aboutsummaryrefslogtreecommitdiff
path: root/go/callgraph/rta/rta.go
blob: e6b44606ae85cb73338830cbec1fe8f98233c616 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This package provides Rapid Type Analysis (RTA) for Go, a fast
// algorithm for call graph construction and discovery of reachable code
// (and hence dead code) and runtime types.  The algorithm was first
// described in:
//
// David F. Bacon and Peter F. Sweeney. 1996.
// Fast static analysis of C++ virtual function calls. (OOPSLA '96)
// http://doi.acm.org/10.1145/236337.236371
//
// The algorithm uses dynamic programming to tabulate the cross-product
// of the set of known "address taken" functions with the set of known
// dynamic calls of the same type.  As each new address-taken function
// is discovered, call graph edges are added from each known callsite,
// and as each new call site is discovered, call graph edges are added
// from it to each known address-taken function.
//
// A similar approach is used for dynamic calls via interfaces: it
// tabulates the cross-product of the set of known "runtime types",
// i.e. types that may appear in an interface value, or be derived from
// one via reflection, with the set of known "invoke"-mode dynamic
// calls.  As each new "runtime type" is discovered, call edges are
// added from the known call sites, and as each new call site is
// discovered, call graph edges are added to each compatible
// method.
//
// In addition, we must consider all exported methods of any runtime type
// as reachable, since they may be called via reflection.
//
// Each time a newly added call edge causes a new function to become
// reachable, the code of that function is analyzed for more call sites,
// address-taken functions, and runtime types.  The process continues
// until a fixed point is achieved.
//
// The resulting call graph is less precise than one produced by pointer
// analysis, but the algorithm is much faster.  For example, running the
// cmd/callgraph tool on its own source takes ~2.1s for RTA and ~5.4s
// for points-to analysis.
//
package rta // import "golang.org/x/tools/go/callgraph/rta"

// TODO(adonovan): test it by connecting it to the interpreter and
// replacing all "unreachable" functions by a special intrinsic, and
// ensure that that intrinsic is never called.

import (
	"fmt"
	"go/types"

	"golang.org/x/tools/go/callgraph"
	"golang.org/x/tools/go/ssa"
	"golang.org/x/tools/go/types/typeutil"
)

// A Result holds the results of Rapid Type Analysis, which includes the
// set of reachable functions/methods, runtime types, and the call graph.
//
type Result struct {
	// CallGraph is the discovered callgraph.
	// It does not include edges for calls made via reflection.
	CallGraph *callgraph.Graph

	// Reachable contains the set of reachable functions and methods.
	// This includes exported methods of runtime types, since
	// they may be accessed via reflection.
	// The value indicates whether the function is address-taken.
	//
	// (We wrap the bool in a struct to avoid inadvertent use of
	// "if Reachable[f] {" to test for set membership.)
	Reachable map[*ssa.Function]struct{ AddrTaken bool }

	// RuntimeTypes contains the set of types that are needed at
	// runtime, for interfaces or reflection.
	//
	// The value indicates whether the type is inaccessible to reflection.
	// Consider:
	// 	type A struct{B}
	// 	fmt.Println(new(A))
	// Types *A, A and B are accessible to reflection, but the unnamed
	// type struct{B} is not.
	RuntimeTypes typeutil.Map
}

// Working state of the RTA algorithm.
type rta struct {
	result *Result

	prog *ssa.Program

	worklist []*ssa.Function // list of functions to visit

	// addrTakenFuncsBySig contains all address-taken *Functions, grouped by signature.
	// Keys are *types.Signature, values are map[*ssa.Function]bool sets.
	addrTakenFuncsBySig typeutil.Map

	// dynCallSites contains all dynamic "call"-mode call sites, grouped by signature.
	// Keys are *types.Signature, values are unordered []ssa.CallInstruction.
	dynCallSites typeutil.Map

	// invokeSites contains all "invoke"-mode call sites, grouped by interface.
	// Keys are *types.Interface (never *types.Named),
	// Values are unordered []ssa.CallInstruction sets.
	invokeSites typeutil.Map

	// The following two maps together define the subset of the
	// m:n "implements" relation needed by the algorithm.

