aboutsummaryrefslogtreecommitdiff
path: root/cmd/stringer/stringer.go
blob: 558a234d64dd72718c3023849b2e1698d178ad3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Stringer is a tool to automate the creation of methods that satisfy the fmt.Stringer
// interface. Given the name of a (signed or unsigned) integer type T that has constants
// defined, stringer will create a new self-contained Go source file implementing
//	func (t T) String() string
// The file is created in the same package and directory as the package that defines T.
// It has helpful defaults designed for use with go generate.
//
// Stringer works best with constants that are consecutive values such as created using iota,
// but creates good code regardless. In the future it might also provide custom support for
// constant sets that are bit patterns.
//
// For example, given this snippet,
//
//	package painkiller
//
//	type Pill int
//
//	const (
//		Placebo Pill = iota
//		Aspirin
//		Ibuprofen
//		Paracetamol
//		Acetaminophen = Paracetamol
//	)
//
// running this command
//
//	stringer -type=Pill
//
// in the same directory will create the file pill_string.go, in package painkiller,
// containing a definition of
//
//	func (Pill) String() string
//
// That method will translate the value of a Pill constant to the string representation
// of the respective constant name, so that the call fmt.Print(painkiller.Aspirin) will
// print the string "Aspirin".
//
// Typically this process would be run using go generate, like this:
//
//	//go:generate stringer -type=Pill
//
// If multiple constants have the same value, the lexically first matching name will
// be used (in the example, Acetaminophen will print as "Paracetamol").
//
// With no arguments, it processes the package in the current directory.
// Otherwise, the arguments must name a single directory holding a Go package
// or a set of Go source files that represent a single Go package.
//
// The -type flag accepts a comma-separated list of types so a single run can
// generate methods for multiple types. The default output file is t_string.go,
// where t is the lower-cased name of the first type listed. It can be overridden
// with the -output flag.
//
// The -linecomment flag tells stringer to generate the text of any line comment, trimmed
// of leading spaces, instead of the constant name. For instance, if the constants above had a
// Pill prefix, one could write
//
//	PillAspirin // Aspirin
//
// to suppress it in the output.
package main // import "golang.org/x/tools/cmd/stringer"

import (
	"bytes"
	"flag"
	"fmt"
	"go/ast"
	"go/constant"
	"go/format"
	"go/token"
	"go/types"
	"io/ioutil"
	"log"
	"os"
	"path/filepath"
	"sort"
	"strings"

	"golang.org/x/tools/go/packages"
)

var (
	typeNames   = flag.String("type", "", "comma-separated list of type names; must be set")
	output      = flag.String("output", "", "output file name; default srcdir/<type>_string.go")
	trimprefix  = flag.String("trimprefix", "", "trim the `prefix` from the generated constant names")
	linecomment = flag.Bool("linecomment", false, "use line comment text as printed text when present")
	buildTags   = flag.String("tags", "", "comma-separated list of build tags to apply")
)

// Usage is a replacement usage function for the flags package.
func Usage() {
	fmt.Fprintf(os.Stderr, "Usage of stringer:\n")
	fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T [directory]\n")
	fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T files... # Must be a single package\n")
	fmt.Fprintf(os.Stderr, "For more information, see:\n")
	fmt.Fprintf(os.Stderr, "\thttps://pkg.go.dev/golang.org/x/tools/cmd/stringer\n")
	fmt.Fprintf(os.Stderr, "Flags:\n")
	flag.PrintDefaults()
}

func main() {
	log.SetFlags(0)
	log.SetPrefix("stringer: ")
	flag.Usage = Usage
	flag.Parse()
	if len(*typeNames) == 0 {
		flag.Usage()
		os.Exit(2)
	}
	types := strings.Split(*typeNames, ",")
	var tags []string
	if len(*buildTags) > 0 {
		tags = strings.Split(*buildTags, ",")
	}

	// We accept either one directory or a list of files. Which do we have?
	args := flag.Args()
	if len(args) == 0 {
		// Default: process whole package in current directory.
		args = []string{"."}
	}

	// Parse the package once.
	var dir string
	g := Generator{
		trimPrefix:  *trimprefix,
		lineComment: *linecomment,
	}
	// TODO(suzmue): accept other patterns for packages (directories, list of files, import paths, etc).
	if len(args) == 1 && isDirectory(args[0]) {
		dir = args[0]
	} else {
		if len(tags) != 0 {
			log.Fatal("-tags option applies only to directories, not when files are specified")
		}
		dir = filepath.Dir(args[0])
	}

	g.parsePackage(args, tags)

	// Print the header and package clause.
	g.Printf("// Code generated by \"stringer %s\"; DO NOT EDIT.\n", strings.Join(os.Args[1:], " "))
	g.Printf("\n")
	g.Printf("package %s", g.pkg.name)
	g.Printf("\n")
	g.Printf("import \"strconv\"\n") // Used by all methods.

