aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp
blob: 96e4dc63dd27688e4b5477ee6538aab8f2294221 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
/*
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

#include "gc_implementation/g1/collectionSetChooser.hpp"
#include "gc_implementation/g1/g1Allocator.hpp"
#include "gc_implementation/g1/g1MMUTracker.hpp"
#include "memory/collectorPolicy.hpp"

// A G1CollectorPolicy makes policy decisions that determine the
// characteristics of the collector.  Examples include:
//   * choice of collection set.
//   * when to collect.

class HeapRegion;
class CollectionSetChooser;
class G1GCPhaseTimes;

// TraceGen0Time collects data on _both_ young and mixed evacuation pauses
// (the latter may contain non-young regions - i.e. regions that are
// technically in Gen1) while TraceGen1Time collects data about full GCs.
class TraceGen0TimeData : public CHeapObj<mtGC> {
 private:
  unsigned  _young_pause_num;
  unsigned  _mixed_pause_num;

  NumberSeq _all_stop_world_times_ms;
  NumberSeq _all_yield_times_ms;

  NumberSeq _total;
  NumberSeq _other;
  NumberSeq _root_region_scan_wait;
  NumberSeq _parallel;
  NumberSeq _ext_root_scan;
  NumberSeq _satb_filtering;
  NumberSeq _update_rs;
  NumberSeq _scan_rs;
  NumberSeq _obj_copy;
  NumberSeq _termination;
  NumberSeq _parallel_other;
  NumberSeq _clear_ct;

  void print_summary(const char* str, const NumberSeq* seq) const;
  void print_summary_sd(const char* str, const NumberSeq* seq) const;

public:
   TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  void record_start_collection(double time_to_stop_the_world_ms);
  void record_yield_time(double yield_time_ms);
  void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
  void increment_young_collection_count();
  void increment_mixed_collection_count();
  void print() const;
};

class TraceGen1TimeData : public CHeapObj<mtGC> {
 private:
  NumberSeq _all_full_gc_times;

 public:
  void record_full_collection(double full_gc_time_ms);
  void print() const;
};

// There are three command line options related to the young gen size:
// NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
// just a short form for NewSize==MaxNewSize). G1 will use its internal
// heuristics to calculate the actual young gen size, so these options
// basically only limit the range within which G1 can pick a young gen
// size. Also, these are general options taking byte sizes. G1 will
// internally work with a number of regions instead. So, some rounding
// will occur.
//
// If nothing related to the the young gen size is set on the command
// line we should allow the young gen to be between G1NewSizePercent
// and G1MaxNewSizePercent of the heap size. This means that every time
// the heap size changes, the limits for the young gen size will be
// recalculated.
//
// If only -XX:NewSize is set we should use the specified value as the
// minimum size for young gen. Still using G1MaxNewSizePercent of the
// heap as maximum.
//
// If only -XX:MaxNewSize is set we should use the specified value as the
// maximum size for young gen. Still using G1NewSizePercent of the heap
// as minimum.
//
// If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
// No updates when the heap size changes. There is a special case when
// NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
// different heuristic for calculating the collection set when we do mixed
// collection.
//
// If only -XX:NewRatio is set we should use the specified ratio of the heap
// as both min and max. This will be interpreted as "fixed" just like the
// NewSize==MaxNewSize case above. But we will update the min and max
// everytime the heap size changes.
//
// NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
// combined with either NewSize or MaxNewSize. (A warning message is printed.)
class G1YoungGenSizer : public CHeapObj<mtGC> {
private:
  enum SizerKind {
    SizerDefaults,
    SizerNewSizeOnly,
    SizerMaxNewSizeOnly,
    SizerMaxAndNewSize,
    SizerNewRatio
  };
  SizerKind _sizer_kind;
  uint _min_desired_young_length;
  uint _max_desired_young_length;
  bool _adaptive_size;
  uint calculate_default_min_length(uint new_number_of_heap_regions);
  uint calculate_default_max_length(uint new_number_of_heap_regions);

