChunkArray* sca = survivor_chunk_array();
  if (sca != NULL) {
    // A non-null SCA implies that we want the PLAB data recorded.
    sca->record_sample(plab_start, plab_word_size);
  }
}

bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
  return new_obj->is_objArray() &&
         arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
         new_obj != old_obj;
}

void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  assert(!old_gen()->is_in(old), "must be in young generation.");

  objArrayOop obj = objArrayOop(old->forwardee());
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
    bool ok = work_queue()->push(old);
    assert(ok, "just popped, push must be okay");
  } else {
    // Restore length so that it can be used if there
    // is a promotion failure and forwarding pointers
    // must be removed.
    arrayOop(old)->set_length(end);
  }

  // process our set of indices (include header in first chunk)
  // should make sure end is even (aligned to HeapWord in case of compressed oops)
  if ((HeapWord *)obj < young_old_boundary()) {
    // object is in to_space
    obj->oop_iterate_range(&_to_space_closure, start, end);
  } else {
    // object is in old generation
    obj->oop_iterate_range(&_old_gen_closure, start, end);
  }
}


void ParScanThreadState::trim_queues(int max_size) {
  ObjToScanQueue* queue = work_queue();
  do {
    while (queue->size() > (juint)max_size) {
      oop obj_to_scan;
      if (queue->pop_local(obj_to_scan)) {
        if ((HeapWord *)obj_to_scan < young_old_boundary()) {
          if (obj_to_scan->is_objArray() &&
              obj_to_scan->is_forwarded() &&
              obj_to_scan->forwardee() != obj_to_scan) {
            scan_partial_array_and_push_remainder(obj_to_scan);
          } else {
            // object is in to_space
            obj_to_scan->oop_iterate(&_to_space_closure);
          }
        } else {
          // object is in old generation
          obj_to_scan->oop_iterate(&_old_gen_closure);
        }
      }
    }
    // For the  case of compressed oops, we have a private, non-shared
    // overflow stack, so we eagerly drain it so as to more evenly
    // distribute load early. Note: this may be good to do in
    // general rather than delay for the final stealing phase.
    // If applicable, we'll transfer a set of objects over to our
    // work queue, allowing them to be stolen and draining our
    // private overflow stack.
  } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
}

bool ParScanThreadState::take_from_overflow_stack() {
  assert(ParGCUseLocalOverflow, "Else should not call");
  assert(young_gen()->overflow_list() == NULL, "Error");
  ObjToScanQueue* queue = work_queue();
  Stack<oop, mtGC>* const of_stack = overflow_stack();
  const size_t num_overflow_elems = of_stack->size();
  const size_t space_available = queue->max_elems() - queue->size();
  const size_t num_take_elems = MIN3(space_available / 4,
                                     ParGCDesiredObjsFromOverflowList,
                                     num_overflow_elems);
  // Transfer the most recent num_take_elems from the overflow
  // stack to our work queue.
  for (size_t i = 0; i != num_take_elems; i++) {
    oop cur = of_stack->pop();
    oop obj_to_push = cur->forwardee();
    assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
    assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
    assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
    if (should_be_partially_scanned(obj_to_push, cur)) {
      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
      obj_to_push = cur;
    }
    bool ok = queue->push(obj_to_push);
    assert(ok, "Should have succeeded");
  }
  assert(young_gen()->overflow_list() == NULL, "Error");
  return num_take_elems > 0;  // was something transferred?
}

void ParScanThreadState::push_on_overflow_stack(oop p) {
  assert(ParGCUseLocalOverflow, "Else should not call");
  overflow_stack()->push(p);
  assert(young_gen()->overflow_list() == NULL, "Error");
}

HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {

  // Otherwise, if the object is small enough, try to reallocate the
  // buffer.
  HeapWord* obj = NULL;
  if (!_to_space_full) {
    ParGCAllocBuffer* const plab = to_space_alloc_buffer();
    Space*            const sp   = to_space();
    if (word_sz * 100 <
        ParallelGCBufferWastePct * plab->word_sz()) {
      // Is small enough; abandon this buffer and start a new one.
      plab->retire(false, false);
      size_t buf_size = plab->word_sz();
      HeapWord* buf_space = sp->par_allocate(buf_size);
      if (buf_space == NULL) {
        const size_t min_bytes =
          ParGCAllocBuffer::min_size() << LogHeapWordSize;
        size_t free_bytes = sp->free();
        while(buf_space == NULL && free_bytes >= min_bytes) {
          buf_size = free_bytes >> LogHeapWordSize;
          assert(buf_size == (size_t)align_object_size(buf_size),
                 "Invariant");
          buf_space  = sp->par_allocate(buf_size);
          free_bytes = sp->free();
        }
      }
      if (buf_space != NULL) {
        plab->set_word_size(buf_size);
        plab->set_buf(buf_space);
        record_survivor_plab(buf_space, buf_size);
        obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
        // Note that we cannot compare buf_size < word_sz below
        // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
        assert(obj != NULL || plab->words_remaining() < word_sz,
               "Else should have been able to allocate");
        // It's conceivable that we may be able to use the
        // buffer we just grabbed for subsequent small requests
        // even if not for this one.
      } else {
        // We're used up.
        _to_space_full = true;
      }

