aboutsummaryrefslogtreecommitdiff
path: root/include/benchmark/benchmark.h
blob: 08cfe29da344ec720acff15f18b923f6c0ab9a40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Support for registering benchmarks for functions.

/* Example usage:
// Define a function that executes the code to be measured a
// specified number of times:
static void BM_StringCreation(benchmark::State& state) {
  for (auto _ : state)
    std::string empty_string;
}

// Register the function as a benchmark
BENCHMARK(BM_StringCreation);

// Define another benchmark
static void BM_StringCopy(benchmark::State& state) {
  std::string x = "hello";
  for (auto _ : state)
    std::string copy(x);
}
BENCHMARK(BM_StringCopy);

// Augment the main() program to invoke benchmarks if specified
// via the --benchmark_filter command line flag.  E.g.,
//       my_unittest --benchmark_filter=all
//       my_unittest --benchmark_filter=BM_StringCreation
//       my_unittest --benchmark_filter=String
//       my_unittest --benchmark_filter='Copy|Creation'
int main(int argc, char** argv) {
  benchmark::Initialize(&argc, argv);
  benchmark::RunSpecifiedBenchmarks();
  benchmark::Shutdown();
  return 0;
}

// Sometimes a family of microbenchmarks can be implemented with
// just one routine that takes an extra argument to specify which
// one of the family of benchmarks to run.  For example, the following
// code defines a family of microbenchmarks for measuring the speed
// of memcpy() calls of different lengths:

static void BM_memcpy(benchmark::State& state) {
  char* src = new char[state.range(0)]; char* dst = new char[state.range(0)];
  memset(src, 'x', state.range(0));
  for (auto _ : state)
    memcpy(dst, src, state.range(0));
  state.SetBytesProcessed(state.iterations() * state.range(0));
  delete[] src; delete[] dst;
}
BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);

// The preceding code is quite repetitive, and can be replaced with the
// following short-hand.  The following invocation will pick a few
// appropriate arguments in the specified range and will generate a
// microbenchmark for each such argument.
BENCHMARK(BM_memcpy)->Range(8, 8<<10);

// You might have a microbenchmark that depends on two inputs.  For
// example, the following code defines a family of microbenchmarks for
// measuring the speed of set insertion.
static void BM_SetInsert(benchmark::State& state) {
  set<int> data;
  for (auto _ : state) {
    state.PauseTiming();
    data = ConstructRandomSet(state.range(0));
    state.ResumeTiming();
    for (int j = 0; j < state.range(1); ++j)
      data.insert(RandomNumber());
  }
}
BENCHMARK(BM_SetInsert)
   ->Args({1<<10, 128})
   ->Args({2<<10, 128})
   ->Args({4<<10, 128})
   ->Args({8<<10, 128})
   ->Args({1<<10, 512})
   ->Args({2<<10, 512})
   ->Args({4<<10, 512})
   ->Args({8<<10, 512});

// The preceding code is quite repetitive, and can be replaced with
// the following short-hand.  The following macro will pick a few
// appropriate arguments in the product of the two specified ranges
// and will generate a microbenchmark for each such pair.
BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});

// For more complex patterns of inputs, passing a custom function
// to Apply allows programmatic specification of an
// arbitrary set of arguments to run the microbenchmark on.
// The following example enumerates a dense range on
// one parameter, and a sparse range on the second.
static void CustomArguments(benchmark::internal::Benchmark* b) {
  for (int i = 0; i <= 10; ++i)
    for (int j = 32; j <= 1024*1024; j *= 8)
      b->Args({i, j});
}
BENCHMARK(BM_SetInsert)->Apply(CustomArguments);

// Templated microbenchmarks work the same way:
// Produce then consume 'size' messages 'iters' times
// Measures throughput in the absence of multiprogramming.
template <class Q> int BM_Sequential(benchmark::State& state) {
  Q q;
  typename Q::value_type v;
  for (auto _ : state) {
    for (int i = state.range(0); i--; )
      q.push(v);
    for (int e = state.range(0); e--; )
      q.Wait(&v);
  }
  // actually messages, not bytes:
  state.SetBytesProcessed(state.iterations() * state.range(0));
}
BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);

Use `Benchmark::MinTime(double t)` to set the minimum time used to run the
benchmark. This option overrides the `benchmark_min_time` flag.

void BM_test(benchmark::State& state) {
 ... body ...
}
BENCHMARK(BM_test)->MinTime(2.0); // Run for at least 2 seconds.

In a multithreaded test, it is guaranteed that none of the threads will start
until all have reached the loop start, and all will have finished before any
thread exits the loop body. As such, any global setup or teardown you want to
do can be wrapped in a check against the thread index:

static void BM_MultiThreaded(benchmark::State& state) {
  if (state.thread_index() == 0) {
    // Setup code here.
  }
  for (auto _ : state) {
    // Run the test as normal.
  }
  if (state.thread_index() == 0) {
    // Teardown code here.
  }
}
BENCHMARK(BM_MultiThreaded)->Threads(4);


If a benchmark runs a few milliseconds it may be hard to visually compare the
measured times, since the output data is given in nanoseconds per default. In
order to manually set the time unit, you can specify it manually:

BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
*/

#ifndef BENCHMARK_BENCHMARK_H_
#define BENCHMARK_BENCHMARK_H_

// The _MSVC_LANG check should detect Visual Studio 2015 Update 3 and newer.
#if __cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)
#define BENCHMARK_HAS_CXX11
#endif

// This _MSC_VER check should detect VS 2017 v15.3 and newer.
#if __cplusplus >= 201703L || \
    (defined(_MSC_VER) && _MSC_VER >= 1911 && _MSVC_LANG >= 201703L)
#define BENCHMARK_HAS_CXX17
#endif

#include <stdint.h>

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iosfwd>
#include <limits>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>

#include "benchmark/export.h"

#if defined(BENCHMARK_HAS_CXX11)
#include <atomic>
#include <initializer_list>
#include <type_traits>
#include <utility>
#endif

#if defined(_MSC_VER)
#include <intrin.h>  // for _ReadWriteBarrier
#endif

#ifndef BENCHMARK_HAS_CXX11
#define BENCHMARK_DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&);                         \
  TypeName& operator=(const TypeName&)
#else
#define BENCHMARK_DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&) = delete;                \
  TypeName& operator=(const TypeName&) = delete
#endif

#ifdef BENCHMARK_HAS_CXX17
#define BENCHMARK_UNUSED [[maybe_unused]]
#elif defined(__GNUC__) || defined(__clang__)
#define BENCHMARK_UNUSED __attribute__((unused))
#else
#define BENCHMARK_UNUSED
#endif

// Used to annotate functions, methods and classes so they
// are not optimized by the compiler. Useful for tests
// where you expect loops to stay in place churning cycles
#if defined(__clang__)
#define BENCHMARK_DONT_OPTIMIZE __attribute__((optnone))
#elif defined(__GNUC__) || defined(__GNUG__)
#define BENCHMARK_DONT_OPTIMIZE __attribute__((optimize(0)))
#else
// MSVC & Intel do not have a no-optimize attribute, only line pragmas
#define BENCHMARK_DONT_OPTIMIZE
#endif

#if defined(__GNUC__) || defined(__clang__)
#define BENCHMARK_ALWAYS_INLINE __attribute__((always_inline))
#elif defined(_MSC_VER) && !defined(__clang__)
#define BENCHMARK_ALWAYS_INLINE __forceinline
#define __func__ __FUNCTION__
#else
#define BENCHMARK_ALWAYS_INLINE
#endif

#define BENCHMARK_INTERNAL_TOSTRING2(x) #x
#define BENCHMARK_INTERNAL_TOSTRING(x) BENCHMARK_INTERNAL_TOSTRING2(x)

// clang-format off
#if (defined(__GNUC__) && !defined(__NVCC__) && !defined(__NVCOMPILER)) || defined(__clang__)
#define BENCHMARK_BUILTIN_EXPECT(x, y) __builtin_expect(x, y)
#define BENCHMARK_DEPRECATED_MSG(msg) __attribute__((deprecated(msg)))
#define BENCHMARK_DISABLE_DEPRECATED_WARNING \
  _Pragma("GCC diagnostic push")             \
  _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
#define BENCHMARK_RESTORE_DEPRECATED_WARNING _Pragma("GCC diagnostic pop")
#elif defined(__NVCOMPILER)
#define BENCHMARK_BUILTIN_EXPECT(x, y) __builtin_expect(x, y)
#define BENCHMARK_DEPRECATED_MSG(msg) __attribute__((deprecated(msg)))
#define BENCHMARK_DISABLE_DEPRECATED_WARNING \
  _Pragma("diagnostic push") \
  _Pragma("diag_suppress deprecated_entity_with_custom_message")
#define BENCHMARK_RESTORE_DEPRECATED_WARNING _Pragma("diagnostic pop")
#else
#define BENCHMARK_BUILTIN_EXPECT(x, y) x
#define BENCHMARK_DEPRECATED_MSG(msg)
#define BENCHMARK_WARNING_MSG(msg)                           \
  __pragma(message(__FILE__ "(" BENCHMARK_INTERNAL_TOSTRING( \
      __LINE__) ") : warning note: " msg))
#define BENCHMARK_DISABLE_DEPRECATED_WARNING
#define BENCHMARK_RESTORE_DEPRECATED_WARNING
#endif
// clang-format on