	// Run generate for each type.
	for _, typeName := range types {
		g.generate(typeName)
	}

	// Format the output.
	src := g.format()

	// Write to file.
	outputName := *output
	if outputName == "" {
		baseName := fmt.Sprintf("%s_string.go", types[0])
		outputName = filepath.Join(dir, strings.ToLower(baseName))
	}
	err := ioutil.WriteFile(outputName, src, 0644)
	if err != nil {
		log.Fatalf("writing output: %s", err)
	}
}

// isDirectory reports whether the named file is a directory.
func isDirectory(name string) bool {
	info, err := os.Stat(name)
	if err != nil {
		log.Fatal(err)
	}
	return info.IsDir()
}

// Generator holds the state of the analysis. Primarily used to buffer
// the output for format.Source.
type Generator struct {
	buf bytes.Buffer // Accumulated output.
	pkg *Package     // Package we are scanning.

	trimPrefix  string
	lineComment bool
}

func (g *Generator) Printf(format string, args ...interface{}) {
	fmt.Fprintf(&g.buf, format, args...)
}

// File holds a single parsed file and associated data.
type File struct {
	pkg  *Package  // Package to which this file belongs.
	file *ast.File // Parsed AST.
	// These fields are reset for each type being generated.
	typeName string  // Name of the constant type.
	values   []Value // Accumulator for constant values of that type.

	trimPrefix  string
	lineComment bool
}

type Package struct {
	name  string
	defs  map[*ast.Ident]types.Object
	files []*File
}

// parsePackage analyzes the single package constructed from the patterns and tags.
// parsePackage exits if there is an error.
func (g *Generator) parsePackage(patterns []string, tags []string) {
	cfg := &packages.Config{
		Mode: packages.LoadSyntax,
		// TODO: Need to think about constants in test files. Maybe write type_string_test.go
		// in a separate pass? For later.
		Tests:      false,
		BuildFlags: []string{fmt.Sprintf("-tags=%s", strings.Join(tags, " "))},
	}
	pkgs, err := packages.Load(cfg, patterns...)
	if err != nil {
		log.Fatal(err)
	}
	if len(pkgs) != 1 {
		log.Fatalf("error: %d packages found", len(pkgs))
	}
	g.addPackage(pkgs[0])
}

// addPackage adds a type checked Package and its syntax files to the generator.
func (g *Generator) addPackage(pkg *packages.Package) {
	g.pkg = &Package{
		name:  pkg.Name,
		defs:  pkg.TypesInfo.Defs,
		files: make([]*File, len(pkg.Syntax)),
	}

	for i, file := range pkg.Syntax {
		g.pkg.files[i] = &File{
			file:        file,
			pkg:         g.pkg,
			trimPrefix:  g.trimPrefix,
			lineComment: g.lineComment,
		}
	}
}

// generate produces the String method for the named type.
func (g *Generator) generate(typeName string) {
	values := make([]Value, 0, 100)
	for _, file := range g.pkg.files {
		// Set the state for this run of the walker.
		file.typeName = typeName
		file.values = nil
		if file.file != nil {
			ast.Inspect(file.file, file.genDecl)
			values = append(values, file.values...)
		}
	}

	if len(values) == 0 {
		log.Fatalf("no values defined for type %s", typeName)
	}
	// Generate code that will fail if the constants change value.
	g.Printf("func _() {\n")
	g.Printf("\t// An \"invalid array index\" compiler error signifies that the constant values have changed.\n")
	g.Printf("\t// Re-run the stringer command to generate them again.\n")
	g.Printf("\tvar x [1]struct{}\n")
	for _, v := range values {
		g.Printf("\t_ = x[%s - %s]\n", v.originalName, v.str)
	}
	g.Printf("}\n")
	runs := splitIntoRuns(values)
	// The decision of which pattern to use depends on the number of
	// runs in the numbers. If there's only one, it's easy. For more than
	// one, there's a tradeoff between complexity and size of the data
	// and code vs. the simplicity of a map. A map takes more space,
	// but so does the code. The decision here (crossover at 10) is
	// arbitrary, but considers that for large numbers of runs the cost
	// of the linear scan in the switch might become important, and
	// rather than use yet another algorithm such as binary search,
	// we punt and use a map. In any case, the likelihood of a map
	// being necessary for any realistic example other than bitmasks
	// is very low. And bitmasks probably deserve their own analysis,
	// to be done some other day.
	switch {
	case len(runs) == 1:
		g.buildOneRun(runs, typeName)
	case len(runs) <= 10:
		g.buildMultipleRuns(runs, typeName)
	default:
		g.buildMap(runs, typeName)
	}
}