    } else {
      // Too large; allocate the object individually.
      obj = sp->par_allocate(word_sz);
    }
  }
  return obj;
}


void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
                                                size_t word_sz) {
  // Is the alloc in the current alloc buffer?
  if (to_space_alloc_buffer()->contains(obj)) {
    assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
           "Should contain whole object.");
    to_space_alloc_buffer()->undo_allocation(obj, word_sz);
  } else {
    CollectedHeap::fill_with_object(obj, word_sz);
  }
}

void ParScanThreadState::print_promotion_failure_size() {
  if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
    gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
                        _thread_num, _promotion_failed_info.first_size());
  }
}

class ParScanThreadStateSet: private ResourceArray {
public:
  // Initializes states for the specified number of threads;
  ParScanThreadStateSet(int                     num_threads,
                        Space&                  to_space,
                        ParNewGeneration&       gen,
                        Generation&             old_gen,
                        ObjToScanQueueSet&      queue_set,
                        Stack<oop, mtGC>*       overflow_stacks_,
                        size_t                  desired_plab_sz,
                        ParallelTaskTerminator& term);

  ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }

  inline ParScanThreadState& thread_state(int i);

  void trace_promotion_failed(YoungGCTracer& gc_tracer);
  void reset(int active_workers, bool promotion_failed);
  void flush();

  #if TASKQUEUE_STATS
  static void
    print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  void print_termination_stats(outputStream* const st = gclog_or_tty);
  static void
    print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
  void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
  void reset_stats();
  #endif // TASKQUEUE_STATS

private:
  ParallelTaskTerminator& _term;
  ParNewGeneration&       _gen;
  Generation&             _next_gen;
 public:
  bool is_valid(int id) const { return id < length(); }
  ParallelTaskTerminator* terminator() { return &_term; }
};


ParScanThreadStateSet::ParScanThreadStateSet(
  int num_threads, Space& to_space, ParNewGeneration& gen,
  Generation& old_gen, ObjToScanQueueSet& queue_set,
  Stack<oop, mtGC>* overflow_stacks,
  size_t desired_plab_sz, ParallelTaskTerminator& term)
  : ResourceArray(sizeof(ParScanThreadState), num_threads),
    _gen(gen), _next_gen(old_gen), _term(term)
{
  assert(num_threads > 0, "sanity check!");
  assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
         "overflow_stack allocation mismatch");
  // Initialize states.
  for (int i = 0; i < num_threads; ++i) {
    new ((ParScanThreadState*)_data + i)
        ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
                           overflow_stacks, desired_plab_sz, term);
  }
}

inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
{
  assert(i >= 0 && i < length(), "sanity check!");
  return ((ParScanThreadState*)_data)[i];
}

void ParScanThreadStateSet::trace_promotion_failed(YoungGCTracer& gc_tracer) {
  for (int i = 0; i < length(); ++i) {
    if (thread_state(i).promotion_failed()) {
      gc_tracer.report_promotion_failed(thread_state(i).promotion_failed_info());
      thread_state(i).promotion_failed_info().reset();
    }
  }
}

void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
{
  _term.reset_for_reuse(active_threads);
  if (promotion_failed) {
    for (int i = 0; i < length(); ++i) {
      thread_state(i).print_promotion_failure_size();
    }
  }
}

#if TASKQUEUE_STATS
void
ParScanThreadState::reset_stats()
{
  taskqueue_stats().reset();
  _term_attempts = 0;
  _overflow_refills = 0;
  _overflow_refill_objs = 0;
}

void ParScanThreadStateSet::reset_stats()
{
  for (int i = 0; i < length(); ++i) {
    thread_state(i).reset_stats();
  }
}

void
ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- "
                   "-------termination-------");
  st->print_raw_cr("thr     ms        ms       %   "
                   "    ms       %   attempts");
  st->print_raw_cr("--- --------- --------- ------ "
                   "--------- ------ --------");
}

void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
{
  print_termination_stats_hdr(st);

  for (int i = 0; i < length(); ++i) {
    const ParScanThreadState & pss = thread_state(i);
    const double elapsed_ms = pss.elapsed_time() * 1000.0;
    const double s_roots_ms = pss.strong_roots_time() * 1000.0;
    const double term_ms = pss.term_time() * 1000.0;
    st->print_cr("%3d %9.2f %9.2f %6.2f "
                 "%9.2f %6.2f " SIZE_FORMAT_W(8),
                 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
                 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
  }
}

// Print stats related to work queue activity.
void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
{
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
  for (int i = 0; i < length(); ++i) {
    const ParScanThreadState & pss = thread_state(i);
    const TaskQueueStats & stats = pss.taskqueue_stats();
    st->print("%3d ", i); stats.print(st); st->cr();
    totals += stats;

    if (pss.overflow_refills() > 0) {
      st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
                   SIZE_FORMAT_W(10) " overflow objects",
                   pss.overflow_refills(), pss.overflow_refill_objs());
    }
  }
  st->print("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}
#endif // TASKQUEUE_STATS

void ParScanThreadStateSet::flush()
{
  // Work in this loop should be kept as lightweight as
  // possible since this might otherwise become a bottleneck
  // to scaling. Should we add heavy-weight work into this
  // loop, consider parallelizing the loop into the worker threads.
  for (int i = 0; i < length(); ++i) {
    ParScanThreadState& par_scan_state = thread_state(i);

    // Flush stats related to To-space PLAB activity and
    // retire the last buffer.
    par_scan_state.to_space_alloc_buffer()->
      flush_stats_and_retire(_gen.plab_stats(),
                             true /* end_of_gc */,
                             false /* retain */);

    // Every thread has its own age table.  We need to merge
    // them all into one.
    ageTable *local_table = par_scan_state.age_table();
    _gen.age_table()->merge(local_table);

    // Inform old gen that we're done.
    _next_gen.par_promote_alloc_done(i);
    _next_gen.par_oop_since_save_marks_iterate_done(i);
  }

  if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
    // We need to call this even when ResizeOldPLAB is disabled
    // so as to avoid breaking some asserts. While we may be able
    // to avoid this by reorganizing the code a bit, I am loathe
    // to do that unless we find cases where ergo leads to bad
    // performance.
    CFLS_LAB::compute_desired_plab_size();
  }
}