	// concreteTypes maps each concrete type to the set of interfaces that it implements.
	// Keys are types.Type, values are unordered []*types.Interface.
	// Only concrete types used as MakeInterface operands are included.
	concreteTypes typeutil.Map

	// interfaceTypes maps each interface type to
	// the set of concrete types that implement it.
	// Keys are *types.Interface, values are unordered []types.Type.
	// Only interfaces used in "invoke"-mode CallInstructions are included.
	interfaceTypes typeutil.Map
}

// addReachable marks a function as potentially callable at run-time,
// and ensures that it gets processed.
func (r *rta) addReachable(f *ssa.Function, addrTaken bool) {
	reachable := r.result.Reachable
	n := len(reachable)
	v := reachable[f]
	if addrTaken {
		v.AddrTaken = true
	}
	reachable[f] = v
	if len(reachable) > n {
		// First time seeing f.  Add it to the worklist.
		r.worklist = append(r.worklist, f)
	}
}

// addEdge adds the specified call graph edge, and marks it reachable.
// addrTaken indicates whether to mark the callee as "address-taken".
func (r *rta) addEdge(site ssa.CallInstruction, callee *ssa.Function, addrTaken bool) {
	r.addReachable(callee, addrTaken)

	if g := r.result.CallGraph; g != nil {
		if site.Parent() == nil {
			panic(site)
		}
		from := g.CreateNode(site.Parent())
		to := g.CreateNode(callee)
		callgraph.AddEdge(from, site, to)
	}
}

// ---------- addrTakenFuncs × dynCallSites ----------

// visitAddrTakenFunc is called each time we encounter an address-taken function f.
func (r *rta) visitAddrTakenFunc(f *ssa.Function) {
	// Create two-level map (Signature -> Function -> bool).
	S := f.Signature
	funcs, _ := r.addrTakenFuncsBySig.At(S).(map[*ssa.Function]bool)
	if funcs == nil {
		funcs = make(map[*ssa.Function]bool)
		r.addrTakenFuncsBySig.Set(S, funcs)
	}
	if !funcs[f] {
		// First time seeing f.
		funcs[f] = true

		// If we've seen any dyncalls of this type, mark it reachable,
		// and add call graph edges.
		sites, _ := r.dynCallSites.At(S).([]ssa.CallInstruction)
		for _, site := range sites {
			r.addEdge(site, f, true)
		}
	}
}

// visitDynCall is called each time we encounter a dynamic "call"-mode call.
func (r *rta) visitDynCall(site ssa.CallInstruction) {
	S := site.Common().Signature()

	// Record the call site.
	sites, _ := r.dynCallSites.At(S).([]ssa.CallInstruction)
	r.dynCallSites.Set(S, append(sites, site))

	// For each function of signature S that we know is address-taken,
	// add an edge and mark it reachable.
	funcs, _ := r.addrTakenFuncsBySig.At(S).(map[*ssa.Function]bool)
	for g := range funcs {
		r.addEdge(site, g, true)
	}
}

// ---------- concrete types × invoke sites ----------

// addInvokeEdge is called for each new pair (site, C) in the matrix.
func (r *rta) addInvokeEdge(site ssa.CallInstruction, C types.Type) {
	// Ascertain the concrete method of C to be called.
	imethod := site.Common().Method
	cmethod := r.prog.MethodValue(r.prog.MethodSets.MethodSet(C).Lookup(imethod.Pkg(), imethod.Name()))
	r.addEdge(site, cmethod, true)
}

// visitInvoke is called each time the algorithm encounters an "invoke"-mode call.
func (r *rta) visitInvoke(site ssa.CallInstruction) {
	I := site.Common().Value.Type().Underlying().(*types.Interface)

	// Record the invoke site.
	sites, _ := r.invokeSites.At(I).([]ssa.CallInstruction)
	r.invokeSites.Set(I, append(sites, site))