// splitIntoRuns breaks the values into runs of contiguous sequences.
// For example, given 1,2,3,5,6,7 it returns {1,2,3},{5,6,7}.
// The input slice is known to be non-empty.
func splitIntoRuns(values []Value) [][]Value {
	// We use stable sort so the lexically first name is chosen for equal elements.
	sort.Stable(byValue(values))
	// Remove duplicates. Stable sort has put the one we want to print first,
	// so use that one. The String method won't care about which named constant
	// was the argument, so the first name for the given value is the only one to keep.
	// We need to do this because identical values would cause the switch or map
	// to fail to compile.
	j := 1
	for i := 1; i < len(values); i++ {
		if values[i].value != values[i-1].value {
			values[j] = values[i]
			j++
		}
	}
	values = values[:j]
	runs := make([][]Value, 0, 10)
	for len(values) > 0 {
		// One contiguous sequence per outer loop.
		i := 1
		for i < len(values) && values[i].value == values[i-1].value+1 {
			i++
		}
		runs = append(runs, values[:i])
		values = values[i:]
	}
	return runs
}

// format returns the gofmt-ed contents of the Generator's buffer.
func (g *Generator) format() []byte {
	src, err := format.Source(g.buf.Bytes())
	if err != nil {
		// Should never happen, but can arise when developing this code.
		// The user can compile the output to see the error.
		log.Printf("warning: internal error: invalid Go generated: %s", err)
		log.Printf("warning: compile the package to analyze the error")
		return g.buf.Bytes()
	}
	return src
}

// Value represents a declared constant.
type Value struct {
	originalName string // The name of the constant.
	name         string // The name with trimmed prefix.
	// The value is stored as a bit pattern alone. The boolean tells us
	// whether to interpret it as an int64 or a uint64; the only place
	// this matters is when sorting.
	// Much of the time the str field is all we need; it is printed
	// by Value.String.
	value  uint64 // Will be converted to int64 when needed.
	signed bool   // Whether the constant is a signed type.
	str    string // The string representation given by the "go/constant" package.
}

func (v *Value) String() string {
	return v.str
}

// byValue lets us sort the constants into increasing order.
// We take care in the Less method to sort in signed or unsigned order,
// as appropriate.
type byValue []Value

func (b byValue) Len() int      { return len(b) }
func (b byValue) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
func (b byValue) Less(i, j int) bool {
	if b[i].signed {
		return int64(b[i].value) < int64(b[j].value)
	}
	return b[i].value < b[j].value
}

// genDecl processes one declaration clause.
func (f *File) genDecl(node ast.Node) bool {
	decl, ok := node.(*ast.GenDecl)
	if !ok || decl.Tok != token.CONST {
		// We only care about const declarations.
		return true
	}
	// The name of the type of the constants we are declaring.
	// Can change if this is a multi-element declaration.
	typ := ""
	// Loop over the elements of the declaration. Each element is a ValueSpec:
	// a list of names possibly followed by a type, possibly followed by values.
	// If the type and value are both missing, we carry down the type (and value,
	// but the "go/types" package takes care of that).
	for _, spec := range decl.Specs {
		vspec := spec.(*ast.ValueSpec) // Guaranteed to succeed as this is CONST.
		if vspec.Type == nil && len(vspec.Values) > 0 {
			// "X = 1". With no type but a value. If the constant is untyped,
			// skip this vspec and reset the remembered type.
			typ = ""