ParScanClosure::ParScanClosure(ParNewGeneration* g,
                               ParScanThreadState* par_scan_state) :
  OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
{
  assert(_g->level() == 0, "Optimized for youngest generation");
  _boundary = _g->reserved().end();
}

void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }

void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }

void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }

void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }

ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
                                             ParScanThreadState* par_scan_state)
  : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
{}

void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }

#ifdef WIN32
#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
#endif

ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
    ParScanThreadState* par_scan_state_,
    ParScanWithoutBarrierClosure* to_space_closure_,
    ParScanWithBarrierClosure* old_gen_closure_,
    ParRootScanWithoutBarrierClosure* to_space_root_closure_,
    ParNewGeneration* par_gen_,
    ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
    ObjToScanQueueSet* task_queues_,
    ParallelTaskTerminator* terminator_) :

    _par_scan_state(par_scan_state_),
    _to_space_closure(to_space_closure_),
    _old_gen_closure(old_gen_closure_),
    _to_space_root_closure(to_space_root_closure_),
    _old_gen_root_closure(old_gen_root_closure_),
    _par_gen(par_gen_),
    _task_queues(task_queues_),
    _terminator(terminator_)
{}

void ParEvacuateFollowersClosure::do_void() {
  ObjToScanQueue* work_q = par_scan_state()->work_queue();

  while (true) {

    // Scan to-space and old-gen objs until we run out of both.
    oop obj_to_scan;
    par_scan_state()->trim_queues(0);

    // We have no local work, attempt to steal from other threads.

    // attempt to steal work from promoted.
    if (task_queues()->steal(par_scan_state()->thread_num(),
                             par_scan_state()->hash_seed(),
                             obj_to_scan)) {
      bool res = work_q->push(obj_to_scan);
      assert(res, "Empty queue should have room for a push.");

      //   if successful, goto Start.
      continue;

      // try global overflow list.
    } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
      continue;
    }

    // Otherwise, offer termination.
    par_scan_state()->start_term_time();
    if (terminator()->offer_termination()) break;
    par_scan_state()->end_term_time();
  }
  assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
         "Broken overflow list?");
  // Finish the last termination pause.
  par_scan_state()->end_term_time();
}

ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
                HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
    AbstractGangTask("ParNewGeneration collection"),
    _gen(gen), _next_gen(next_gen),
    _young_old_boundary(young_old_boundary),
    _state_set(state_set)
  {}

// Reset the terminator for the given number of
// active threads.
void ParNewGenTask::set_for_termination(int active_workers) {
  _state_set->reset(active_workers, _gen->promotion_failed());
  // Should the heap be passed in?  There's only 1 for now so
  // grab it instead.
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  gch->set_n_termination(active_workers);
}

void ParNewGenTask::work(uint worker_id) {
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  // Since this is being done in a separate thread, need new resource
  // and handle marks.
  ResourceMark rm;
  HandleMark hm;
  // We would need multiple old-gen queues otherwise.
  assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");

  Generation* old_gen = gch->next_gen(_gen);

  ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
  assert(_state_set->is_valid(worker_id), "Should not have been called");

  par_scan_state.set_young_old_boundary(_young_old_boundary);

  KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
                                      gch->rem_set()->klass_rem_set());
  CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
                                           &par_scan_state.to_space_root_closure(),
                                           false);

  par_scan_state.start_strong_roots();
  gch->gen_process_roots(_gen->level(),
                         true,  // Process younger gens, if any,
                                // as strong roots.
                         false, // no scope; this is parallel code
                         SharedHeap::SO_ScavengeCodeCache,
                         GenCollectedHeap::StrongAndWeakRoots,
                         &par_scan_state.to_space_root_closure(),
                         &par_scan_state.older_gen_closure(),
                         &cld_scan_closure);

  par_scan_state.end_strong_roots();

  // "evacuate followers".
  par_scan_state.evacuate_followers_closure().do_void();
}

#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif
ParNewGeneration::
ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
  : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
  _overflow_list(NULL),
  _is_alive_closure(this),
  _plab_stats(YoungPLABSize, PLABWeight)
{
  NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
  NOT_PRODUCT(_num_par_pushes = 0;)
  _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
  guarantee(_task_queues != NULL, "task_queues allocation failure.");

  for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
    ObjToScanQueue *q = new ObjToScanQueue();
    guarantee(q != NULL, "work_queue Allocation failure.");
    _task_queues->register_queue(i1, q);
  }

  for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
    _task_queues->queue(i2)->initialize();

  _overflow_stacks = NULL;
  if (ParGCUseLocalOverflow) {

    // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
    // with ','
    typedef Stack<oop, mtGC> GCOopStack;

    _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
    for (size_t i = 0; i < ParallelGCThreads; ++i) {
      new (_overflow_stacks + i) Stack<oop, mtGC>();
    }
  }

  if (UsePerfData) {
    EXCEPTION_MARK;
    ResourceMark rm;

    const char* cname =
         PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
    PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
                                     ParallelGCThreads, CHECK);
  }
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif

// ParNewGeneration::
ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
  DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}

template <class T>
void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
#ifdef ASSERT
  {
    assert(!oopDesc::is_null(*p), "expected non-null ref");
    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
    // We never expect to see a null reference being processed
    // as a weak reference.
    assert(obj->is_oop(), "expected an oop while scanning weak refs");
  }
#endif // ASSERT

  _par_cl->do_oop_nv(p);

  if (Universe::heap()->is_in_reserved(p)) {
    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
    _rs->write_ref_field_gc_par(p, obj);
  }
}

void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }

// ParNewGeneration::
KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
  DefNewGeneration::KeepAliveClosure(cl) {}

template <class T>
void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
#ifdef ASSERT
  {
    assert(!oopDesc::is_null(*p), "expected non-null ref");
    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
    // We never expect to see a null reference being processed
    // as a weak reference.
    assert(obj->is_oop(), "expected an oop while scanning weak refs");
  }
#endif // ASSERT