#if defined(__GNUC__) && !defined(__clang__)
#define BENCHMARK_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#endif

#ifndef __has_builtin
#define __has_builtin(x) 0
#endif

#if defined(__GNUC__) || __has_builtin(__builtin_unreachable)
#define BENCHMARK_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
#define BENCHMARK_UNREACHABLE() __assume(false)
#else
#define BENCHMARK_UNREACHABLE() ((void)0)
#endif

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_OVERRIDE override
#else
#define BENCHMARK_OVERRIDE
#endif

#if defined(_MSC_VER)
#pragma warning(push)
// C4251: <symbol> needs to have dll-interface to be used by clients of class
#pragma warning(disable : 4251)
#endif

namespace benchmark {
class BenchmarkReporter;

// Default number of minimum benchmark running time in seconds.
const char kDefaultMinTimeStr[] = "0.5s";

// Returns the version of the library.
BENCHMARK_EXPORT std::string GetBenchmarkVersion();

BENCHMARK_EXPORT void PrintDefaultHelp();

BENCHMARK_EXPORT void Initialize(int* argc, char** argv,
                                 void (*HelperPrinterf)() = PrintDefaultHelp);
BENCHMARK_EXPORT void Shutdown();

// Report to stdout all arguments in 'argv' as unrecognized except the first.
// Returns true there is at least on unrecognized argument (i.e. 'argc' > 1).
BENCHMARK_EXPORT bool ReportUnrecognizedArguments(int argc, char** argv);

// Returns the current value of --benchmark_filter.
BENCHMARK_EXPORT std::string GetBenchmarkFilter();

// Sets a new value to --benchmark_filter. (This will override this flag's
// current value).
// Should be called after `benchmark::Initialize()`, as
// `benchmark::Initialize()` will override the flag's value.
BENCHMARK_EXPORT void SetBenchmarkFilter(std::string value);

// Returns the current value of --v (command line value for verbosity).
BENCHMARK_EXPORT int32_t GetBenchmarkVerbosity();

// Creates a default display reporter. Used by the library when no display
// reporter is provided, but also made available for external use in case a
// custom reporter should respect the `--benchmark_format` flag as a fallback
BENCHMARK_EXPORT BenchmarkReporter* CreateDefaultDisplayReporter();

// Generate a list of benchmarks matching the specified --benchmark_filter flag
// and if --benchmark_list_tests is specified return after printing the name
// of each matching benchmark. Otherwise run each matching benchmark and
// report the results.
//
// spec : Specify the benchmarks to run. If users do not specify this arg,
//        then the value of FLAGS_benchmark_filter
//        will be used.
//
// The second and third overload use the specified 'display_reporter' and
//  'file_reporter' respectively. 'file_reporter' will write to the file
//  specified
//   by '--benchmark_out'. If '--benchmark_out' is not given the
//  'file_reporter' is ignored.
//
// RETURNS: The number of matching benchmarks.
BENCHMARK_EXPORT size_t RunSpecifiedBenchmarks();
BENCHMARK_EXPORT size_t RunSpecifiedBenchmarks(std::string spec);

BENCHMARK_EXPORT size_t
RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter);
BENCHMARK_EXPORT size_t
RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter, std::string spec);

BENCHMARK_EXPORT size_t RunSpecifiedBenchmarks(
    BenchmarkReporter* display_reporter, BenchmarkReporter* file_reporter);
BENCHMARK_EXPORT size_t
RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter,
                       BenchmarkReporter* file_reporter, std::string spec);

// TimeUnit is passed to a benchmark in order to specify the order of magnitude
// for the measured time.
enum TimeUnit { kNanosecond, kMicrosecond, kMillisecond, kSecond };

BENCHMARK_EXPORT TimeUnit GetDefaultTimeUnit();

// Sets the default time unit the benchmarks use
// Has to be called before the benchmark loop to take effect
BENCHMARK_EXPORT void SetDefaultTimeUnit(TimeUnit unit);

// If a MemoryManager is registered (via RegisterMemoryManager()),
// it can be used to collect and report allocation metrics for a run of the
// benchmark.
class MemoryManager {
 public:
  static const int64_t TombstoneValue;

  struct Result {
    Result()
        : num_allocs(0),
          max_bytes_used(0),
          total_allocated_bytes(TombstoneValue),
          net_heap_growth(TombstoneValue) {}

    // The number of allocations made in total between Start and Stop.
    int64_t num_allocs;

    // The peak memory use between Start and Stop.
    int64_t max_bytes_used;

    // The total memory allocated, in bytes, between Start and Stop.
    // Init'ed to TombstoneValue if metric not available.
    int64_t total_allocated_bytes;

    // The net changes in memory, in bytes, between Start and Stop.
    // ie., total_allocated_bytes - total_deallocated_bytes.
    // Init'ed to TombstoneValue if metric not available.
    int64_t net_heap_growth;
  };

  virtual ~MemoryManager() {}

  // Implement this to start recording allocation information.
  virtual void Start() = 0;

  // Implement this to stop recording and fill out the given Result structure.
  virtual void Stop(Result& result) = 0;
};

// Register a MemoryManager instance that will be used to collect and report
// allocation measurements for benchmark runs.
BENCHMARK_EXPORT
void RegisterMemoryManager(MemoryManager* memory_manager);

// Add a key-value pair to output as part of the context stanza in the report.
BENCHMARK_EXPORT
void AddCustomContext(const std::string& key, const std::string& value);

namespace internal {
class Benchmark;
class BenchmarkImp;
class BenchmarkFamilies;

BENCHMARK_EXPORT std::map<std::string, std::string>*& GetGlobalContext();

BENCHMARK_EXPORT
void UseCharPointer(char const volatile*);

// Take ownership of the pointer and register the benchmark. Return the
// registered benchmark.
BENCHMARK_EXPORT Benchmark* RegisterBenchmarkInternal(Benchmark*);

// Ensure that the standard streams are properly initialized in every TU.
BENCHMARK_EXPORT int InitializeStreams();
BENCHMARK_UNUSED static int stream_init_anchor = InitializeStreams();

}  // namespace internal

#if (!defined(__GNUC__) && !defined(__clang__)) || defined(__pnacl__) || \
    defined(__EMSCRIPTEN__)
#define BENCHMARK_HAS_NO_INLINE_ASSEMBLY
#endif

// Force the compiler to flush pending writes to global memory. Acts as an
// effective read/write barrier
#ifdef BENCHMARK_HAS_CXX11
inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() {
  std::atomic_signal_fence(std::memory_order_acq_rel);
}
#endif

// The DoNotOptimize(...) function can be used to prevent a value or
// expression from being optimized away by the compiler. This function is
// intended to add little to no overhead.
// See: https://youtu.be/nXaxk27zwlk?t=2441
#ifndef BENCHMARK_HAS_NO_INLINE_ASSEMBLY
#if !defined(__GNUC__) || defined(__llvm__) || defined(__INTEL_COMPILER)
template <class Tp>
BENCHMARK_DEPRECATED_MSG(
    "The const-ref version of this method can permit "
    "undesired compiler optimizations in benchmarks")
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  asm volatile("" : : "r,m"(value) : "memory");
}

template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp& value) {
#if defined(__clang__)
  asm volatile("" : "+r,m"(value) : : "memory");
#else
  asm volatile("" : "+m,r"(value) : : "memory");
#endif
}