			// If this is a simple type conversion, remember the type.
			// We don't mind if this is actually a call; a qualified call won't
			// be matched (that will be SelectorExpr, not Ident), and only unusual
			// situations will result in a function call that appears to be
			// a type conversion.
			ce, ok := vspec.Values[0].(*ast.CallExpr)
			if !ok {
				continue
			}
			id, ok := ce.Fun.(*ast.Ident)
			if !ok {
				continue
			}
			typ = id.Name
		}
		if vspec.Type != nil {
			// "X T". We have a type. Remember it.
			ident, ok := vspec.Type.(*ast.Ident)
			if !ok {
				continue
			}
			typ = ident.Name
		}
		if typ != f.typeName {
			// This is not the type we're looking for.
			continue
		}
		// We now have a list of names (from one line of source code) all being
		// declared with the desired type.
		// Grab their names and actual values and store them in f.values.
		for _, name := range vspec.Names {
			if name.Name == "_" {
				continue
			}
			// This dance lets the type checker find the values for us. It's a
			// bit tricky: look up the object declared by the name, find its
			// types.Const, and extract its value.
			obj, ok := f.pkg.defs[name]
			if !ok {
				log.Fatalf("no value for constant %s", name)
			}
			info := obj.Type().Underlying().(*types.Basic).Info()
			if info&types.IsInteger == 0 {
				log.Fatalf("can't handle non-integer constant type %s", typ)
			}
			value := obj.(*types.Const).Val() // Guaranteed to succeed as this is CONST.
			if value.Kind() != constant.Int {
				log.Fatalf("can't happen: constant is not an integer %s", name)
			}
			i64, isInt := constant.Int64Val(value)
			u64, isUint := constant.Uint64Val(value)
			if !isInt && !isUint {
				log.Fatalf("internal error: value of %s is not an integer: %s", name, value.String())
			}
			if !isInt {
				u64 = uint64(i64)
			}
			v := Value{
				originalName: name.Name,
				value:        u64,
				signed:       info&types.IsUnsigned == 0,
				str:          value.String(),
			}
			if c := vspec.Comment; f.lineComment && c != nil && len(c.List) == 1 {
				v.name = strings.TrimSpace(c.Text())
			} else {
				v.name = strings.TrimPrefix(v.originalName, f.trimPrefix)
			}
			f.values = append(f.values, v)
		}
	}
	return false
}

// Helpers

// usize returns the number of bits of the smallest unsigned integer
// type that will hold n. Used to create the smallest possible slice of
// integers to use as indexes into the concatenated strings.
func usize(n int) int {
	switch {
	case n < 1<<8:
		return 8
	case n < 1<<16:
		return 16
	default:
		// 2^32 is enough constants for anyone.
		return 32
	}
}

// declareIndexAndNameVars declares the index slices and concatenated names
// strings representing the runs of values.
func (g *Generator) declareIndexAndNameVars(runs [][]Value, typeName string) {
	var indexes, names []string
	for i, run := range runs {
		index, name := g.createIndexAndNameDecl(run, typeName, fmt.Sprintf("_%d", i))
		if len(run) != 1 {
			indexes = append(indexes, index)
		}
		names = append(names, name)
	}
	g.Printf("const (\n")
	for _, name := range names {
		g.Printf("\t%s\n", name)
	}
	g.Printf(")\n\n")

	if len(indexes) > 0 {
		g.Printf("var (")
		for _, index := range indexes {
			g.Printf("\t%s\n", index)
		}
		g.Printf(")\n\n")
	}
}

// declareIndexAndNameVar is the single-run version of declareIndexAndNameVars
func (g *Generator) declareIndexAndNameVar(run []Value, typeName string) {
	index, name := g.createIndexAndNameDecl(run, typeName, "")
	g.Printf("const %s\n", name)
	g.Printf("var %s\n", index)
}

// createIndexAndNameDecl returns the pair of declarations for the run. The caller will add "const" and "var".
func (g *Generator) createIndexAndNameDecl(run []Value, typeName string, suffix string) (string, string) {
	b := new(bytes.Buffer)
	indexes := make([]int, len(run))
	for i := range run {
		b.WriteString(run[i].name)
		indexes[i] = b.Len()
	}
	nameConst := fmt.Sprintf("_%s_name%s = %q", typeName, suffix, b.String())
	nameLen := b.Len()
	b.Reset()
	fmt.Fprintf(b, "_%s_index%s = [...]uint%d{0, ", typeName, suffix, usize(nameLen))
	for i, v := range indexes {
		if i > 0 {
			fmt.Fprintf(b, ", ")
		}
		fmt.Fprintf(b, "%d", v)
	}
	fmt.Fprintf(b, "}")
	return b.String(), nameConst
}

// declareNameVars declares the concatenated names string representing all the values in the runs.
func (g *Generator) declareNameVars(runs [][]Value, typeName string, suffix string) {
	g.Printf("const _%s_name%s = \"", typeName, suffix)
	for _, run := range runs {
		for i := range run {
			g.Printf("%s", run[i].name)
		}
	}
	g.Printf("\"\n")
}

// buildOneRun generates the variables and String method for a single run of contiguous values.
func (g *Generator) buildOneRun(runs [][]Value, typeName string) {
	values := runs[0]
	g.Printf("\n")
	g.declareIndexAndNameVar(values, typeName)
	// The generated code is simple enough to write as a Printf format.
	lessThanZero := ""
	if values[0].signed {
		lessThanZero = "i < 0 || "
	}
	if values[0].value == 0 { // Signed or unsigned, 0 is still 0.
		g.Printf(stringOneRun, typeName, usize(len(values)), lessThanZero)
	} else {
		g.Printf(stringOneRunWithOffset, typeName, values[0].String(), usize(len(values)), lessThanZero)
	}
}

// Arguments to format are:
//	[1]: type name
//	[2]: size of index element (8 for uint8 etc.)
//	[3]: less than zero check (for signed types)
const stringOneRun = `func (i %[1]s) String() string {
	if %[3]si >= %[1]s(len(_%[1]s_index)-1) {
		return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")"
	}
	return _%[1]s_name[_%[1]s_index[i]:_%[1]s_index[i+1]]
}
`

// Arguments to format are:
//	[1]: type name
//	[2]: lowest defined value for type, as a string
//	[3]: size of index element (8 for uint8 etc.)
//	[4]: less than zero check (for signed types)
/*
 */
const stringOneRunWithOffset = `func (i %[1]s) String() string {
	i -= %[2]s
	if %[4]si >= %[1]s(len(_%[1]s_index)-1) {
		return "%[1]s(" + strconv.FormatInt(int64(i + %[2]s), 10) + ")"
	}
	return _%[1]s_name[_%[1]s_index[i] : _%[1]s_index[i+1]]
}
`

// buildMultipleRuns generates the variables and String method for multiple runs of contiguous values.
// For this pattern, a single Printf format won't do.
func (g *Generator) buildMultipleRuns(runs [][]Value, typeName string) {
	g.Printf("\n")
	g.declareIndexAndNameVars(runs, typeName)
	g.Printf("func (i %s) String() string {\n", typeName)
	g.Printf("\tswitch {\n")
	for i, values := range runs {
		if len(values) == 1 {
			g.Printf("\tcase i == %s:\n", &values[0])
			g.Printf("\t\treturn _%s_name_%d\n", typeName, i)
			continue
		}
		if values[0].value == 0 && !values[0].signed {
			// For an unsigned lower bound of 0, "0 <= i" would be redundant.
			g.Printf("\tcase i <= %s:\n", &values[len(values)-1])
		} else {
			g.Printf("\tcase %s <= i && i <= %s:\n", &values[0], &values[len(values)-1])
		}
		if values[0].value != 0 {
			g.Printf("\t\ti -= %s\n", &values[0])
		}
		g.Printf("\t\treturn _%s_name_%d[_%s_index_%d[i]:_%s_index_%d[i+1]]\n",
			typeName, i, typeName, i, typeName, i)
	}
	g.Printf("\tdefault:\n")
	g.Printf("\t\treturn \"%s(\" + strconv.FormatInt(int64(i), 10) + \")\"\n", typeName)
	g.Printf("\t}\n")
	g.Printf("}\n")
}

// buildMap handles the case where the space is so sparse a map is a reasonable fallback.
// It's a rare situation but has simple code.
func (g *Generator) buildMap(runs [][]Value, typeName string) {
	g.Printf("\n")
	g.declareNameVars(runs, typeName, "")
	g.Printf("\nvar _%s_map = map[%s]string{\n", typeName, typeName)
	n := 0
	for _, values := range runs {
		for _, value := range values {
			g.Printf("\t%s: _%s_name[%d:%d],\n", &value, typeName, n, n+len(value.name))
			n += len(value.name)
		}
	}
	g.Printf("}\n\n")
	g.Printf(stringMap, typeName)
}

// Argument to format is the type name.
const stringMap = `func (i %[1]s) String() string {
	if str, ok := _%[1]s_map[i]; ok {
		return str
	}
	return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")"
}
`