  // Update the given values for minimum and maximum young gen length in regions
  // given the number of heap regions depending on the kind of sizing algorithm.
  void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);

public:
  G1YoungGenSizer();
  // Calculate the maximum length of the young gen given the number of regions
  // depending on the sizing algorithm.
  uint max_young_length(uint number_of_heap_regions);

  void heap_size_changed(uint new_number_of_heap_regions);
  uint min_desired_young_length() {
    return _min_desired_young_length;
  }
  uint max_desired_young_length() {
    return _max_desired_young_length;
  }
  bool adaptive_young_list_length() {
    return _adaptive_size;
  }
};

class G1CollectorPolicy: public CollectorPolicy {
private:
  // either equal to the number of parallel threads, if ParallelGCThreads
  // has been set, or 1 otherwise
  int _parallel_gc_threads;

  // The number of GC threads currently active.
  uintx _no_of_gc_threads;

  enum SomePrivateConstants {
    NumPrevPausesForHeuristics = 10
  };

  G1MMUTracker* _mmu_tracker;

  void initialize_alignments();
  void initialize_flags();

  CollectionSetChooser* _collectionSetChooser;

  double _full_collection_start_sec;
  uint   _cur_collection_pause_used_regions_at_start;

  // These exclude marking times.
  TruncatedSeq* _recent_gc_times_ms;

  TruncatedSeq* _concurrent_mark_remark_times_ms;
  TruncatedSeq* _concurrent_mark_cleanup_times_ms;

  TraceGen0TimeData _trace_gen0_time_data;
  TraceGen1TimeData _trace_gen1_time_data;

  double _stop_world_start;

  // indicates whether we are in young or mixed GC mode
  bool _gcs_are_young;

  uint _young_list_target_length;
  uint _young_list_fixed_length;

  // The max number of regions we can extend the eden by while the GC
  // locker is active. This should be >= _young_list_target_length;
  uint _young_list_max_length;

  bool                  _last_gc_was_young;

  bool                  _during_marking;
  bool                  _in_marking_window;
  bool                  _in_marking_window_im;

  SurvRateGroup*        _short_lived_surv_rate_group;
  SurvRateGroup*        _survivor_surv_rate_group;
  // add here any more surv rate groups

  double                _gc_overhead_perc;

  double _reserve_factor;
  uint _reserve_regions;

  bool during_marking() {
    return _during_marking;
  }

  enum PredictionConstants {
    TruncatedSeqLength = 10
  };

  TruncatedSeq* _alloc_rate_ms_seq;
  double        _prev_collection_pause_end_ms;

  TruncatedSeq* _rs_length_diff_seq;
  TruncatedSeq* _cost_per_card_ms_seq;
  TruncatedSeq* _young_cards_per_entry_ratio_seq;
  TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
  TruncatedSeq* _cost_per_entry_ms_seq;
  TruncatedSeq* _mixed_cost_per_entry_ms_seq;
  TruncatedSeq* _cost_per_byte_ms_seq;
  TruncatedSeq* _constant_other_time_ms_seq;
  TruncatedSeq* _young_other_cost_per_region_ms_seq;
  TruncatedSeq* _non_young_other_cost_per_region_ms_seq;

  TruncatedSeq* _pending_cards_seq;
  TruncatedSeq* _rs_lengths_seq;

  TruncatedSeq* _cost_per_byte_ms_during_cm_seq;

  G1YoungGenSizer* _young_gen_sizer;

  uint _eden_cset_region_length;
  uint _survivor_cset_region_length;
  uint _old_cset_region_length;

  void init_cset_region_lengths(uint eden_cset_region_length,
                                uint survivor_cset_region_length);

  uint eden_cset_region_length()     { return _eden_cset_region_length;     }
  uint survivor_cset_region_length() { return _survivor_cset_region_length; }
  uint old_cset_region_length()      { return _old_cset_region_length;      }

  uint _free_regions_at_end_of_collection;

  size_t _recorded_rs_lengths;
  size_t _max_rs_lengths;
  double _sigma;

  size_t _rs_lengths_prediction;

  double sigma() { return _sigma; }

  // A function that prevents us putting too much stock in small sample
  // sets.  Returns a number between 2.0 and 1.0, depending on the number
  // of samples.  5 or more samples yields one; fewer scales linearly from
  // 2.0 at 1 sample to 1.0 at 5.
  double confidence_factor(int samples) {
    if (samples > 4) return 1.0;
    else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
  }

  double get_new_neg_prediction(TruncatedSeq* seq) {
    return seq->davg() - sigma() * seq->dsd();
  }