	// Add callgraph edge for each existing
	// address-taken concrete type implementing I.
	for _, C := range r.implementations(I) {
		r.addInvokeEdge(site, C)
	}
}

// ---------- main algorithm ----------

// visitFunc processes function f.
func (r *rta) visitFunc(f *ssa.Function) {
	var space [32]*ssa.Value // preallocate space for common case

	for _, b := range f.Blocks {
		for _, instr := range b.Instrs {
			rands := instr.Operands(space[:0])

			switch instr := instr.(type) {
			case ssa.CallInstruction:
				call := instr.Common()
				if call.IsInvoke() {
					r.visitInvoke(instr)
				} else if g := call.StaticCallee(); g != nil {
					r.addEdge(instr, g, false)
				} else if _, ok := call.Value.(*ssa.Builtin); !ok {
					r.visitDynCall(instr)
				}

				// Ignore the call-position operand when
				// looking for address-taken Functions.
				// Hack: assume this is rands[0].
				rands = rands[1:]

			case *ssa.MakeInterface:
				r.addRuntimeType(instr.X.Type(), false)
			}

			// Process all address-taken functions.
			for _, op := range rands {
				if g, ok := (*op).(*ssa.Function); ok {
					r.visitAddrTakenFunc(g)
				}
			}
		}
	}
}

// Analyze performs Rapid Type Analysis, starting at the specified root
// functions.  It returns nil if no roots were specified.
//
// If buildCallGraph is true, Result.CallGraph will contain a call
// graph; otherwise, only the other fields (reachable functions) are
// populated.
//
func Analyze(roots []*ssa.Function, buildCallGraph bool) *Result {
	if len(roots) == 0 {
		return nil
	}

	r := &rta{
		result: &Result{Reachable: make(map[*ssa.Function]struct{ AddrTaken bool })},
		prog:   roots[0].Prog,
	}

	if buildCallGraph {
		// TODO(adonovan): change callgraph API to eliminate the
		// notion of a distinguished root node.  Some callgraphs
		// have many roots, or none.
		r.result.CallGraph = callgraph.New(roots[0])
	}

	hasher := typeutil.MakeHasher()
	r.result.RuntimeTypes.SetHasher(hasher)
	r.addrTakenFuncsBySig.SetHasher(hasher)
	r.dynCallSites.SetHasher(hasher)
	r.invokeSites.SetHasher(hasher)
	r.concreteTypes.SetHasher(hasher)
	r.interfaceTypes.SetHasher(hasher)

	// Visit functions, processing their instructions, and adding
	// new functions to the worklist, until a fixed point is
	// reached.
	var shadow []*ssa.Function // for efficiency, we double-buffer the worklist
	r.worklist = append(r.worklist, roots...)
	for len(r.worklist) > 0 {
		shadow, r.worklist = r.worklist, shadow[:0]
		for _, f := range shadow {
			r.visitFunc(f)
		}
	}
	return r.result
}

// interfaces(C) returns all currently known interfaces implemented by C.
func (r *rta) interfaces(C types.Type) []*types.Interface {
	// Ascertain set of interfaces C implements
	// and update 'implements' relation.
	var ifaces []*types.Interface
	r.interfaceTypes.Iterate(func(I types.Type, concs interface{}) {
		if I := I.(*types.Interface); types.Implements(C, I) {
			concs, _ := concs.([]types.Type)
			r.interfaceTypes.Set(I, append(concs, C))
			ifaces = append(ifaces, I)
		}
	})
	r.concreteTypes.Set(C, ifaces)
	return ifaces
}

// implementations(I) returns all currently known concrete types that implement I.
func (r *rta) implementations(I *types.Interface) []types.Type {
	var concs []types.Type
	if v := r.interfaceTypes.At(I); v != nil {
		concs = v.([]types.Type)
	} else {
		// First time seeing this interface.
		// Update the 'implements' relation.
		r.concreteTypes.Iterate(func(C types.Type, ifaces interface{}) {
			if types.Implements(C, I) {
				ifaces, _ := ifaces.([]*types.Interface)
				r.concreteTypes.Set(C, append(ifaces, I))
				concs = append(concs, C)
			}
		})
		r.interfaceTypes.Set(I, concs)
	}
	return concs
}