  _cl->do_oop_nv(p);

  if (Universe::heap()->is_in_reserved(p)) {
    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
    _rs->write_ref_field_gc_par(p, obj);
  }
}

void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }

template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
    if ((HeapWord*)obj < _boundary) {
      assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
      oop new_obj = obj->is_forwarded()
                      ? obj->forwardee()
                      : _g->DefNewGeneration::copy_to_survivor_space(obj);
      oopDesc::encode_store_heap_oop_not_null(p, new_obj);
    }
    if (_gc_barrier) {
      // If p points to a younger generation, mark the card.
      if ((HeapWord*)obj < _gen_boundary) {
        _rs->write_ref_field_gc_par(p, obj);
      }
    }
  }
}

void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }

class ParNewRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
public:
  ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
                         Generation& next_gen,
                         HeapWord* young_old_boundary,
                         ParScanThreadStateSet& state_set);

private:
  virtual void work(uint worker_id);
  virtual void set_for_termination(int active_workers) {
    _state_set.terminator()->reset_for_reuse(active_workers);
  }
private:
  ParNewGeneration&      _gen;
  ProcessTask&           _task;
  Generation&            _next_gen;
  HeapWord*              _young_old_boundary;
  ParScanThreadStateSet& _state_set;
};

ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
    ProcessTask& task, ParNewGeneration& gen,
    Generation& next_gen,
    HeapWord* young_old_boundary,
    ParScanThreadStateSet& state_set)
  : AbstractGangTask("ParNewGeneration parallel reference processing"),
    _gen(gen),
    _task(task),
    _next_gen(next_gen),
    _young_old_boundary(young_old_boundary),
    _state_set(state_set)
{
}

void ParNewRefProcTaskProxy::work(uint worker_id)
{
  ResourceMark rm;
  HandleMark hm;
  ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
  par_scan_state.set_young_old_boundary(_young_old_boundary);
  _task.work(worker_id, par_scan_state.is_alive_closure(),
             par_scan_state.keep_alive_closure(),
             par_scan_state.evacuate_followers_closure());
}

class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _task;

public:
  ParNewRefEnqueueTaskProxy(EnqueueTask& task)
    : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
      _task(task)
  { }

  virtual void work(uint worker_id)
  {
    _task.work(worker_id);
  }
};


void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
{
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  assert(gch->kind() == CollectedHeap::GenCollectedHeap,
         "not a generational heap");
  FlexibleWorkGang* workers = gch->workers();
  assert(workers != NULL, "Need parallel worker threads.");
  _state_set.reset(workers->active_workers(), _generation.promotion_failed());
  ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
                                 _generation.reserved().end(), _state_set);
  workers->run_task(&rp_task);
  _state_set.reset(0 /* bad value in debug if not reset */,
                   _generation.promotion_failed());
}

void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
{
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  FlexibleWorkGang* workers = gch->workers();
  assert(workers != NULL, "Need parallel worker threads.");
  ParNewRefEnqueueTaskProxy enq_task(task);
  workers->run_task(&enq_task);
}

void ParNewRefProcTaskExecutor::set_single_threaded_mode()
{
  _state_set.flush();
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  gch->set_par_threads(0);  // 0 ==> non-parallel.
  gch->save_marks();
}

ScanClosureWithParBarrier::
ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
  ScanClosure(g, gc_barrier) {}

EvacuateFollowersClosureGeneral::
EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
                                OopsInGenClosure* cur,
                                OopsInGenClosure* older) :
  _gch(gch), _level(level),
  _scan_cur_or_nonheap(cur), _scan_older(older)
{}

void EvacuateFollowersClosureGeneral::do_void() {
  do {
    // Beware: this call will lead to closure applications via virtual
    // calls.
    _gch->oop_since_save_marks_iterate(_level,
                                       _scan_cur_or_nonheap,
                                       _scan_older);
  } while (!_gch->no_allocs_since_save_marks(_level));
}


// A Generation that does parallel young-gen collection.

bool ParNewGeneration::_avoid_promotion_undo = false;

void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set, ParNewTracer& gc_tracer) {
  assert(_promo_failure_scan_stack.is_empty(), "post condition");
  _promo_failure_scan_stack.clear(true); // Clear cached segments.

  remove_forwarding_pointers();
  if (PrintGCDetails) {
    gclog_or_tty->print(" (promotion failed)");
  }
  // All the spaces are in play for mark-sweep.
  swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
  from()->set_next_compaction_space(to());
  gch->set_incremental_collection_failed();
  // Inform the next generation that a promotion failure occurred.
  _next_gen->promotion_failure_occurred();

  // Trace promotion failure in the parallel GC threads
  thread_state_set.trace_promotion_failed(gc_tracer);
  // Single threaded code may have reported promotion failure to the global state
  if (_promotion_failed_info.has_failed()) {
    gc_tracer.report_promotion_failed(_promotion_failed_info);
  }
  // Reset the PromotionFailureALot counters.
  NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
}

void ParNewGeneration::collect(bool   full,
                               bool   clear_all_soft_refs,
                               size_t size,
                               bool   is_tlab) {
  assert(full || size > 0, "otherwise we don't want to collect");

  GenCollectedHeap* gch = GenCollectedHeap::heap();