#ifndef PRODUCT
  bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
#endif // PRODUCT

  void adjust_concurrent_refinement(double update_rs_time,
                                    double update_rs_processed_buffers,
                                    double goal_ms);

  uintx no_of_gc_threads() { return _no_of_gc_threads; }
  void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }

  double _pause_time_target_ms;

  size_t _pending_cards;

public:
  // Accessors

  void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
    hr->set_eden();
    hr->install_surv_rate_group(_short_lived_surv_rate_group);
    hr->set_young_index_in_cset(young_index_in_cset);
  }

  void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
    assert(hr->is_survivor(), "pre-condition");
    hr->install_surv_rate_group(_survivor_surv_rate_group);
    hr->set_young_index_in_cset(young_index_in_cset);
  }

#ifndef PRODUCT
  bool verify_young_ages();
#endif // PRODUCT

  double get_new_prediction(TruncatedSeq* seq) {
    return MAX2(seq->davg() + sigma() * seq->dsd(),
                seq->davg() * confidence_factor(seq->num()));
  }

  void record_max_rs_lengths(size_t rs_lengths) {
    _max_rs_lengths = rs_lengths;
  }

  size_t predict_rs_length_diff() {
    return (size_t) get_new_prediction(_rs_length_diff_seq);
  }

  double predict_alloc_rate_ms() {
    return get_new_prediction(_alloc_rate_ms_seq);
  }

  double predict_cost_per_card_ms() {
    return get_new_prediction(_cost_per_card_ms_seq);
  }

  double predict_rs_update_time_ms(size_t pending_cards) {
    return (double) pending_cards * predict_cost_per_card_ms();
  }

  double predict_young_cards_per_entry_ratio() {
    return get_new_prediction(_young_cards_per_entry_ratio_seq);
  }

  double predict_mixed_cards_per_entry_ratio() {
    if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
      return predict_young_cards_per_entry_ratio();
    } else {
      return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
    }
  }

  size_t predict_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
                     predict_young_cards_per_entry_ratio());
  }

  size_t predict_non_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
                     predict_mixed_cards_per_entry_ratio());
  }

  double predict_rs_scan_time_ms(size_t card_num) {
    if (gcs_are_young()) {
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
    } else {
      return predict_mixed_rs_scan_time_ms(card_num);
    }
  }

  double predict_mixed_rs_scan_time_ms(size_t card_num) {
    if (_mixed_cost_per_entry_ms_seq->num() < 3) {
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
    } else {
      return (double) (card_num *
                       get_new_prediction(_mixed_cost_per_entry_ms_seq));
    }
  }

  double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
    if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
      return (1.1 * (double) bytes_to_copy) *
              get_new_prediction(_cost_per_byte_ms_seq);
    } else {
      return (double) bytes_to_copy *
             get_new_prediction(_cost_per_byte_ms_during_cm_seq);
    }
  }

  double predict_object_copy_time_ms(size_t bytes_to_copy) {
    if (_in_marking_window && !_in_marking_window_im) {
      return predict_object_copy_time_ms_during_cm(bytes_to_copy);
    } else {
      return (double) bytes_to_copy *
              get_new_prediction(_cost_per_byte_ms_seq);
    }
  }

  double predict_constant_other_time_ms() {
    return get_new_prediction(_constant_other_time_ms_seq);
  }

  double predict_young_other_time_ms(size_t young_num) {
    return (double) young_num *
           get_new_prediction(_young_other_cost_per_region_ms_seq);
  }

  double predict_non_young_other_time_ms(size_t non_young_num) {
    return (double) non_young_num *
           get_new_prediction(_non_young_other_cost_per_region_ms_seq);
  }