#ifdef BENCHMARK_HAS_CXX11
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp&& value) {
#if defined(__clang__)
  asm volatile("" : "+r,m"(value) : : "memory");
#else
  asm volatile("" : "+m,r"(value) : : "memory");
#endif
}
#endif
#elif defined(BENCHMARK_HAS_CXX11) && (__GNUC__ >= 5)
// Workaround for a bug with full argument copy overhead with GCC.
// See: #1340 and https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105519
template <class Tp>
BENCHMARK_DEPRECATED_MSG(
    "The const-ref version of this method can permit "
    "undesired compiler optimizations in benchmarks")
inline BENCHMARK_ALWAYS_INLINE
    typename std::enable_if<std::is_trivially_copyable<Tp>::value &&
                            (sizeof(Tp) <= sizeof(Tp*))>::type
    DoNotOptimize(Tp const& value) {
  asm volatile("" : : "r,m"(value) : "memory");
}

template <class Tp>
BENCHMARK_DEPRECATED_MSG(
    "The const-ref version of this method can permit "
    "undesired compiler optimizations in benchmarks")
inline BENCHMARK_ALWAYS_INLINE
    typename std::enable_if<!std::is_trivially_copyable<Tp>::value ||
                            (sizeof(Tp) > sizeof(Tp*))>::type
    DoNotOptimize(Tp const& value) {
  asm volatile("" : : "m"(value) : "memory");
}

template <class Tp>
inline BENCHMARK_ALWAYS_INLINE
    typename std::enable_if<std::is_trivially_copyable<Tp>::value &&
                            (sizeof(Tp) <= sizeof(Tp*))>::type
    DoNotOptimize(Tp& value) {
  asm volatile("" : "+m,r"(value) : : "memory");
}

template <class Tp>
inline BENCHMARK_ALWAYS_INLINE
    typename std::enable_if<!std::is_trivially_copyable<Tp>::value ||
                            (sizeof(Tp) > sizeof(Tp*))>::type
    DoNotOptimize(Tp& value) {
  asm volatile("" : "+m"(value) : : "memory");
}

template <class Tp>
inline BENCHMARK_ALWAYS_INLINE
    typename std::enable_if<std::is_trivially_copyable<Tp>::value &&
                            (sizeof(Tp) <= sizeof(Tp*))>::type
    DoNotOptimize(Tp&& value) {
  asm volatile("" : "+m,r"(value) : : "memory");
}

template <class Tp>
inline BENCHMARK_ALWAYS_INLINE
    typename std::enable_if<!std::is_trivially_copyable<Tp>::value ||
                            (sizeof(Tp) > sizeof(Tp*))>::type
    DoNotOptimize(Tp&& value) {
  asm volatile("" : "+m"(value) : : "memory");
}

#else
// Fallback for GCC < 5. Can add some overhead because the compiler is forced
// to use memory operations instead of operations with registers.
// TODO: Remove if GCC < 5 will be unsupported.
template <class Tp>
BENCHMARK_DEPRECATED_MSG(
    "The const-ref version of this method can permit "
    "undesired compiler optimizations in benchmarks")
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  asm volatile("" : : "m"(value) : "memory");
}

template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp& value) {
  asm volatile("" : "+m"(value) : : "memory");
}

#ifdef BENCHMARK_HAS_CXX11
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp&& value) {
  asm volatile("" : "+m"(value) : : "memory");
}
#endif
#endif

#ifndef BENCHMARK_HAS_CXX11
inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() {
  asm volatile("" : : : "memory");
}
#endif
#elif defined(_MSC_VER)
template <class Tp>
BENCHMARK_DEPRECATED_MSG(
    "The const-ref version of this method can permit "
    "undesired compiler optimizations in benchmarks")
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
  _ReadWriteBarrier();
}

#ifndef BENCHMARK_HAS_CXX11
inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() { _ReadWriteBarrier(); }
#endif
#else
#ifdef BENCHMARK_HAS_CXX11
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp&& value) {
  internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
}
#else
template <class Tp>
BENCHMARK_DEPRECATED_MSG(
    "The const-ref version of this method can permit "
    "undesired compiler optimizations in benchmarks")
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
}

template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp& value) {
  internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
}
#endif
// FIXME Add ClobberMemory() for non-gnu and non-msvc compilers, before C++11.
#endif

// This class is used for user-defined counters.
class Counter {
 public:
  enum Flags {
    kDefaults = 0,
    // Mark the counter as a rate. It will be presented divided
    // by the duration of the benchmark.
    kIsRate = 1 << 0,
    // Mark the counter as a thread-average quantity. It will be
    // presented divided by the number of threads.
    kAvgThreads = 1 << 1,
    // Mark the counter as a thread-average rate. See above.
    kAvgThreadsRate = kIsRate | kAvgThreads,
    // Mark the counter as a constant value, valid/same for *every* iteration.
    // When reporting, it will be *multiplied* by the iteration count.
    kIsIterationInvariant = 1 << 2,
    // Mark the counter as a constant rate.
    // When reporting, it will be *multiplied* by the iteration count
    // and then divided by the duration of the benchmark.
    kIsIterationInvariantRate = kIsRate | kIsIterationInvariant,
    // Mark the counter as a iteration-average quantity.
    // It will be presented divided by the number of iterations.
    kAvgIterations = 1 << 3,
    // Mark the counter as a iteration-average rate. See above.
    kAvgIterationsRate = kIsRate | kAvgIterations,

    // In the end, invert the result. This is always done last!
    kInvert = 1 << 31
  };

  enum OneK {
    // 1'000 items per 1k
    kIs1000 = 1000,
    // 1'024 items per 1k
    kIs1024 = 1024
  };

  double value;
  Flags flags;
  OneK oneK;

  BENCHMARK_ALWAYS_INLINE
  Counter(double v = 0., Flags f = kDefaults, OneK k = kIs1000)
      : value(v), flags(f), oneK(k) {}

  BENCHMARK_ALWAYS_INLINE operator double const &() const { return value; }
  BENCHMARK_ALWAYS_INLINE operator double&() { return value; }
};

// A helper for user code to create unforeseen combinations of Flags, without
// having to do this cast manually each time, or providing this operator.
Counter::Flags inline operator|(const Counter::Flags& LHS,
                                const Counter::Flags& RHS) {
  return static_cast<Counter::Flags>(static_cast<int>(LHS) |
                                     static_cast<int>(RHS));
}

// This is the container for the user-defined counters.
typedef std::map<std::string, Counter> UserCounters;

// BigO is passed to a benchmark in order to specify the asymptotic
// computational
// complexity for the benchmark. In case oAuto is selected, complexity will be
// calculated automatically to the best fit.
enum BigO { oNone, o1, oN, oNSquared, oNCubed, oLogN, oNLogN, oAuto, oLambda };

typedef int64_t ComplexityN;

typedef int64_t IterationCount;

enum StatisticUnit { kTime, kPercentage };

// BigOFunc is passed to a benchmark in order to specify the asymptotic
// computational complexity for the benchmark.
typedef double(BigOFunc)(ComplexityN);

// StatisticsFunc is passed to a benchmark in order to compute some descriptive
// statistics over all the measurements of some type
typedef double(StatisticsFunc)(const std::vector<double>&);

namespace internal {
struct Statistics {
  std::string name_;
  StatisticsFunc* compute_;
  StatisticUnit unit_;

  Statistics(const std::string& name, StatisticsFunc* compute,
             StatisticUnit unit = kTime)
      : name_(name), compute_(compute), unit_(unit) {}
};

class BenchmarkInstance;
class ThreadTimer;
class ThreadManager;
class PerfCountersMeasurement;

enum AggregationReportMode
#if defined(BENCHMARK_HAS_CXX11)
    : unsigned
#else
#endif
{
  // The mode has not been manually specified
  ARM_Unspecified = 0,
  // The mode is user-specified.
  // This may or may not be set when the following bit-flags are set.
  ARM_Default = 1U << 0U,
  // File reporter should only output aggregates.
  ARM_FileReportAggregatesOnly = 1U << 1U,
  // Display reporter should only output aggregates
  ARM_DisplayReportAggregatesOnly = 1U << 2U,
  // Both reporters should only display aggregates.
  ARM_ReportAggregatesOnly =
      ARM_FileReportAggregatesOnly | ARM_DisplayReportAggregatesOnly
};

enum Skipped
#if defined(BENCHMARK_HAS_CXX11)
    : unsigned
#endif
{
  NotSkipped = 0,
  SkippedWithMessage,
  SkippedWithError
};

}  // namespace internal

// State is passed to a running Benchmark and contains state for the
// benchmark to use.
class BENCHMARK_EXPORT State {
 public:
  struct StateIterator;
  friend struct StateIterator;

  // Returns iterators used to run each iteration of a benchmark using a
  // C++11 ranged-based for loop. These functions should not be called directly.
  //
  // REQUIRES: The benchmark has not started running yet. Neither begin nor end
  // have been called previously.
  //
  // NOTE: KeepRunning may not be used after calling either of these functions.
  inline BENCHMARK_ALWAYS_INLINE StateIterator begin();
  inline BENCHMARK_ALWAYS_INLINE StateIterator end();

  // Returns true if the benchmark should continue through another iteration.
  // NOTE: A benchmark may not return from the test until KeepRunning() has
  // returned false.
  inline bool KeepRunning();

  // Returns true iff the benchmark should run n more iterations.
  // REQUIRES: 'n' > 0.
  // NOTE: A benchmark must not return from the test until KeepRunningBatch()
  // has returned false.
  // NOTE: KeepRunningBatch() may overshoot by up to 'n' iterations.
  //
  // Intended usage:
  //   while (state.KeepRunningBatch(1000)) {
  //     // process 1000 elements
  //   }
  inline bool KeepRunningBatch(IterationCount n);

  // REQUIRES: timer is running and 'SkipWithMessage(...)' or
  //   'SkipWithError(...)' has not been called by the current thread.
  // Stop the benchmark timer.  If not called, the timer will be
  // automatically stopped after the last iteration of the benchmark loop.
  //
  // For threaded benchmarks the PauseTiming() function only pauses the timing
  // for the current thread.
  //
  // NOTE: The "real time" measurement is per-thread. If different threads
  // report different measurements the largest one is reported.
  //
  // NOTE: PauseTiming()/ResumeTiming() are relatively
  // heavyweight, and so their use should generally be avoided
  // within each benchmark iteration, if possible.
  void PauseTiming();