  _gc_timer->register_gc_start();

  assert(gch->kind() == CollectedHeap::GenCollectedHeap,
    "not a CMS generational heap");
  AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
  FlexibleWorkGang* workers = gch->workers();
  assert(workers != NULL, "Need workgang for parallel work");
  int active_workers =
      AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
                                   workers->active_workers(),
                                   Threads::number_of_non_daemon_threads());
  workers->set_active_workers(active_workers);
  assert(gch->n_gens() == 2,
         "Par collection currently only works with single older gen.");
  _next_gen = gch->next_gen(this);
  // Do we have to avoid promotion_undo?
  if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
    set_avoid_promotion_undo(true);
  }

  // If the next generation is too full to accommodate worst-case promotion
  // from this generation, pass on collection; let the next generation
  // do it.
  if (!collection_attempt_is_safe()) {
    gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
    return;
  }
  assert(to()->is_empty(), "Else not collection_attempt_is_safe");

  ParNewTracer gc_tracer;
  gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
  gch->trace_heap_before_gc(&gc_tracer);

  init_assuming_no_promotion_failure();

  if (UseAdaptiveSizePolicy) {
    set_survivor_overflow(false);
    size_policy->minor_collection_begin();
  }

  GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
  // Capture heap used before collection (for printing).
  size_t gch_prev_used = gch->used();

  SpecializationStats::clear();

  age_table()->clear();
  to()->clear(SpaceDecorator::Mangle);

  gch->save_marks();
  assert(workers != NULL, "Need parallel worker threads.");
  int n_workers = active_workers;

  // Set the correct parallelism (number of queues) in the reference processor
  ref_processor()->set_active_mt_degree(n_workers);

  // Always set the terminator for the active number of workers
  // because only those workers go through the termination protocol.
  ParallelTaskTerminator _term(n_workers, task_queues());
  ParScanThreadStateSet thread_state_set(workers->active_workers(),
                                         *to(), *this, *_next_gen, *task_queues(),
                                         _overflow_stacks, desired_plab_sz(), _term);

  ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
  gch->set_par_threads(n_workers);
  gch->rem_set()->prepare_for_younger_refs_iterate(true);
  // It turns out that even when we're using 1 thread, doing the work in a
  // separate thread causes wide variance in run times.  We can't help this
  // in the multi-threaded case, but we special-case n=1 here to get
  // repeatable measurements of the 1-thread overhead of the parallel code.
  if (n_workers > 1) {
    GenCollectedHeap::StrongRootsScope srs(gch);
    workers->run_task(&tsk);
  } else {
    GenCollectedHeap::StrongRootsScope srs(gch);
    tsk.work(0);
  }
  thread_state_set.reset(0 /* Bad value in debug if not reset */,
                         promotion_failed());

  // Process (weak) reference objects found during scavenge.
  ReferenceProcessor* rp = ref_processor();
  IsAliveClosure is_alive(this);
  ScanWeakRefClosure scan_weak_ref(this);
  KeepAliveClosure keep_alive(&scan_weak_ref);
  ScanClosure               scan_without_gc_barrier(this, false);
  ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
  set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
  EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
    &scan_without_gc_barrier, &scan_with_gc_barrier);
  rp->setup_policy(clear_all_soft_refs);
  // Can  the mt_degree be set later (at run_task() time would be best)?
  rp->set_active_mt_degree(active_workers);
  ReferenceProcessorStats stats;
  if (rp->processing_is_mt()) {
    ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
    stats = rp->process_discovered_references(&is_alive, &keep_alive,
                                              &evacuate_followers, &task_executor,
                                              _gc_timer, gc_tracer.gc_id());
  } else {
    thread_state_set.flush();
    gch->set_par_threads(0);  // 0 ==> non-parallel.
    gch->save_marks();
    stats = rp->process_discovered_references(&is_alive, &keep_alive,
                                              &evacuate_followers, NULL,
                                              _gc_timer, gc_tracer.gc_id());
  }
  gc_tracer.report_gc_reference_stats(stats);
  if (!promotion_failed()) {
    // Swap the survivor spaces.
    eden()->clear(SpaceDecorator::Mangle);
    from()->clear(SpaceDecorator::Mangle);
    if (ZapUnusedHeapArea) {
      // This is now done here because of the piece-meal mangling which
      // can check for valid mangling at intermediate points in the
      // collection(s).  When a minor collection fails to collect
      // sufficient space resizing of the young generation can occur
      // an redistribute the spaces in the young generation.  Mangle
      // here so that unzapped regions don't get distributed to
      // other spaces.
      to()->mangle_unused_area();
    }
    swap_spaces();

    // A successful scavenge should restart the GC time limit count which is
    // for full GC's.
    size_policy->reset_gc_overhead_limit_count();

    assert(to()->is_empty(), "to space should be empty now");

    adjust_desired_tenuring_threshold();
  } else {
    handle_promotion_failed(gch, thread_state_set, gc_tracer);
  }
  // set new iteration safe limit for the survivor spaces
  from()->set_concurrent_iteration_safe_limit(from()->top());
  to()->set_concurrent_iteration_safe_limit(to()->top());

  if (ResizePLAB) {
    plab_stats()->adjust_desired_plab_sz(n_workers);
  }

  if (PrintGC && !PrintGCDetails) {
    gch->print_heap_change(gch_prev_used);
  }

  if (PrintGCDetails && ParallelGCVerbose) {
    TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
    TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
  }

  if (UseAdaptiveSizePolicy) {
    size_policy->minor_collection_end(gch->gc_cause());
    size_policy->avg_survived()->sample(from()->used());
  }

  // We need to use a monotonically non-deccreasing time in ms
  // or we will see time-warp warnings and os::javaTimeMillis()
  // does not guarantee monotonicity.
  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  update_time_of_last_gc(now);