  double predict_base_elapsed_time_ms(size_t pending_cards);
  double predict_base_elapsed_time_ms(size_t pending_cards,
                                      size_t scanned_cards);
  size_t predict_bytes_to_copy(HeapRegion* hr);
  double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);

  void set_recorded_rs_lengths(size_t rs_lengths);

  uint cset_region_length()       { return young_cset_region_length() +
                                           old_cset_region_length(); }
  uint young_cset_region_length() { return eden_cset_region_length() +
                                           survivor_cset_region_length(); }

  double predict_survivor_regions_evac_time();

  void cset_regions_freed() {
    bool propagate = _last_gc_was_young && !_in_marking_window;
    _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
    _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
    // also call it on any more surv rate groups
  }

  G1MMUTracker* mmu_tracker() {
    return _mmu_tracker;
  }

  double max_pause_time_ms() {
    return _mmu_tracker->max_gc_time() * 1000.0;
  }

  double predict_remark_time_ms() {
    return get_new_prediction(_concurrent_mark_remark_times_ms);
  }

  double predict_cleanup_time_ms() {
    return get_new_prediction(_concurrent_mark_cleanup_times_ms);
  }

  // Returns an estimate of the survival rate of the region at yg-age
  // "yg_age".
  double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
    TruncatedSeq* seq = surv_rate_group->get_seq(age);
    if (seq->num() == 0)
      gclog_or_tty->print("BARF! age is %d", age);
    guarantee( seq->num() > 0, "invariant" );
    double pred = get_new_prediction(seq);
    if (pred > 1.0)
      pred = 1.0;
    return pred;
  }

  double predict_yg_surv_rate(int age) {
    return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
  }

  double accum_yg_surv_rate_pred(int age) {
    return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
  }

private:
  // Statistics kept per GC stoppage, pause or full.
  TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;

  // Add a new GC of the given duration and end time to the record.
  void update_recent_gc_times(double end_time_sec, double elapsed_ms);

  // The head of the list (via "next_in_collection_set()") representing the
  // current collection set. Set from the incrementally built collection
  // set at the start of the pause.
  HeapRegion* _collection_set;

  // The number of bytes in the collection set before the pause. Set from
  // the incrementally built collection set at the start of an evacuation
  // pause, and incremented in finalize_cset() when adding old regions
  // (if any) to the collection set.
  size_t _collection_set_bytes_used_before;

  // The number of bytes copied during the GC.
  size_t _bytes_copied_during_gc;

  // The associated information that is maintained while the incremental
  // collection set is being built with young regions. Used to populate
  // the recorded info for the evacuation pause.

  enum CSetBuildType {
    Active,             // We are actively building the collection set
    Inactive            // We are not actively building the collection set
  };

  CSetBuildType _inc_cset_build_state;

  // The head of the incrementally built collection set.
  HeapRegion* _inc_cset_head;

  // The tail of the incrementally built collection set.
  HeapRegion* _inc_cset_tail;

  // The number of bytes in the incrementally built collection set.
  // Used to set _collection_set_bytes_used_before at the start of
  // an evacuation pause.
  size_t _inc_cset_bytes_used_before;

  // Used to record the highest end of heap region in collection set
  HeapWord* _inc_cset_max_finger;

  // The RSet lengths recorded for regions in the CSet. It is updated
  // by the thread that adds a new region to the CSet. We assume that
  // only one thread can be allocating a new CSet region (currently,
  // it does so after taking the Heap_lock) hence no need to
  // synchronize updates to this field.
  size_t _inc_cset_recorded_rs_lengths;

  // A concurrent refinement thread periodcially samples the young
  // region RSets and needs to update _inc_cset_recorded_rs_lengths as
  // the RSets grow. Instead of having to syncronize updates to that
  // field we accumulate them in this field and add it to
  // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
  ssize_t _inc_cset_recorded_rs_lengths_diffs;

  // The predicted elapsed time it will take to collect the regions in
  // the CSet. This is updated by the thread that adds a new region to
  // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
  // MT-safety assumptions.
  double _inc_cset_predicted_elapsed_time_ms;