  // REQUIRES: timer is not running and 'SkipWithMessage(...)' or
  //   'SkipWithError(...)' has not been called by the current thread.
  // Start the benchmark timer.  The timer is NOT running on entrance to the
  // benchmark function. It begins running after control flow enters the
  // benchmark loop.
  //
  // NOTE: PauseTiming()/ResumeTiming() are relatively
  // heavyweight, and so their use should generally be avoided
  // within each benchmark iteration, if possible.
  void ResumeTiming();

  // REQUIRES: 'SkipWithMessage(...)' or 'SkipWithError(...)' has not been
  //            called previously by the current thread.
  // Report the benchmark as resulting in being skipped with the specified
  // 'msg'.
  // After this call the user may explicitly 'return' from the benchmark.
  //
  // If the ranged-for style of benchmark loop is used, the user must explicitly
  // break from the loop, otherwise all future iterations will be run.
  // If the 'KeepRunning()' loop is used the current thread will automatically
  // exit the loop at the end of the current iteration.
  //
  // For threaded benchmarks only the current thread stops executing and future
  // calls to `KeepRunning()` will block until all threads have completed
  // the `KeepRunning()` loop. If multiple threads report being skipped only the
  // first skip message is used.
  //
  // NOTE: Calling 'SkipWithMessage(...)' does not cause the benchmark to exit
  // the current scope immediately. If the function is called from within
  // the 'KeepRunning()' loop the current iteration will finish. It is the users
  // responsibility to exit the scope as needed.
  void SkipWithMessage(const std::string& msg);

  // REQUIRES: 'SkipWithMessage(...)' or 'SkipWithError(...)' has not been
  //            called previously by the current thread.
  // Report the benchmark as resulting in an error with the specified 'msg'.
  // After this call the user may explicitly 'return' from the benchmark.
  //
  // If the ranged-for style of benchmark loop is used, the user must explicitly
  // break from the loop, otherwise all future iterations will be run.
  // If the 'KeepRunning()' loop is used the current thread will automatically
  // exit the loop at the end of the current iteration.
  //
  // For threaded benchmarks only the current thread stops executing and future
  // calls to `KeepRunning()` will block until all threads have completed
  // the `KeepRunning()` loop. If multiple threads report an error only the
  // first error message is used.
  //
  // NOTE: Calling 'SkipWithError(...)' does not cause the benchmark to exit
  // the current scope immediately. If the function is called from within
  // the 'KeepRunning()' loop the current iteration will finish. It is the users
  // responsibility to exit the scope as needed.
  void SkipWithError(const std::string& msg);

  // Returns true if 'SkipWithMessage(...)' or 'SkipWithError(...)' was called.
  bool skipped() const { return internal::NotSkipped != skipped_; }

  // Returns true if an error has been reported with 'SkipWithError(...)'.
  bool error_occurred() const { return internal::SkippedWithError == skipped_; }

  // REQUIRES: called exactly once per iteration of the benchmarking loop.
  // Set the manually measured time for this benchmark iteration, which
  // is used instead of automatically measured time if UseManualTime() was
  // specified.
  //
  // For threaded benchmarks the final value will be set to the largest
  // reported values.
  void SetIterationTime(double seconds);

  // Set the number of bytes processed by the current benchmark
  // execution.  This routine is typically called once at the end of a
  // throughput oriented benchmark.
  //
  // REQUIRES: a benchmark has exited its benchmarking loop.
  BENCHMARK_ALWAYS_INLINE
  void SetBytesProcessed(int64_t bytes) {
    counters["bytes_per_second"] =
        Counter(static_cast<double>(bytes), Counter::kIsRate, Counter::kIs1024);
  }

  BENCHMARK_ALWAYS_INLINE
  int64_t bytes_processed() const {
    if (counters.find("bytes_per_second") != counters.end())
      return static_cast<int64_t>(counters.at("bytes_per_second"));
    return 0;
  }

  // If this routine is called with complexity_n > 0 and complexity report is
  // requested for the
  // family benchmark, then current benchmark will be part of the computation
  // and complexity_n will
  // represent the length of N.
  BENCHMARK_ALWAYS_INLINE
  void SetComplexityN(ComplexityN complexity_n) {
    complexity_n_ = complexity_n;
  }

  BENCHMARK_ALWAYS_INLINE
  ComplexityN complexity_length_n() const { return complexity_n_; }

  // If this routine is called with items > 0, then an items/s
  // label is printed on the benchmark report line for the currently
  // executing benchmark. It is typically called at the end of a processing
  // benchmark where a processing items/second output is desired.
  //
  // REQUIRES: a benchmark has exited its benchmarking loop.
  BENCHMARK_ALWAYS_INLINE
  void SetItemsProcessed(int64_t items) {
    counters["items_per_second"] =
        Counter(static_cast<double>(items), benchmark::Counter::kIsRate);
  }

  BENCHMARK_ALWAYS_INLINE
  int64_t items_processed() const {
    if (counters.find("items_per_second") != counters.end())
      return static_cast<int64_t>(counters.at("items_per_second"));
    return 0;
  }

  // If this routine is called, the specified label is printed at the
  // end of the benchmark report line for the currently executing
  // benchmark.  Example:
  //  static void BM_Compress(benchmark::State& state) {
  //    ...
  //    double compress = input_size / output_size;
  //    state.SetLabel(StrFormat("compress:%.1f%%", 100.0*compression));
  //  }
  // Produces output that looks like:
  //  BM_Compress   50         50   14115038  compress:27.3%
  //
  // REQUIRES: a benchmark has exited its benchmarking loop.
  void SetLabel(const std::string& label);

  // Range arguments for this run. CHECKs if the argument has been set.
  BENCHMARK_ALWAYS_INLINE
  int64_t range(std::size_t pos = 0) const {
    assert(range_.size() > pos);
    return range_[pos];
  }

  BENCHMARK_DEPRECATED_MSG("use 'range(0)' instead")
  int64_t range_x() const { return range(0); }

  BENCHMARK_DEPRECATED_MSG("use 'range(1)' instead")
  int64_t range_y() const { return range(1); }

  // Number of threads concurrently executing the benchmark.
  BENCHMARK_ALWAYS_INLINE
  int threads() const { return threads_; }

  // Index of the executing thread. Values from [0, threads).
  BENCHMARK_ALWAYS_INLINE
  int thread_index() const { return thread_index_; }

  BENCHMARK_ALWAYS_INLINE
  IterationCount iterations() const {
    if (BENCHMARK_BUILTIN_EXPECT(!started_, false)) {
      return 0;
    }
    return max_iterations - total_iterations_ + batch_leftover_;
  }

  BENCHMARK_ALWAYS_INLINE
  std::string name() const { return name_; }

 private:
  // items we expect on the first cache line (ie 64 bytes of the struct)
  // When total_iterations_ is 0, KeepRunning() and friends will return false.
  // May be larger than max_iterations.
  IterationCount total_iterations_;

  // When using KeepRunningBatch(), batch_leftover_ holds the number of
  // iterations beyond max_iters that were run. Used to track
  // completed_iterations_ accurately.
  IterationCount batch_leftover_;

 public:
  const IterationCount max_iterations;

 private:
  bool started_;
  bool finished_;
  internal::Skipped skipped_;

  // items we don't need on the first cache line
  std::vector<int64_t> range_;

  ComplexityN complexity_n_;

 public:
  // Container for user-defined counters.
  UserCounters counters;

 private:
  State(std::string name, IterationCount max_iters,
        const std::vector<int64_t>& ranges, int thread_i, int n_threads,
        internal::ThreadTimer* timer, internal::ThreadManager* manager,
        internal::PerfCountersMeasurement* perf_counters_measurement);

  void StartKeepRunning();
  // Implementation of KeepRunning() and KeepRunningBatch().
  // is_batch must be true unless n is 1.
  inline bool KeepRunningInternal(IterationCount n, bool is_batch);
  void FinishKeepRunning();

  const std::string name_;
  const int thread_index_;
  const int threads_;

  internal::ThreadTimer* const timer_;
  internal::ThreadManager* const manager_;
  internal::PerfCountersMeasurement* const perf_counters_measurement_;

  friend class internal::BenchmarkInstance;
};

inline BENCHMARK_ALWAYS_INLINE bool State::KeepRunning() {
  return KeepRunningInternal(1, /*is_batch=*/false);
}

inline BENCHMARK_ALWAYS_INLINE bool State::KeepRunningBatch(IterationCount n) {
  return KeepRunningInternal(n, /*is_batch=*/true);
}

inline BENCHMARK_ALWAYS_INLINE bool State::KeepRunningInternal(IterationCount n,
                                                               bool is_batch) {
  // total_iterations_ is set to 0 by the constructor, and always set to a
  // nonzero value by StartKepRunning().
  assert(n > 0);
  // n must be 1 unless is_batch is true.
  assert(is_batch || n == 1);
  if (BENCHMARK_BUILTIN_EXPECT(total_iterations_ >= n, true)) {
    total_iterations_ -= n;
    return true;
  }
  if (!started_) {
    StartKeepRunning();
    if (!skipped() && total_iterations_ >= n) {
      total_iterations_ -= n;
      return true;
    }
  }
  // For non-batch runs, total_iterations_ must be 0 by now.
  if (is_batch && total_iterations_ != 0) {
    batch_leftover_ = n - total_iterations_;
    total_iterations_ = 0;
    return true;
  }
  FinishKeepRunning();
  return false;
}

struct State::StateIterator {
  struct BENCHMARK_UNUSED Value {};
  typedef std::forward_iterator_tag iterator_category;
  typedef Value value_type;
  typedef Value reference;
  typedef Value pointer;
  typedef std::ptrdiff_t difference_type;

 private:
  friend class State;
  BENCHMARK_ALWAYS_INLINE
  StateIterator() : cached_(0), parent_() {}