  SpecializationStats::print();

  rp->set_enqueuing_is_done(true);
  if (rp->processing_is_mt()) {
    ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
    rp->enqueue_discovered_references(&task_executor);
  } else {
    rp->enqueue_discovered_references(NULL);
  }
  rp->verify_no_references_recorded();

  gch->trace_heap_after_gc(&gc_tracer);
  gc_tracer.report_tenuring_threshold(tenuring_threshold());

  _gc_timer->register_gc_end();

  gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
}

static int sum;
void ParNewGeneration::waste_some_time() {
  for (int i = 0; i < 100; i++) {
    sum += i;
  }
}

static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);

// Because of concurrency, there are times where an object for which
// "is_forwarded()" is true contains an "interim" forwarding pointer
// value.  Such a value will soon be overwritten with a real value.
// This method requires "obj" to have a forwarding pointer, and waits, if
// necessary for a real one to be inserted, and returns it.

oop ParNewGeneration::real_forwardee(oop obj) {
  oop forward_ptr = obj->forwardee();
  if (forward_ptr != ClaimedForwardPtr) {
    return forward_ptr;
  } else {
    return real_forwardee_slow(obj);
  }
}

oop ParNewGeneration::real_forwardee_slow(oop obj) {
  // Spin-read if it is claimed but not yet written by another thread.
  oop forward_ptr = obj->forwardee();
  while (forward_ptr == ClaimedForwardPtr) {
    waste_some_time();
    assert(obj->is_forwarded(), "precondition");
    forward_ptr = obj->forwardee();
  }
  return forward_ptr;
}

#ifdef ASSERT
bool ParNewGeneration::is_legal_forward_ptr(oop p) {
  return
    (_avoid_promotion_undo && p == ClaimedForwardPtr)
    || Universe::heap()->is_in_reserved(p);
}
#endif

void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
  if (m->must_be_preserved_for_promotion_failure(obj)) {
    // We should really have separate per-worker stacks, rather
    // than use locking of a common pair of stacks.
    MutexLocker ml(ParGCRareEvent_lock);
    preserve_mark(obj, m);
  }
}

// Multiple GC threads may try to promote an object.  If the object
// is successfully promoted, a forwarding pointer will be installed in
// the object in the young generation.  This method claims the right
// to install the forwarding pointer before it copies the object,
// thus avoiding the need to undo the copy as in
// copy_to_survivor_space_avoiding_with_undo.

oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
        ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  // In the sequential version, this assert also says that the object is
  // not forwarded.  That might not be the case here.  It is the case that
  // the caller observed it to be not forwarded at some time in the past.
  assert(is_in_reserved(old), "shouldn't be scavenging this oop");

  // The sequential code read "old->age()" below.  That doesn't work here,
  // since the age is in the mark word, and that might be overwritten with
  // a forwarding pointer by a parallel thread.  So we must save the mark
  // word in a local and then analyze it.
  oopDesc dummyOld;
  dummyOld.set_mark(m);
  assert(!dummyOld.is_forwarded(),
         "should not be called with forwarding pointer mark word.");

  oop new_obj = NULL;
  oop forward_ptr;

  // Try allocating obj in to-space (unless too old)
  if (dummyOld.age() < tenuring_threshold()) {
    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
    if (new_obj == NULL) {
      set_survivor_overflow(true);
    }
  }

  if (new_obj == NULL) {
    // Either to-space is full or we decided to promote
    // try allocating obj tenured

    // Attempt to install a null forwarding pointer (atomically),
    // to claim the right to install the real forwarding pointer.
    forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
    if (forward_ptr != NULL) {
      // someone else beat us to it.
        return real_forwardee(old);
    }

    new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
                                       old, m, sz);

    if (new_obj == NULL) {
      // promotion failed, forward to self
      _promotion_failed = true;
      new_obj = old;

      preserve_mark_if_necessary(old, m);
      par_scan_state->register_promotion_failure(sz);
    }

    old->forward_to(new_obj);
    forward_ptr = NULL;
  } else {
    // Is in to-space; do copying ourselves.
    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
    forward_ptr = old->forward_to_atomic(new_obj);
    // Restore the mark word copied above.
    new_obj->set_mark(m);
    // Increment age if obj still in new generation
    new_obj->incr_age();
    par_scan_state->age_table()->add(new_obj, sz);
  }
  assert(new_obj != NULL, "just checking");

#ifndef PRODUCT
  // This code must come after the CAS test, or it will print incorrect
  // information.
  if (TraceScavenge) {
    gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
       is_in_reserved(new_obj) ? "copying" : "tenuring",
       new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
  }
#endif

  if (forward_ptr == NULL) {
    oop obj_to_push = new_obj;
    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
      // Length field used as index of next element to be scanned.
      // Real length can be obtained from real_forwardee()
      arrayOop(old)->set_length(0);
      obj_to_push = old;
      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
             "push forwarded object");
    }
    // Push it on one of the queues of to-be-scanned objects.
    bool simulate_overflow = false;
    NOT_PRODUCT(
      if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
        // simulate a stack overflow
        simulate_overflow = true;
      }
    )
    if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
      // Add stats for overflow pushes.
      if (Verbose && PrintGCDetails) {
        gclog_or_tty->print("queue overflow!\n");
      }
      push_on_overflow_list(old, par_scan_state);
      TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
    }

    return new_obj;
  }

  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  // allocate it?
  if (is_in_reserved(new_obj)) {
    // Must be in to_space.
    assert(to()->is_in_reserved(new_obj), "Checking");
    if (forward_ptr == ClaimedForwardPtr) {
      // Wait to get the real forwarding pointer value.
      forward_ptr = real_forwardee(old);
    }
    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  }

  return forward_ptr;
}


// Multiple GC threads may try to promote the same object.  If two
// or more GC threads copy the object, only one wins the race to install
// the forwarding pointer.  The other threads have to undo their copy.