  // See the comment for _inc_cset_recorded_rs_lengths_diffs.
  double _inc_cset_predicted_elapsed_time_ms_diffs;

  // Stash a pointer to the g1 heap.
  G1CollectedHeap* _g1;

  G1GCPhaseTimes* _phase_times;

  // The ratio of gc time to elapsed time, computed over recent pauses.
  double _recent_avg_pause_time_ratio;

  double recent_avg_pause_time_ratio() {
    return _recent_avg_pause_time_ratio;
  }

  // At the end of a pause we check the heap occupancy and we decide
  // whether we will start a marking cycle during the next pause. If
  // we decide that we want to do that, we will set this parameter to
  // true. So, this parameter will stay true between the end of a
  // pause and the beginning of a subsequent pause (not necessarily
  // the next one, see the comments on the next field) when we decide
  // that we will indeed start a marking cycle and do the initial-mark
  // work.
  volatile bool _initiate_conc_mark_if_possible;

  // If initiate_conc_mark_if_possible() is set at the beginning of a
  // pause, it is a suggestion that the pause should start a marking
  // cycle by doing the initial-mark work. However, it is possible
  // that the concurrent marking thread is still finishing up the
  // previous marking cycle (e.g., clearing the next marking
  // bitmap). If that is the case we cannot start a new cycle and
  // we'll have to wait for the concurrent marking thread to finish
  // what it is doing. In this case we will postpone the marking cycle
  // initiation decision for the next pause. When we eventually decide
  // to start a cycle, we will set _during_initial_mark_pause which
  // will stay true until the end of the initial-mark pause and it's
  // the condition that indicates that a pause is doing the
  // initial-mark work.
  volatile bool _during_initial_mark_pause;

  bool _last_young_gc;

  // This set of variables tracks the collector efficiency, in order to
  // determine whether we should initiate a new marking.
  double _cur_mark_stop_world_time_ms;
  double _mark_remark_start_sec;
  double _mark_cleanup_start_sec;

  // Update the young list target length either by setting it to the
  // desired fixed value or by calculating it using G1's pause
  // prediction model. If no rs_lengths parameter is passed, predict
  // the RS lengths using the prediction model, otherwise use the
  // given rs_lengths as the prediction.
  void update_young_list_target_length(size_t rs_lengths = (size_t) -1);

  // Calculate and return the minimum desired young list target
  // length. This is the minimum desired young list length according
  // to the user's inputs.
  uint calculate_young_list_desired_min_length(uint base_min_length);

  // Calculate and return the maximum desired young list target
  // length. This is the maximum desired young list length according
  // to the user's inputs.
  uint calculate_young_list_desired_max_length();

  // Calculate and return the maximum young list target length that
  // can fit into the pause time goal. The parameters are: rs_lengths
  // represent the prediction of how large the young RSet lengths will
  // be, base_min_length is the alreay existing number of regions in
  // the young list, min_length and max_length are the desired min and
  // max young list length according to the user's inputs.
  uint calculate_young_list_target_length(size_t rs_lengths,
                                          uint base_min_length,
                                          uint desired_min_length,
                                          uint desired_max_length);

  // Check whether a given young length (young_length) fits into the
  // given target pause time and whether the prediction for the amount
  // of objects to be copied for the given length will fit into the
  // given free space (expressed by base_free_regions).  It is used by
  // calculate_young_list_target_length().
  bool predict_will_fit(uint young_length, double base_time_ms,
                        uint base_free_regions, double target_pause_time_ms);

  // Calculate the minimum number of old regions we'll add to the CSet
  // during a mixed GC.
  uint calc_min_old_cset_length();

  // Calculate the maximum number of old regions we'll add to the CSet
  // during a mixed GC.
  uint calc_max_old_cset_length();

  // Returns the given amount of uncollected reclaimable space
  // as a percentage of the current heap capacity.
  double reclaimable_bytes_perc(size_t reclaimable_bytes);

public:

  G1CollectorPolicy();

  virtual G1CollectorPolicy* as_g1_policy() { return this; }

  virtual CollectorPolicy::Name kind() {
    return CollectorPolicy::G1CollectorPolicyKind;
  }