  BENCHMARK_ALWAYS_INLINE
  explicit StateIterator(State* st)
      : cached_(st->skipped() ? 0 : st->max_iterations), parent_(st) {}

 public:
  BENCHMARK_ALWAYS_INLINE
  Value operator*() const { return Value(); }

  BENCHMARK_ALWAYS_INLINE
  StateIterator& operator++() {
    assert(cached_ > 0);
    --cached_;
    return *this;
  }

  BENCHMARK_ALWAYS_INLINE
  bool operator!=(StateIterator const&) const {
    if (BENCHMARK_BUILTIN_EXPECT(cached_ != 0, true)) return true;
    parent_->FinishKeepRunning();
    return false;
  }

 private:
  IterationCount cached_;
  State* const parent_;
};

inline BENCHMARK_ALWAYS_INLINE State::StateIterator State::begin() {
  return StateIterator(this);
}
inline BENCHMARK_ALWAYS_INLINE State::StateIterator State::end() {
  StartKeepRunning();
  return StateIterator();
}

namespace internal {

typedef void(Function)(State&);

// ------------------------------------------------------
// Benchmark registration object.  The BENCHMARK() macro expands
// into an internal::Benchmark* object.  Various methods can
// be called on this object to change the properties of the benchmark.
// Each method returns "this" so that multiple method calls can
// chained into one expression.
class BENCHMARK_EXPORT Benchmark {
 public:
  virtual ~Benchmark();

  // Note: the following methods all return "this" so that multiple
  // method calls can be chained together in one expression.

  // Specify the name of the benchmark
  Benchmark* Name(const std::string& name);

  // Run this benchmark once with "x" as the extra argument passed
  // to the function.
  // REQUIRES: The function passed to the constructor must accept an arg1.
  Benchmark* Arg(int64_t x);

  // Run this benchmark with the given time unit for the generated output report
  Benchmark* Unit(TimeUnit unit);

  // Run this benchmark once for a number of values picked from the
  // range [start..limit].  (start and limit are always picked.)
  // REQUIRES: The function passed to the constructor must accept an arg1.
  Benchmark* Range(int64_t start, int64_t limit);

  // Run this benchmark once for all values in the range [start..limit] with
  // specific step
  // REQUIRES: The function passed to the constructor must accept an arg1.
  Benchmark* DenseRange(int64_t start, int64_t limit, int step = 1);

  // Run this benchmark once with "args" as the extra arguments passed
  // to the function.
  // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
  Benchmark* Args(const std::vector<int64_t>& args);

  // Equivalent to Args({x, y})
  // NOTE: This is a legacy C++03 interface provided for compatibility only.
  //   New code should use 'Args'.
  Benchmark* ArgPair(int64_t x, int64_t y) {
    std::vector<int64_t> args;
    args.push_back(x);
    args.push_back(y);
    return Args(args);
  }

  // Run this benchmark once for a number of values picked from the
  // ranges [start..limit].  (starts and limits are always picked.)
  // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
  Benchmark* Ranges(const std::vector<std::pair<int64_t, int64_t> >& ranges);

  // Run this benchmark once for each combination of values in the (cartesian)
  // product of the supplied argument lists.
  // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
  Benchmark* ArgsProduct(const std::vector<std::vector<int64_t> >& arglists);

  // Equivalent to ArgNames({name})
  Benchmark* ArgName(const std::string& name);

  // Set the argument names to display in the benchmark name. If not called,
  // only argument values will be shown.
  Benchmark* ArgNames(const std::vector<std::string>& names);

  // Equivalent to Ranges({{lo1, hi1}, {lo2, hi2}}).
  // NOTE: This is a legacy C++03 interface provided for compatibility only.
  //   New code should use 'Ranges'.
  Benchmark* RangePair(int64_t lo1, int64_t hi1, int64_t lo2, int64_t hi2) {
    std::vector<std::pair<int64_t, int64_t> > ranges;
    ranges.push_back(std::make_pair(lo1, hi1));
    ranges.push_back(std::make_pair(lo2, hi2));
    return Ranges(ranges);
  }

  // Have "setup" and/or "teardown" invoked once for every benchmark run.
  // If the benchmark is multi-threaded (will run in k threads concurrently),
  // the setup callback will be be invoked exactly once (not k times) before
  // each run with k threads. Time allowing (e.g. for a short benchmark), there
  // may be multiple such runs per benchmark, each run with its own
  // "setup"/"teardown".
  //
  // If the benchmark uses different size groups of threads (e.g. via
  // ThreadRange), the above will be true for each size group.
  //
  // The callback will be passed a State object, which includes the number
  // of threads, thread-index, benchmark arguments, etc.
  //
  // The callback must not be NULL or self-deleting.
  Benchmark* Setup(void (*setup)(const benchmark::State&));
  Benchmark* Teardown(void (*teardown)(const benchmark::State&));

  // Pass this benchmark object to *func, which can customize
  // the benchmark by calling various methods like Arg, Args,
  // Threads, etc.
  Benchmark* Apply(void (*func)(Benchmark* benchmark));

  // Set the range multiplier for non-dense range. If not called, the range
  // multiplier kRangeMultiplier will be used.
  Benchmark* RangeMultiplier(int multiplier);

  // Set the minimum amount of time to use when running this benchmark. This
  // option overrides the `benchmark_min_time` flag.
  // REQUIRES: `t > 0` and `Iterations` has not been called on this benchmark.
  Benchmark* MinTime(double t);

  // Set the minimum amount of time to run the benchmark before taking runtimes
  // of this benchmark into account. This
  // option overrides the `benchmark_min_warmup_time` flag.
  // REQUIRES: `t >= 0` and `Iterations` has not been called on this benchmark.
  Benchmark* MinWarmUpTime(double t);

  // Specify the amount of iterations that should be run by this benchmark.
  // This option overrides the `benchmark_min_time` flag.
  // REQUIRES: 'n > 0' and `MinTime` has not been called on this benchmark.
  //
  // NOTE: This function should only be used when *exact* iteration control is
  //   needed and never to control or limit how long a benchmark runs, where
  // `--benchmark_min_time=<N>s` or `MinTime(...)` should be used instead.
  Benchmark* Iterations(IterationCount n);

  // Specify the amount of times to repeat this benchmark. This option overrides
  // the `benchmark_repetitions` flag.
  // REQUIRES: `n > 0`
  Benchmark* Repetitions(int n);

  // Specify if each repetition of the benchmark should be reported separately
  // or if only the final statistics should be reported. If the benchmark
  // is not repeated then the single result is always reported.
  // Applies to *ALL* reporters (display and file).
  Benchmark* ReportAggregatesOnly(bool value = true);

  // Same as ReportAggregatesOnly(), but applies to display reporter only.
  Benchmark* DisplayAggregatesOnly(bool value = true);

  // By default, the CPU time is measured only for the main thread, which may
  // be unrepresentative if the benchmark uses threads internally. If called,
  // the total CPU time spent by all the threads will be measured instead.
  // By default, only the main thread CPU time will be measured.
  Benchmark* MeasureProcessCPUTime();

  // If a particular benchmark should use the Wall clock instead of the CPU time
  // (be it either the CPU time of the main thread only (default), or the
  // total CPU usage of the benchmark), call this method. If called, the elapsed
  // (wall) time will be used to control how many iterations are run, and in the
  // printing of items/second or MB/seconds values.
  // If not called, the CPU time used by the benchmark will be used.
  Benchmark* UseRealTime();

  // If a benchmark must measure time manually (e.g. if GPU execution time is
  // being
  // measured), call this method. If called, each benchmark iteration should
  // call
  // SetIterationTime(seconds) to report the measured time, which will be used
  // to control how many iterations are run, and in the printing of items/second
  // or MB/second values.
  Benchmark* UseManualTime();

  // Set the asymptotic computational complexity for the benchmark. If called
  // the asymptotic computational complexity will be shown on the output.
  Benchmark* Complexity(BigO complexity = benchmark::oAuto);

  // Set the asymptotic computational complexity for the benchmark. If called
  // the asymptotic computational complexity will be shown on the output.
  Benchmark* Complexity(BigOFunc* complexity);

  // Add this statistics to be computed over all the values of benchmark run
  Benchmark* ComputeStatistics(const std::string& name,
                               StatisticsFunc* statistics,
                               StatisticUnit unit = kTime);

  // Support for running multiple copies of the same benchmark concurrently
  // in multiple threads.  This may be useful when measuring the scaling
  // of some piece of code.