// addRuntimeType is called for each concrete type that can be the
// dynamic type of some interface or reflect.Value.
// Adapted from needMethods in go/ssa/builder.go
//
func (r *rta) addRuntimeType(T types.Type, skip bool) {
	if prev, ok := r.result.RuntimeTypes.At(T).(bool); ok {
		if skip && !prev {
			r.result.RuntimeTypes.Set(T, skip)
		}
		return
	}
	r.result.RuntimeTypes.Set(T, skip)

	mset := r.prog.MethodSets.MethodSet(T)

	if _, ok := T.Underlying().(*types.Interface); !ok {
		// T is a new concrete type.
		for i, n := 0, mset.Len(); i < n; i++ {
			sel := mset.At(i)
			m := sel.Obj()

			if m.Exported() {
				// Exported methods are always potentially callable via reflection.
				r.addReachable(r.prog.MethodValue(sel), true)
			}
		}

		// Add callgraph edge for each existing dynamic
		// "invoke"-mode call via that interface.
		for _, I := range r.interfaces(T) {
			sites, _ := r.invokeSites.At(I).([]ssa.CallInstruction)
			for _, site := range sites {
				r.addInvokeEdge(site, T)
			}
		}
	}

	// Precondition: T is not a method signature (*Signature with Recv()!=nil).
	// Recursive case: skip => don't call makeMethods(T).
	// Each package maintains its own set of types it has visited.

	var n *types.Named
	switch T := T.(type) {
	case *types.Named:
		n = T
	case *types.Pointer:
		n, _ = T.Elem().(*types.Named)
	}
	if n != nil {
		owner := n.Obj().Pkg()
		if owner == nil {
			return // built-in error type
		}
	}

	// Recursion over signatures of each exported method.
	for i := 0; i < mset.Len(); i++ {
		if mset.At(i).Obj().Exported() {
			sig := mset.At(i).Type().(*types.Signature)
			r.addRuntimeType(sig.Params(), true)  // skip the Tuple itself
			r.addRuntimeType(sig.Results(), true) // skip the Tuple itself
		}
	}

	switch t := T.(type) {
	case *types.Basic:
		// nop

	case *types.Interface:
		// nop---handled by recursion over method set.

	case *types.Pointer:
		r.addRuntimeType(t.Elem(), false)

	case *types.Slice:
		r.addRuntimeType(t.Elem(), false)

	case *types.Chan:
		r.addRuntimeType(t.Elem(), false)

	case *types.Map:
		r.addRuntimeType(t.Key(), false)
		r.addRuntimeType(t.Elem(), false)

	case *types.Signature:
		if t.Recv() != nil {
			panic(fmt.Sprintf("Signature %s has Recv %s", t, t.Recv()))
		}
		r.addRuntimeType(t.Params(), true)  // skip the Tuple itself
		r.addRuntimeType(t.Results(), true) // skip the Tuple itself

	case *types.Named:
		// A pointer-to-named type can be derived from a named
		// type via reflection.  It may have methods too.
		r.addRuntimeType(types.NewPointer(T), false)

		// Consider 'type T struct{S}' where S has methods.
		// Reflection provides no way to get from T to struct{S},
		// only to S, so the method set of struct{S} is unwanted,
		// so set 'skip' flag during recursion.
		r.addRuntimeType(t.Underlying(), true)

	case *types.Array:
		r.addRuntimeType(t.Elem(), false)

	case *types.Struct:
		for i, n := 0, t.NumFields(); i < n; i++ {
			r.addRuntimeType(t.Field(i).Type(), false)
		}

	case *types.Tuple:
		for i, n := 0, t.Len(); i < n; i++ {
			r.addRuntimeType(t.At(i).Type(), false)
		}

	default:
		panic(T)
	}
}