oop ParNewGeneration::copy_to_survivor_space_with_undo(
        ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {

  // In the sequential version, this assert also says that the object is
  // not forwarded.  That might not be the case here.  It is the case that
  // the caller observed it to be not forwarded at some time in the past.
  assert(is_in_reserved(old), "shouldn't be scavenging this oop");

  // The sequential code read "old->age()" below.  That doesn't work here,
  // since the age is in the mark word, and that might be overwritten with
  // a forwarding pointer by a parallel thread.  So we must save the mark
  // word here, install it in a local oopDesc, and then analyze it.
  oopDesc dummyOld;
  dummyOld.set_mark(m);
  assert(!dummyOld.is_forwarded(),
         "should not be called with forwarding pointer mark word.");

  bool failed_to_promote = false;
  oop new_obj = NULL;
  oop forward_ptr;

  // Try allocating obj in to-space (unless too old)
  if (dummyOld.age() < tenuring_threshold()) {
    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
    if (new_obj == NULL) {
      set_survivor_overflow(true);
    }
  }

  if (new_obj == NULL) {
    // Either to-space is full or we decided to promote
    // try allocating obj tenured
    new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
                                       old, m, sz);

    if (new_obj == NULL) {
      // promotion failed, forward to self
      forward_ptr = old->forward_to_atomic(old);
      new_obj = old;

      if (forward_ptr != NULL) {
        return forward_ptr;   // someone else succeeded
      }

      _promotion_failed = true;
      failed_to_promote = true;

      preserve_mark_if_necessary(old, m);
      par_scan_state->register_promotion_failure(sz);
    }
  } else {
    // Is in to-space; do copying ourselves.
    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
    // Restore the mark word copied above.
    new_obj->set_mark(m);
    // Increment age if new_obj still in new generation
    new_obj->incr_age();
    par_scan_state->age_table()->add(new_obj, sz);
  }
  assert(new_obj != NULL, "just checking");

#ifndef PRODUCT
  // This code must come after the CAS test, or it will print incorrect
  // information.
  if (TraceScavenge) {
    gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
       is_in_reserved(new_obj) ? "copying" : "tenuring",
       new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
  }
#endif

  // Now attempt to install the forwarding pointer (atomically).
  // We have to copy the mark word before overwriting with forwarding
  // ptr, so we can restore it below in the copy.
  if (!failed_to_promote) {
    forward_ptr = old->forward_to_atomic(new_obj);
  }

  if (forward_ptr == NULL) {
    oop obj_to_push = new_obj;
    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
      // Length field used as index of next element to be scanned.
      // Real length can be obtained from real_forwardee()
      arrayOop(old)->set_length(0);
      obj_to_push = old;
      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
             "push forwarded object");
    }
    // Push it on one of the queues of to-be-scanned objects.
    bool simulate_overflow = false;
    NOT_PRODUCT(
      if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
        // simulate a stack overflow
        simulate_overflow = true;
      }
    )
    if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
      // Add stats for overflow pushes.
      push_on_overflow_list(old, par_scan_state);
      TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
    }

    return new_obj;
  }

  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  // allocate it?
  if (is_in_reserved(new_obj)) {
    // Must be in to_space.
    assert(to()->is_in_reserved(new_obj), "Checking");
    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  } else {
    assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
    _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
                                      (HeapWord*)new_obj, sz);
  }

  return forward_ptr;
}

#ifndef PRODUCT
// It's OK to call this multi-threaded;  the worst thing
// that can happen is that we'll get a bunch of closely
// spaced simulated oveflows, but that's OK, in fact
// probably good as it would exercise the overflow code
// under contention.
bool ParNewGeneration::should_simulate_overflow() {
  if (_overflow_counter-- <= 0) { // just being defensive
    _overflow_counter = ParGCWorkQueueOverflowInterval;
    return true;
  } else {
    return false;
  }
}
#endif

// In case we are using compressed oops, we need to be careful.
// If the object being pushed is an object array, then its length
// field keeps track of the "grey boundary" at which the next
// incremental scan will be done (see ParGCArrayScanChunk).
// When using compressed oops, this length field is kept in the
// lower 32 bits of the erstwhile klass word and cannot be used
// for the overflow chaining pointer (OCP below). As such the OCP
// would itself need to be compressed into the top 32-bits in this
// case. Unfortunately, see below, in the event that we have a
// promotion failure, the node to be pushed on the list can be
// outside of the Java heap, so the heap-based pointer compression
// would not work (we would have potential aliasing between C-heap
// and Java-heap pointers). For this reason, when using compressed
// oops, we simply use a worker-thread-local, non-shared overflow
// list in the form of a growable array, with a slightly different
// overflow stack draining strategy. If/when we start using fat
// stacks here, we can go back to using (fat) pointer chains
// (although some performance comparisons would be useful since
// single global lists have their own performance disadvantages
// as we were made painfully aware not long ago, see 6786503).
#define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
  assert(is_in_reserved(from_space_obj), "Should be from this generation");
  if (ParGCUseLocalOverflow) {
    // In the case of compressed oops, we use a private, not-shared
    // overflow stack.
    par_scan_state->push_on_overflow_stack(from_space_obj);
  } else {
    assert(!UseCompressedOops, "Error");
    // if the object has been forwarded to itself, then we cannot
    // use the klass pointer for the linked list.  Instead we have
    // to allocate an oopDesc in the C-Heap and use that for the linked list.
    // XXX This is horribly inefficient when a promotion failure occurs
    // and should be fixed. XXX FIX ME !!!
#ifndef PRODUCT
    Atomic::inc_ptr(&_num_par_pushes);
    assert(_num_par_pushes > 0, "Tautology");
#endif
    if (from_space_obj->forwardee() == from_space_obj) {
      oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
      listhead->forward_to(from_space_obj);
      from_space_obj = listhead;
    }
    oop observed_overflow_list = _overflow_list;
    oop cur_overflow_list;
    do {
      cur_overflow_list = observed_overflow_list;
      if (cur_overflow_list != BUSY) {
        from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
      } else {
        from_space_obj->set_klass_to_list_ptr(NULL);
      }
      observed_overflow_list =
        (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
    } while (cur_overflow_list != observed_overflow_list);
  }
}

bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
  bool res;

  if (ParGCUseLocalOverflow) {
    res = par_scan_state->take_from_overflow_stack();
  } else {
    assert(!UseCompressedOops, "Error");
    res = take_from_overflow_list_work(par_scan_state);
  }
  return res;
}