  // Run one instance of this benchmark concurrently in t threads.
  Benchmark* Threads(int t);

  // Pick a set of values T from [min_threads,max_threads].
  // min_threads and max_threads are always included in T.  Run this
  // benchmark once for each value in T.  The benchmark run for a
  // particular value t consists of t threads running the benchmark
  // function concurrently.  For example, consider:
  //    BENCHMARK(Foo)->ThreadRange(1,16);
  // This will run the following benchmarks:
  //    Foo in 1 thread
  //    Foo in 2 threads
  //    Foo in 4 threads
  //    Foo in 8 threads
  //    Foo in 16 threads
  Benchmark* ThreadRange(int min_threads, int max_threads);

  // For each value n in the range, run this benchmark once using n threads.
  // min_threads and max_threads are always included in the range.
  // stride specifies the increment. E.g. DenseThreadRange(1, 8, 3) starts
  // a benchmark with 1, 4, 7 and 8 threads.
  Benchmark* DenseThreadRange(int min_threads, int max_threads, int stride = 1);

  // Equivalent to ThreadRange(NumCPUs(), NumCPUs())
  Benchmark* ThreadPerCpu();

  virtual void Run(State& state) = 0;

  TimeUnit GetTimeUnit() const;

 protected:
  explicit Benchmark(const std::string& name);
  void SetName(const std::string& name);

 public:
  const char* GetName() const;
  int ArgsCnt() const;
  const char* GetArgName(int arg) const;

 private:
  friend class BenchmarkFamilies;
  friend class BenchmarkInstance;

  std::string name_;
  AggregationReportMode aggregation_report_mode_;
  std::vector<std::string> arg_names_;       // Args for all benchmark runs
  std::vector<std::vector<int64_t> > args_;  // Args for all benchmark runs

  TimeUnit time_unit_;
  bool use_default_time_unit_;

  int range_multiplier_;
  double min_time_;
  double min_warmup_time_;
  IterationCount iterations_;
  int repetitions_;
  bool measure_process_cpu_time_;
  bool use_real_time_;
  bool use_manual_time_;
  BigO complexity_;
  BigOFunc* complexity_lambda_;
  std::vector<Statistics> statistics_;
  std::vector<int> thread_counts_;

  typedef void (*callback_function)(const benchmark::State&);
  callback_function setup_;
  callback_function teardown_;

  Benchmark(Benchmark const&)
#if defined(BENCHMARK_HAS_CXX11)
      = delete
#endif
      ;

  Benchmark& operator=(Benchmark const&)
#if defined(BENCHMARK_HAS_CXX11)
      = delete
#endif
      ;
};

}  // namespace internal

// Create and register a benchmark with the specified 'name' that invokes
// the specified functor 'fn'.
//
// RETURNS: A pointer to the registered benchmark.
internal::Benchmark* RegisterBenchmark(const std::string& name,
                                       internal::Function* fn);

#if defined(BENCHMARK_HAS_CXX11)
template <class Lambda>
internal::Benchmark* RegisterBenchmark(const std::string& name, Lambda&& fn);
#endif

// Remove all registered benchmarks. All pointers to previously registered
// benchmarks are invalidated.
BENCHMARK_EXPORT void ClearRegisteredBenchmarks();

namespace internal {
// The class used to hold all Benchmarks created from static function.
// (ie those created using the BENCHMARK(...) macros.
class BENCHMARK_EXPORT FunctionBenchmark : public Benchmark {
 public:
  FunctionBenchmark(const std::string& name, Function* func)
      : Benchmark(name), func_(func) {}

  void Run(State& st) BENCHMARK_OVERRIDE;

 private:
  Function* func_;
};

#ifdef BENCHMARK_HAS_CXX11
template <class Lambda>
class LambdaBenchmark : public Benchmark {
 public:
  void Run(State& st) BENCHMARK_OVERRIDE { lambda_(st); }

 private:
  template <class OLambda>
  LambdaBenchmark(const std::string& name, OLambda&& lam)
      : Benchmark(name), lambda_(std::forward<OLambda>(lam)) {}

  LambdaBenchmark(LambdaBenchmark const&) = delete;

  template <class Lam>  // NOLINTNEXTLINE(readability-redundant-declaration)
  friend Benchmark* ::benchmark::RegisterBenchmark(const std::string&, Lam&&);

  Lambda lambda_;
};
#endif
}  // namespace internal

inline internal::Benchmark* RegisterBenchmark(const std::string& name,
                                              internal::Function* fn) {
  // FIXME: this should be a `std::make_unique<>()` but we don't have C++14.
  // codechecker_intentional [cplusplus.NewDeleteLeaks]
  return internal::RegisterBenchmarkInternal(
      ::new internal::FunctionBenchmark(name, fn));
}

#ifdef BENCHMARK_HAS_CXX11
template <class Lambda>
internal::Benchmark* RegisterBenchmark(const std::string& name, Lambda&& fn) {
  using BenchType =
      internal::LambdaBenchmark<typename std::decay<Lambda>::type>;
  // FIXME: this should be a `std::make_unique<>()` but we don't have C++14.
  // codechecker_intentional [cplusplus.NewDeleteLeaks]
  return internal::RegisterBenchmarkInternal(
      ::new BenchType(name, std::forward<Lambda>(fn)));
}
#endif

#if defined(BENCHMARK_HAS_CXX11) && \
    (!defined(BENCHMARK_GCC_VERSION) || BENCHMARK_GCC_VERSION >= 409)
template <class Lambda, class... Args>
internal::Benchmark* RegisterBenchmark(const std::string& name, Lambda&& fn,
                                       Args&&... args) {
  return benchmark::RegisterBenchmark(
      name, [=](benchmark::State& st) { fn(st, args...); });
}
#else
#define BENCHMARK_HAS_NO_VARIADIC_REGISTER_BENCHMARK
#endif

// The base class for all fixture tests.
class Fixture : public internal::Benchmark {
 public:
  Fixture() : internal::Benchmark("") {}

  void Run(State& st) BENCHMARK_OVERRIDE {
    this->SetUp(st);
    this->BenchmarkCase(st);
    this->TearDown(st);
  }

  // These will be deprecated ...
  virtual void SetUp(const State&) {}
  virtual void TearDown(const State&) {}
  // ... In favor of these.
  virtual void SetUp(State& st) { SetUp(const_cast<const State&>(st)); }
  virtual void TearDown(State& st) { TearDown(const_cast<const State&>(st)); }

 protected:
  virtual void BenchmarkCase(State&) = 0;
};
}  // namespace benchmark

// ------------------------------------------------------
// Macro to register benchmarks

// Check that __COUNTER__ is defined and that __COUNTER__ increases by 1
// every time it is expanded. X + 1 == X + 0 is used in case X is defined to be
// empty. If X is empty the expression becomes (+1 == +0).
#if defined(__COUNTER__) && (__COUNTER__ + 1 == __COUNTER__ + 0)
#define BENCHMARK_PRIVATE_UNIQUE_ID __COUNTER__
#else
#define BENCHMARK_PRIVATE_UNIQUE_ID __LINE__
#endif

// Helpers for generating unique variable names
#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_PRIVATE_NAME(...)                                      \
  BENCHMARK_PRIVATE_CONCAT(benchmark_uniq_, BENCHMARK_PRIVATE_UNIQUE_ID, \
                           __VA_ARGS__)
#else
#define BENCHMARK_PRIVATE_NAME(n) \
  BENCHMARK_PRIVATE_CONCAT(benchmark_uniq_, BENCHMARK_PRIVATE_UNIQUE_ID, n)
#endif  // BENCHMARK_HAS_CXX11

#define BENCHMARK_PRIVATE_CONCAT(a, b, c) BENCHMARK_PRIVATE_CONCAT2(a, b, c)
#define BENCHMARK_PRIVATE_CONCAT2(a, b, c) a##b##c
// Helper for concatenation with macro name expansion
#define BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method) \
  BaseClass##_##Method##_Benchmark

#define BENCHMARK_PRIVATE_DECLARE(n)                                 \
  static ::benchmark::internal::Benchmark* BENCHMARK_PRIVATE_NAME(n) \
      BENCHMARK_UNUSED

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK(...)                                               \
  BENCHMARK_PRIVATE_DECLARE(_benchmark_) =                           \
      (::benchmark::internal::RegisterBenchmarkInternal(             \
          new ::benchmark::internal::FunctionBenchmark(#__VA_ARGS__, \
                                                       __VA_ARGS__)))
#else
#define BENCHMARK(n)                                     \
  BENCHMARK_PRIVATE_DECLARE(n) =                         \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(#n, n)))
#endif  // BENCHMARK_HAS_CXX11