  G1GCPhaseTimes* phase_times() const { return _phase_times; }

  // Check the current value of the young list RSet lengths and
  // compare it against the last prediction. If the current value is
  // higher, recalculate the young list target length prediction.
  void revise_young_list_target_length_if_necessary();

  // This should be called after the heap is resized.
  void record_new_heap_size(uint new_number_of_regions);

  void init();

  // Create jstat counters for the policy.
  virtual void initialize_gc_policy_counters();

  virtual HeapWord* mem_allocate_work(size_t size,
                                      bool is_tlab,
                                      bool* gc_overhead_limit_was_exceeded);

  // This method controls how a collector handles one or more
  // of its generations being fully allocated.
  virtual HeapWord* satisfy_failed_allocation(size_t size,
                                              bool is_tlab);

  BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }

  bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);

  // Record the start and end of an evacuation pause.
  void record_collection_pause_start(double start_time_sec);
  void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);

  // Record the start and end of a full collection.
  void record_full_collection_start();
  void record_full_collection_end();

  // Must currently be called while the world is stopped.
  void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);

  // Record start and end of remark.
  void record_concurrent_mark_remark_start();
  void record_concurrent_mark_remark_end();

  // Record start, end, and completion of cleanup.
  void record_concurrent_mark_cleanup_start();
  void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
  void record_concurrent_mark_cleanup_completed();

  // Records the information about the heap size for reporting in
  // print_detailed_heap_transition
  void record_heap_size_info_at_start(bool full);

  // Print heap sizing transition (with less and more detail).
  void print_heap_transition();
  void print_detailed_heap_transition(bool full = false);

  void record_stop_world_start();
  void record_concurrent_pause();

  // Record how much space we copied during a GC. This is typically
  // called when a GC alloc region is being retired.
  void record_bytes_copied_during_gc(size_t bytes) {
    _bytes_copied_during_gc += bytes;
  }

  // The amount of space we copied during a GC.
  size_t bytes_copied_during_gc() {
    return _bytes_copied_during_gc;
  }

  // Determine whether there are candidate regions so that the
  // next GC should be mixed. The two action strings are used
  // in the ergo output when the method returns true or false.
  bool next_gc_should_be_mixed(const char* true_action_str,
                               const char* false_action_str);

  // Choose a new collection set.  Marks the chosen regions as being
  // "in_collection_set", and links them together.  The head and number of
  // the collection set are available via access methods.
  void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);

  // The head of the list (via "next_in_collection_set()") representing the
  // current collection set.
  HeapRegion* collection_set() { return _collection_set; }

  void clear_collection_set() { _collection_set = NULL; }

  // Add old region "hr" to the CSet.
  void add_old_region_to_cset(HeapRegion* hr);

  // Incremental CSet Support

  // The head of the incrementally built collection set.
  HeapRegion* inc_cset_head() { return _inc_cset_head; }

  // The tail of the incrementally built collection set.
  HeapRegion* inc_set_tail() { return _inc_cset_tail; }

  // Initialize incremental collection set info.
  void start_incremental_cset_building();

  // Perform any final calculations on the incremental CSet fields
  // before we can use them.
  void finalize_incremental_cset_building();

  void clear_incremental_cset() {
    _inc_cset_head = NULL;
    _inc_cset_tail = NULL;
  }

  // Stop adding regions to the incremental collection set
  void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }

  // Add information about hr to the aggregated information for the
  // incrementally built collection set.
  void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);

  // Update information about hr in the aggregated information for
  // the incrementally built collection set.
  void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);

private:
  // Update the incremental cset information when adding a region
  // (should not be called directly).
  void add_region_to_incremental_cset_common(HeapRegion* hr);

public:
  // Add hr to the LHS of the incremental collection set.
  void add_region_to_incremental_cset_lhs(HeapRegion* hr);

  // Add hr to the RHS of the incremental collection set.
  void add_region_to_incremental_cset_rhs(HeapRegion* hr);