// *NOTE*: The overflow list manipulation code here and
// in CMSCollector:: are very similar in shape,
// except that in the CMS case we thread the objects
// directly into the list via their mark word, and do
// not need to deal with special cases below related
// to chunking of object arrays and promotion failure
// handling.
// CR 6797058 has been filed to attempt consolidation of
// the common code.
// Because of the common code, if you make any changes in
// the code below, please check the CMS version to see if
// similar changes might be needed.
// See CMSCollector::par_take_from_overflow_list() for
// more extensive documentation comments.
bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
  ObjToScanQueue* work_q = par_scan_state->work_queue();
  // How many to take?
  size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
                                 (size_t)ParGCDesiredObjsFromOverflowList);

  assert(!UseCompressedOops, "Error");
  assert(par_scan_state->overflow_stack() == NULL, "Error");
  if (_overflow_list == NULL) return false;

  // Otherwise, there was something there; try claiming the list.
  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
  // Trim off a prefix of at most objsFromOverflow items
  Thread* tid = Thread::current();
  size_t spin_count = (size_t)ParallelGCThreads;
  size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
  for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
    // someone grabbed it before we did ...
    // ... we spin for a short while...
    os::sleep(tid, sleep_time_millis, false);
    if (_overflow_list == NULL) {
      // nothing left to take
      return false;
    } else if (_overflow_list != BUSY) {
     // try and grab the prefix
     prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
    }
  }
  if (prefix == NULL || prefix == BUSY) {
     // Nothing to take or waited long enough
     if (prefix == NULL) {
       // Write back the NULL in case we overwrote it with BUSY above
       // and it is still the same value.
       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
     }
     return false;
  }
  assert(prefix != NULL && prefix != BUSY, "Error");
  size_t i = 1;
  oop cur = prefix;
  while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
    i++; cur = cur->list_ptr_from_klass();
  }

  // Reattach remaining (suffix) to overflow list
  if (cur->klass_or_null() == NULL) {
    // Write back the NULL in lieu of the BUSY we wrote
    // above and it is still the same value.
    if (_overflow_list == BUSY) {
      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
    }
  } else {
    assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
    oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
    cur->set_klass_to_list_ptr(NULL);     // break off suffix
    // It's possible that the list is still in the empty(busy) state
    // we left it in a short while ago; in that case we may be
    // able to place back the suffix.
    oop observed_overflow_list = _overflow_list;
    oop cur_overflow_list = observed_overflow_list;
    bool attached = false;
    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
      observed_overflow_list =
        (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
      if (cur_overflow_list == observed_overflow_list) {
        attached = true;
        break;
      } else cur_overflow_list = observed_overflow_list;
    }
    if (!attached) {
      // Too bad, someone else got in in between; we'll need to do a splice.
      // Find the last item of suffix list
      oop last = suffix;
      while (last->klass_or_null() != NULL) {
        last = last->list_ptr_from_klass();
      }
      // Atomically prepend suffix to current overflow list
      observed_overflow_list = _overflow_list;
      do {
        cur_overflow_list = observed_overflow_list;
        if (cur_overflow_list != BUSY) {
          // Do the splice ...
          last->set_klass_to_list_ptr(cur_overflow_list);
        } else { // cur_overflow_list == BUSY
          last->set_klass_to_list_ptr(NULL);
        }
        observed_overflow_list =
          (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
      } while (cur_overflow_list != observed_overflow_list);
    }
  }

  // Push objects on prefix list onto this thread's work queue
  assert(prefix != NULL && prefix != BUSY, "program logic");
  cur = prefix;
  ssize_t n = 0;
  while (cur != NULL) {
    oop obj_to_push = cur->forwardee();
    oop next        = cur->list_ptr_from_klass();
    cur->set_klass(obj_to_push->klass());
    // This may be an array object that is self-forwarded. In that case, the list pointer
    // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
    if (!is_in_reserved(cur)) {
      // This can become a scaling bottleneck when there is work queue overflow coincident
      // with promotion failure.
      oopDesc* f = cur;
      FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
    } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
      obj_to_push = cur;
    }
    bool ok = work_q->push(obj_to_push);
    assert(ok, "Should have succeeded");
    cur = next;
    n++;
  }
  TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
#ifndef PRODUCT
  assert(_num_par_pushes >= n, "Too many pops?");
  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
#endif
  return true;
}
#undef BUSY

void ParNewGeneration::ref_processor_init() {
  if (_ref_processor == NULL) {
    // Allocate and initialize a reference processor
    _ref_processor =
      new ReferenceProcessor(_reserved,                  // span
                             ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
                             (int) ParallelGCThreads,    // mt processing degree
                             refs_discovery_is_mt(),     // mt discovery
                             (int) ParallelGCThreads,    // mt discovery degree
                             refs_discovery_is_atomic(), // atomic_discovery
                             NULL);                      // is_alive_non_header
  }
}

const char* ParNewGeneration::name() const {
  return "par new generation";
}