// Old-style macros
#define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a))
#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->Args({(a1), (a2)})
#define BENCHMARK_WITH_UNIT(n, t) BENCHMARK(n)->Unit((t))
#define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi))
#define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \
  BENCHMARK(n)->RangePair({{(l1), (h1)}, {(l2), (h2)}})

#ifdef BENCHMARK_HAS_CXX11

// Register a benchmark which invokes the function specified by `func`
// with the additional arguments specified by `...`.
//
// For example:
//
// template <class ...ExtraArgs>`
// void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
//  [...]
//}
// /* Registers a benchmark named "BM_takes_args/int_string_test` */
// BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
#define BENCHMARK_CAPTURE(func, test_case_name, ...)     \
  BENCHMARK_PRIVATE_DECLARE(_benchmark_) =               \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(  \
              #func "/" #test_case_name,                 \
              [](::benchmark::State& st) { func(st, __VA_ARGS__); })))

#endif  // BENCHMARK_HAS_CXX11

// This will register a benchmark for a templatized function.  For example:
//
// template<int arg>
// void BM_Foo(int iters);
//
// BENCHMARK_TEMPLATE(BM_Foo, 1);
//
// will register BM_Foo<1> as a benchmark.
#define BENCHMARK_TEMPLATE1(n, a)                        \
  BENCHMARK_PRIVATE_DECLARE(n) =                         \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(#n "<" #a ">", n<a>)))

#define BENCHMARK_TEMPLATE2(n, a, b)                                         \
  BENCHMARK_PRIVATE_DECLARE(n) =                                             \
      (::benchmark::internal::RegisterBenchmarkInternal(                     \
          new ::benchmark::internal::FunctionBenchmark(#n "<" #a "," #b ">", \
                                                       n<a, b>)))

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE(n, ...)                       \
  BENCHMARK_PRIVATE_DECLARE(n) =                         \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(  \
              #n "<" #__VA_ARGS__ ">", n<__VA_ARGS__>)))
#else
#define BENCHMARK_TEMPLATE(n, a) BENCHMARK_TEMPLATE1(n, a)
#endif

#ifdef BENCHMARK_HAS_CXX11
// This will register a benchmark for a templatized function,
// with the additional arguments specified by `...`.
//
// For example:
//
// template <typename T, class ...ExtraArgs>`
// void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
//  [...]
//}
// /* Registers a benchmark named "BM_takes_args<void>/int_string_test` */
// BENCHMARK_TEMPLATE1_CAPTURE(BM_takes_args, void, int_string_test, 42,
//                             std::string("abc"));
#define BENCHMARK_TEMPLATE1_CAPTURE(func, a, test_case_name, ...) \
  BENCHMARK_CAPTURE(func<a>, test_case_name, __VA_ARGS__)

#define BENCHMARK_TEMPLATE2_CAPTURE(func, a, b, test_case_name, ...) \
  BENCHMARK_PRIVATE_DECLARE(func) =                                  \
      (::benchmark::internal::RegisterBenchmarkInternal(             \
          new ::benchmark::internal::FunctionBenchmark(              \
              #func "<" #a "," #b ">"                                \
                    "/" #test_case_name,                             \
              [](::benchmark::State& st) { func<a, b>(st, __VA_ARGS__); })))
#endif  // BENCHMARK_HAS_CXX11

#define BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method)          \
  class BaseClass##_##Method##_Benchmark : public BaseClass {   \
   public:                                                      \
    BaseClass##_##Method##_Benchmark() {                        \
      this->SetName(#BaseClass "/" #Method);                    \
    }                                                           \
                                                                \
   protected:                                                   \
    void BenchmarkCase(::benchmark::State&) BENCHMARK_OVERRIDE; \
  };

#define BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
  class BaseClass##_##Method##_Benchmark : public BaseClass<a> {    \
   public:                                                          \
    BaseClass##_##Method##_Benchmark() {                            \
      this->SetName(#BaseClass "<" #a ">/" #Method);                \
    }                                                               \
                                                                    \
   protected:                                                       \
    void BenchmarkCase(::benchmark::State&) BENCHMARK_OVERRIDE;     \
  };

#define BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
  class BaseClass##_##Method##_Benchmark : public BaseClass<a, b> {    \
   public:                                                             \
    BaseClass##_##Method##_Benchmark() {                               \
      this->SetName(#BaseClass "<" #a "," #b ">/" #Method);            \
    }                                                                  \
                                                                       \
   protected:                                                          \
    void BenchmarkCase(::benchmark::State&) BENCHMARK_OVERRIDE;        \
  };

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, ...)       \
  class BaseClass##_##Method##_Benchmark : public BaseClass<__VA_ARGS__> { \
   public:                                                                 \
    BaseClass##_##Method##_Benchmark() {                                   \
      this->SetName(#BaseClass "<" #__VA_ARGS__ ">/" #Method);             \
    }                                                                      \
                                                                           \
   protected:                                                              \
    void BenchmarkCase(::benchmark::State&) BENCHMARK_OVERRIDE;            \
  };
#else
#define BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(n, a) \
  BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(n, a)
#endif

#define BENCHMARK_DEFINE_F(BaseClass, Method)    \
  BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
  void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase

#define BENCHMARK_TEMPLATE1_DEFINE_F(BaseClass, Method, a)    \
  BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
  void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase

#define BENCHMARK_TEMPLATE2_DEFINE_F(BaseClass, Method, a, b)    \
  BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
  void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE_DEFINE_F(BaseClass, Method, ...)            \
  BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, __VA_ARGS__) \
  void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
#else
#define BENCHMARK_TEMPLATE_DEFINE_F(BaseClass, Method, a) \
  BENCHMARK_TEMPLATE1_DEFINE_F(BaseClass, Method, a)
#endif

#define BENCHMARK_REGISTER_F(BaseClass, Method) \
  BENCHMARK_PRIVATE_REGISTER_F(BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method))

#define BENCHMARK_PRIVATE_REGISTER_F(TestName) \
  BENCHMARK_PRIVATE_DECLARE(TestName) =        \
      (::benchmark::internal::RegisterBenchmarkInternal(new TestName()))

// This macro will define and register a benchmark within a fixture class.
#define BENCHMARK_F(BaseClass, Method)           \
  BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
  BENCHMARK_REGISTER_F(BaseClass, Method);       \
  void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase

#define BENCHMARK_TEMPLATE1_F(BaseClass, Method, a)           \
  BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
  BENCHMARK_REGISTER_F(BaseClass, Method);                    \
  void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase

#define BENCHMARK_TEMPLATE2_F(BaseClass, Method, a, b)           \
  BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
  BENCHMARK_REGISTER_F(BaseClass, Method);                       \
  void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE_F(BaseClass, Method, ...)                   \
  BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, __VA_ARGS__) \
  BENCHMARK_REGISTER_F(BaseClass, Method);                             \
  void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
#else
#define BENCHMARK_TEMPLATE_F(BaseClass, Method, a) \
  BENCHMARK_TEMPLATE1_F(BaseClass, Method, a)
#endif

// Helper macro to create a main routine in a test that runs the benchmarks
// Note the workaround for Hexagon simulator passing argc != 0, argv = NULL.
#define BENCHMARK_MAIN()                                                \
  int main(int argc, char** argv) {                                     \
    char arg0_default[] = "benchmark";                                  \
    char* args_default = arg0_default;                                  \
    if (!argv) {                                                        \
      argc = 1;                                                         \
      argv = &args_default;                                             \
    }                                                                   \
    ::benchmark::Initialize(&argc, argv);                               \
    if (::benchmark::ReportUnrecognizedArguments(argc, argv)) return 1; \
    ::benchmark::RunSpecifiedBenchmarks();                              \
    ::benchmark::Shutdown();                                            \
    return 0;                                                           \
  }                                                                     \
  int main(int, char**)

// ------------------------------------------------------
// Benchmark Reporters

namespace benchmark {

struct BENCHMARK_EXPORT CPUInfo {
  struct CacheInfo {
    std::string type;
    int level;
    int size;
    int num_sharing;
  };

  enum Scaling { UNKNOWN, ENABLED, DISABLED };

  int num_cpus;
  Scaling scaling;
  double cycles_per_second;
  std::vector<CacheInfo> caches;
  std::vector<double> load_avg;

  static const CPUInfo& Get();

 private:
  CPUInfo();
  BENCHMARK_DISALLOW_COPY_AND_ASSIGN(CPUInfo);
};

// Adding Struct for System Information
struct BENCHMARK_EXPORT SystemInfo {
  std::string name;
  static const SystemInfo& Get();

 private:
  SystemInfo();
  BENCHMARK_DISALLOW_COPY_AND_ASSIGN(SystemInfo);
};

// BenchmarkName contains the components of the Benchmark's name
// which allows individual fields to be modified or cleared before
// building the final name using 'str()'.
struct BENCHMARK_EXPORT BenchmarkName {
  std::string function_name;
  std::string args;
  std::string min_time;
  std::string min_warmup_time;
  std::string iterations;
  std::string repetitions;
  std::string time_type;
  std::string threads;

  // Return the full name of the benchmark with each non-empty
  // field separated by a '/'
  std::string str() const;
};

// Interface for custom benchmark result printers.
// By default, benchmark reports are printed to stdout. However an application
// can control the destination of the reports by calling
// RunSpecifiedBenchmarks and passing it a custom reporter object.
// The reporter object must implement the following interface.
class BENCHMARK_EXPORT BenchmarkReporter {
 public:
  struct Context {
    CPUInfo const& cpu_info;
    SystemInfo const& sys_info;
    // The number of chars in the longest benchmark name.
    size_t name_field_width;
    static const char* executable_name;
    Context();
  };

  struct BENCHMARK_EXPORT Run {
    static const int64_t no_repetition_index = -1;
    enum RunType { RT_Iteration, RT_Aggregate };

    Run()
        : run_type(RT_Iteration),
          aggregate_unit(kTime),
          skipped(internal::NotSkipped),
          iterations(1),
          threads(1),
          time_unit(GetDefaultTimeUnit()),
          real_accumulated_time(0),
          cpu_accumulated_time(0),
          max_heapbytes_used(0),
          use_real_time_for_initial_big_o(false),
          complexity(oNone),
          complexity_lambda(),
          complexity_n(0),
          report_big_o(false),
          report_rms(false),
          memory_result(NULL),
          allocs_per_iter(0.0) {}

    std::string benchmark_name() const;
    BenchmarkName run_name;
    int64_t family_index;
    int64_t per_family_instance_index;
    RunType run_type;
    std::string aggregate_name;
    StatisticUnit aggregate_unit;
    std::string report_label;  // Empty if not set by benchmark.
    internal::Skipped skipped;
    std::string skip_message;

    IterationCount iterations;
    int64_t threads;
    int64_t repetition_index;
    int64_t repetitions;
    TimeUnit time_unit;
    double real_accumulated_time;
    double cpu_accumulated_time;

    // Return a value representing the real time per iteration in the unit
    // specified by 'time_unit'.
    // NOTE: If 'iterations' is zero the returned value represents the
    // accumulated time.
    double GetAdjustedRealTime() const;

    // Return a value representing the cpu time per iteration in the unit
    // specified by 'time_unit'.
    // NOTE: If 'iterations' is zero the returned value represents the
    // accumulated time.
    double GetAdjustedCPUTime() const;

    // This is set to 0.0 if memory tracing is not enabled.
    double max_heapbytes_used;

    // By default Big-O is computed for CPU time, but that is not what you want
    // to happen when manual time was requested, which is stored as real time.
    bool use_real_time_for_initial_big_o;

    // Keep track of arguments to compute asymptotic complexity
    BigO complexity;
    BigOFunc* complexity_lambda;
    ComplexityN complexity_n;

    // what statistics to compute from the measurements
    const std::vector<internal::Statistics>* statistics;

    // Inform print function whether the current run is a complexity report
    bool report_big_o;
    bool report_rms;

    UserCounters counters;

    // Memory metrics.
    const MemoryManager::Result* memory_result;
    double allocs_per_iter;
  };

  struct PerFamilyRunReports {
    PerFamilyRunReports() : num_runs_total(0), num_runs_done(0) {}

    // How many runs will all instances of this benchmark perform?
    int num_runs_total;

    // How many runs have happened already?
    int num_runs_done;

    // The reports about (non-errneous!) runs of this family.
    std::vector<BenchmarkReporter::Run> Runs;
  };

  // Construct a BenchmarkReporter with the output stream set to 'std::cout'
  // and the error stream set to 'std::cerr'
  BenchmarkReporter();

  // Called once for every suite of benchmarks run.
  // The parameter "context" contains information that the
  // reporter may wish to use when generating its report, for example the
  // platform under which the benchmarks are running. The benchmark run is
  // never started if this function returns false, allowing the reporter
  // to skip runs based on the context information.
  virtual bool ReportContext(const Context& context) = 0;

  // Called once for each group of benchmark runs, gives information about
  // the configurations of the runs.
  virtual void ReportRunsConfig(double /*min_time*/,
                                bool /*has_explicit_iters*/,
                                IterationCount /*iters*/) {}

  // Called once for each group of benchmark runs, gives information about
  // cpu-time and heap memory usage during the benchmark run. If the group
  // of runs contained more than two entries then 'report' contains additional
  // elements representing the mean and standard deviation of those runs.
  // Additionally if this group of runs was the last in a family of benchmarks
  // 'reports' contains additional entries representing the asymptotic
  // complexity and RMS of that benchmark family.
  virtual void ReportRuns(const std::vector<Run>& report) = 0;

  // Called once and only once after ever group of benchmarks is run and
  // reported.
  virtual void Finalize() {}

  // REQUIRES: The object referenced by 'out' is valid for the lifetime
  // of the reporter.
  void SetOutputStream(std::ostream* out) {
    assert(out);
    output_stream_ = out;
  }

  // REQUIRES: The object referenced by 'err' is valid for the lifetime
  // of the reporter.
  void SetErrorStream(std::ostream* err) {
    assert(err);
    error_stream_ = err;
  }

  std::ostream& GetOutputStream() const { return *output_stream_; }

  std::ostream& GetErrorStream() const { return *error_stream_; }

  virtual ~BenchmarkReporter();

  // Write a human readable string to 'out' representing the specified
  // 'context'.
  // REQUIRES: 'out' is non-null.
  static void PrintBasicContext(std::ostream* out, Context const& context);

 private:
  std::ostream* output_stream_;
  std::ostream* error_stream_;
};

// Simple reporter that outputs benchmark data to the console. This is the
// default reporter used by RunSpecifiedBenchmarks().
class BENCHMARK_EXPORT ConsoleReporter : public BenchmarkReporter {
 public:
  enum OutputOptions {
    OO_None = 0,
    OO_Color = 1,
    OO_Tabular = 2,
    OO_ColorTabular = OO_Color | OO_Tabular,
    OO_Defaults = OO_ColorTabular
  };
  explicit ConsoleReporter(OutputOptions opts_ = OO_Defaults)
      : output_options_(opts_), name_field_width_(0), printed_header_(false) {}

  bool ReportContext(const Context& context) BENCHMARK_OVERRIDE;
  void ReportRuns(const std::vector<Run>& reports) BENCHMARK_OVERRIDE;

 protected:
  virtual void PrintRunData(const Run& report);
  virtual void PrintHeader(const Run& report);

  OutputOptions output_options_;
  size_t name_field_width_;
  UserCounters prev_counters_;
  bool printed_header_;
};

class BENCHMARK_EXPORT JSONReporter : public BenchmarkReporter {
 public:
  JSONReporter() : first_report_(true) {}
  bool ReportContext(const Context& context) BENCHMARK_OVERRIDE;
  void ReportRuns(const std::vector<Run>& reports) BENCHMARK_OVERRIDE;
  void Finalize() BENCHMARK_OVERRIDE;

 private:
  void PrintRunData(const Run& report);

  bool first_report_;
};

class BENCHMARK_EXPORT BENCHMARK_DEPRECATED_MSG(
    "The CSV Reporter will be removed in a future release") CSVReporter
    : public BenchmarkReporter {
 public:
  CSVReporter() : printed_header_(false) {}
  bool ReportContext(const Context& context) BENCHMARK_OVERRIDE;
  void ReportRuns(const std::vector<Run>& reports) BENCHMARK_OVERRIDE;

 private:
  void PrintRunData(const Run& report);

  bool printed_header_;
  std::set<std::string> user_counter_names_;
};

inline const char* GetTimeUnitString(TimeUnit unit) {
  switch (unit) {
    case kSecond:
      return "s";
    case kMillisecond:
      return "ms";
    case kMicrosecond:
      return "us";
    case kNanosecond:
      return "ns";
  }
  BENCHMARK_UNREACHABLE();
}

inline double GetTimeUnitMultiplier(TimeUnit unit) {
  switch (unit) {
    case kSecond:
      return 1;
    case kMillisecond:
      return 1e3;
    case kMicrosecond:
      return 1e6;
    case kNanosecond:
      return 1e9;
  }
  BENCHMARK_UNREACHABLE();
}

// Creates a list of integer values for the given range and multiplier.
// This can be used together with ArgsProduct() to allow multiple ranges
// with different multipliers.
// Example:
// ArgsProduct({
//   CreateRange(0, 1024, /*multi=*/32),
//   CreateRange(0, 100, /*multi=*/4),
//   CreateDenseRange(0, 4, /*step=*/1),
// });
BENCHMARK_EXPORT
std::vector<int64_t> CreateRange(int64_t lo, int64_t hi, int multi);

// Creates a list of integer values for the given range and step.
BENCHMARK_EXPORT
std::vector<int64_t> CreateDenseRange(int64_t start, int64_t limit, int step);

}  // namespace benchmark

#if defined(_MSC_VER)
#pragma warning(pop)
#endif

#endif  // BENCHMARK_BENCHMARK_H_