#ifndef PRODUCT
  void print_collection_set(HeapRegion* list_head, outputStream* st);
#endif // !PRODUCT

  bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }

  bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }

  // This sets the initiate_conc_mark_if_possible() flag to start a
  // new cycle, as long as we are not already in one. It's best if it
  // is called during a safepoint when the test whether a cycle is in
  // progress or not is stable.
  bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);

  // This is called at the very beginning of an evacuation pause (it
  // has to be the first thing that the pause does). If
  // initiate_conc_mark_if_possible() is true, and the concurrent
  // marking thread has completed its work during the previous cycle,
  // it will set during_initial_mark_pause() to so that the pause does
  // the initial-mark work and start a marking cycle.
  void decide_on_conc_mark_initiation();

  // If an expansion would be appropriate, because recent GC overhead had
  // exceeded the desired limit, return an amount to expand by.
  virtual size_t expansion_amount();

  // Print tracing information.
  void print_tracing_info() const;

  // Print stats on young survival ratio
  void print_yg_surv_rate_info() const;

  void finished_recalculating_age_indexes(bool is_survivors) {
    if (is_survivors) {
      _survivor_surv_rate_group->finished_recalculating_age_indexes();
    } else {
      _short_lived_surv_rate_group->finished_recalculating_age_indexes();
    }
    // do that for any other surv rate groups
  }

  size_t young_list_target_length() const { return _young_list_target_length; }

  bool is_young_list_full();

  bool can_expand_young_list();

  uint young_list_max_length() {
    return _young_list_max_length;
  }

  bool gcs_are_young() {
    return _gcs_are_young;
  }
  void set_gcs_are_young(bool gcs_are_young) {
    _gcs_are_young = gcs_are_young;
  }

  bool adaptive_young_list_length() {
    return _young_gen_sizer->adaptive_young_list_length();
  }

private:
  //
  // Survivor regions policy.
  //

  // Current tenuring threshold, set to 0 if the collector reaches the
  // maximum amount of survivors regions.
  uint _tenuring_threshold;

  // The limit on the number of regions allocated for survivors.
  uint _max_survivor_regions;

  // For reporting purposes.
  // The value of _heap_bytes_before_gc is also used to calculate
  // the cost of copying.

  size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
  size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
  size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
  size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC

  size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
  size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC

  // The amount of survivor regions after a collection.
  uint _recorded_survivor_regions;
  // List of survivor regions.
  HeapRegion* _recorded_survivor_head;
  HeapRegion* _recorded_survivor_tail;

  ageTable _survivors_age_table;

public:
  uint tenuring_threshold() const { return _tenuring_threshold; }

  static const uint REGIONS_UNLIMITED = (uint) -1;

  uint max_regions(InCSetState dest) {
    switch (dest.value()) {
      case InCSetState::Young:
        return _max_survivor_regions;
      case InCSetState::Old:
        return REGIONS_UNLIMITED;
      default:
        assert(false, err_msg("Unknown dest state: " CSETSTATE_FORMAT, dest.value()));
        break;
    }
    // keep some compilers happy
    return 0;
  }

  void note_start_adding_survivor_regions() {
    _survivor_surv_rate_group->start_adding_regions();
  }

  void note_stop_adding_survivor_regions() {
    _survivor_surv_rate_group->stop_adding_regions();
  }

  void record_survivor_regions(uint regions,
                               HeapRegion* head,
                               HeapRegion* tail) {
    _recorded_survivor_regions = regions;
    _recorded_survivor_head    = head;
    _recorded_survivor_tail    = tail;
  }

  uint recorded_survivor_regions() {
    return _recorded_survivor_regions;
  }

  void record_thread_age_table(ageTable* age_table) {
    _survivors_age_table.merge_par(age_table);
  }

  void update_max_gc_locker_expansion();

  // Calculates survivor space parameters.
  void update_survivors_policy();

  virtual void post_heap_initialize();
};

// This should move to some place more general...

// If we have "n" measurements, and we've kept track of their "sum" and the
// "sum_of_squares" of the measurements, this returns the variance of the
// sequence.
inline double variance(int n, double sum_of_squares, double sum) {
  double n_d = (double)n;
  double avg = sum/n_d;
  return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
}

#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP