aboutsummaryrefslogtreecommitdiff
path: root/internal/impl/legacy_message.go
blob: 61c483fac06ef862eb4cd56c9b08273870ade5e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package impl

import (
	"fmt"
	"reflect"
	"strings"
	"sync"

	"google.golang.org/protobuf/internal/descopts"
	ptag "google.golang.org/protobuf/internal/encoding/tag"
	"google.golang.org/protobuf/internal/errors"
	"google.golang.org/protobuf/internal/filedesc"
	"google.golang.org/protobuf/internal/strs"
	"google.golang.org/protobuf/reflect/protoreflect"
	"google.golang.org/protobuf/runtime/protoiface"
)

// legacyWrapMessage wraps v as a protoreflect.Message,
// where v must be a *struct kind and not implement the v2 API already.
func legacyWrapMessage(v reflect.Value) protoreflect.Message {
	t := v.Type()
	if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
		return aberrantMessage{v: v}
	}
	mt := legacyLoadMessageInfo(t, "")
	return mt.MessageOf(v.Interface())
}

// legacyLoadMessageType dynamically loads a protoreflect.Type for t,
// where t must be not implement the v2 API already.
// The provided name is used if it cannot be determined from the message.
func legacyLoadMessageType(t reflect.Type, name protoreflect.FullName) protoreflect.MessageType {
	if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
		return aberrantMessageType{t}
	}
	return legacyLoadMessageInfo(t, name)
}

var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo

// legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
// where t must be a *struct kind and not implement the v2 API already.
// The provided name is used if it cannot be determined from the message.
func legacyLoadMessageInfo(t reflect.Type, name protoreflect.FullName) *MessageInfo {
	// Fast-path: check if a MessageInfo is cached for this concrete type.
	if mt, ok := legacyMessageTypeCache.Load(t); ok {
		return mt.(*MessageInfo)
	}

	// Slow-path: derive message descriptor and initialize MessageInfo.
	mi := &MessageInfo{
		Desc:          legacyLoadMessageDesc(t, name),
		GoReflectType: t,
	}

	var hasMarshal, hasUnmarshal bool
	v := reflect.Zero(t).Interface()
	if _, hasMarshal = v.(legacyMarshaler); hasMarshal {
		mi.methods.Marshal = legacyMarshal

		// We have no way to tell whether the type's Marshal method
		// supports deterministic serialization or not, but this
		// preserves the v1 implementation's behavior of always
		// calling Marshal methods when present.
		mi.methods.Flags |= protoiface.SupportMarshalDeterministic
	}
	if _, hasUnmarshal = v.(legacyUnmarshaler); hasUnmarshal {
		mi.methods.Unmarshal = legacyUnmarshal
	}
	if _, hasMerge := v.(legacyMerger); hasMerge || (hasMarshal && hasUnmarshal) {
		mi.methods.Merge = legacyMerge
	}

	if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
		return mi.(*MessageInfo)
	}
	return mi
}

var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor

// LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
// which should be a *struct kind and must not implement the v2 API already.
//
// This is exported for testing purposes.
func LegacyLoadMessageDesc(t reflect.Type) protoreflect.MessageDescriptor {
	return legacyLoadMessageDesc(t, "")
}
func legacyLoadMessageDesc(t reflect.Type, name protoreflect.FullName) protoreflect.MessageDescriptor {
	// Fast-path: check if a MessageDescriptor is cached for this concrete type.
	if mi, ok := legacyMessageDescCache.Load(t); ok {
		return mi.(protoreflect.MessageDescriptor)
	}

	// Slow-path: initialize MessageDescriptor from the raw descriptor.
	mv := reflect.Zero(t).Interface()
	if _, ok := mv.(protoreflect.ProtoMessage); ok {
		panic(fmt.Sprintf("%v already implements proto.Message", t))
	}
	mdV1, ok := mv.(messageV1)
	if !ok {
		return aberrantLoadMessageDesc(t, name)
	}

	// If this is a dynamic message type where there isn't a 1-1 mapping between
	// Go and protobuf types, calling the Descriptor method on the zero value of
	// the message type isn't likely to work. If it panics, swallow the panic and
	// continue as if the Descriptor method wasn't present.
	b, idxs := func() ([]byte, []int) {
		defer func() {
			recover()
		}()
		return mdV1.Descriptor()
	}()
	if b == nil {
		return aberrantLoadMessageDesc(t, name)
	}

	// If the Go type has no fields, then this might be a proto3 empty message
	// from before the size cache was added. If there are any fields, check to
	// see that at least one of them looks like something we generated.
	if t.Elem().Kind() == reflect.Struct {
		if nfield := t.Elem().NumField(); nfield > 0 {
			hasProtoField := false
			for i := 0; i < nfield; i++ {
				f := t.Elem().Field(i)
				if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
					hasProtoField = true
					break
				}
			}
			if !hasProtoField {
				return aberrantLoadMessageDesc(t, name)
			}
		}
	}

	md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
	for _, i := range idxs[1:] {
		md = md.Messages().Get(i)
	}
	if name != "" && md.FullName() != name {
		panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
	}
	if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
		return md.(protoreflect.MessageDescriptor)
	}
	return md
}

var (
	aberrantMessageDescLock  sync.Mutex
	aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
)

// aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
// which must not implement protoreflect.ProtoMessage or messageV1.
//
// This is a best-effort derivation of the message descriptor using the protobuf
// tags on the struct fields.
func aberrantLoadMessageDesc(t reflect.Type, name protoreflect.FullName) protoreflect.MessageDescriptor {
	aberrantMessageDescLock.Lock()
	defer aberrantMessageDescLock.Unlock()
	if aberrantMessageDescCache == nil {
		aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
	}
	return aberrantLoadMessageDescReentrant(t, name)
}
func aberrantLoadMessageDescReentrant(t reflect.Type, name protoreflect.FullName) protoreflect.MessageDescriptor {
	// Fast-path: check if an MessageDescriptor is cached for this concrete type.
	if md, ok := aberrantMessageDescCache[t]; ok {
		return md
	}

	// Slow-path: construct a descriptor from the Go struct type (best-effort).
	// Cache the MessageDescriptor early on so that we can resolve internal
	// cyclic references.
	md := &filedesc.Message{L2: new(filedesc.MessageL2)}
	md.L0.FullName = aberrantDeriveMessageName(t, name)
	md.L0.ParentFile = filedesc.SurrogateProto2
	aberrantMessageDescCache[t] = md

	if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
		return md
	}

	// Try to determine if the message is using proto3 by checking scalars.
	for i := 0; i < t.Elem().NumField(); i++ {
		f := t.Elem().Field(i)
		if tag := f.Tag.Get("protobuf"); tag != "" {
			switch f.Type.Kind() {
			case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
				md.L0.ParentFile = filedesc.SurrogateProto3
			}
			for _, s := range strings.Split(tag, ",") {
				if s == "proto3" {
					md.L0.ParentFile = filedesc.SurrogateProto3
				}
			}
		}
	}

	// Obtain a list of oneof wrapper types.
	var oneofWrappers []reflect.Type
	for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} {
		if fn, ok := t.MethodByName(method); ok {
			for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) {
				if vs, ok := v.Interface().([]interface{}); ok {
					for _, v := range vs {
						oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
					}
				}
			}
		}
	}

	// Obtain a list of the extension ranges.
	if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
		vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
		for i := 0; i < vs.Len(); i++ {
			v := vs.Index(i)
			md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]protoreflect.FieldNumber{
				protoreflect.FieldNumber(v.FieldByName("Start").Int()),
				protoreflect.FieldNumber(v.FieldByName("End").Int() + 1),
			})
			md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
		}
	}

	// Derive the message fields by inspecting the struct fields.
	for i := 0; i < t.Elem().NumField(); i++ {
		f := t.Elem().Field(i)
		if tag := f.Tag.Get("protobuf"); tag != "" {
			tagKey := f.Tag.Get("protobuf_key")
			tagVal := f.Tag.Get("protobuf_val")
			aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
		}
		if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
			n := len(md.L2.Oneofs.List)
			md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
			od := &md.L2.Oneofs.List[n]
			od.L0.FullName = md.FullName().Append(protoreflect.Name(tag))
			od.L0.ParentFile = md.L0.ParentFile
			od.L0.Parent = md
			od.L0.Index = n

			for _, t := range oneofWrappers {
				if t.Implements(f.Type) {
					f := t.Elem().Field(0)
					if tag := f.Tag.Get("protobuf"); tag != "" {
						aberrantAppendField(md, f.Type, tag, "", "")
						fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
						fd.L1.ContainingOneof = od
						od.L1.Fields.List = append(od.L1.Fields.List, fd)
					}
				}
			}
		}
	}

	return md
}

func aberrantDeriveMessageName(t reflect.Type, name protoreflect.FullName) protoreflect.FullName {
	if name.IsValid() {
		return name
	}
	func() {
		defer func() { recover() }() // swallow possible nil panics
		if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
			name = protoreflect.FullName(m.XXX_MessageName())
		}
	}()
	if name.IsValid() {
		return name
	}
	if t.Kind() == reflect.Ptr {
		t = t.Elem()
	}
	return AberrantDeriveFullName(t)
}

func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
	t := goType
	isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
	isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
	if isOptional || isRepeated {
		t = t.Elem()
	}
	fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)

	// Append field descriptor to the message.
	n := len(md.L2.Fields.List)
	md.L2.Fields.List = append(md.L2.Fields.List, *fd)
	fd = &md.L2.Fields.List[n]
	fd.L0.FullName = md.FullName().Append(fd.Name())
	fd.L0.ParentFile = md.L0.ParentFile
	fd.L0.Parent = md
	fd.L0.Index = n

	if fd.L1.IsWeak || fd.L1.HasPacked {
		fd.L1.Options = func() protoreflect.ProtoMessage {
			opts := descopts.Field.ProtoReflect().New()
			if fd.L1.IsWeak {
				opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
			}
			if fd.L1.HasPacked {
				opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
			}
			return opts.Interface()
		}
	}

	// Populate Enum and Message.
	if fd.Enum() == nil && fd.Kind() == protoreflect.EnumKind {
		switch v := reflect.Zero(t).Interface().(type) {
		case protoreflect.Enum:
			fd.L1.Enum = v.Descriptor()
		default:
			fd.L1.Enum = LegacyLoadEnumDesc(t)
		}
	}
	if fd.Message() == nil && (fd.Kind() == protoreflect.MessageKind || fd.Kind() == protoreflect.GroupKind) {
		switch v := reflect.Zero(t).Interface().(type) {
		case protoreflect.ProtoMessage:
			fd.L1.Message = v.ProtoReflect().Descriptor()
		case messageV1:
			fd.L1.Message = LegacyLoadMessageDesc(t)
		default:
			if t.Kind() == reflect.Map {
				n := len(md.L1.Messages.List)
				md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
				md2 := &md.L1.Messages.List[n]
				md2.L0.FullName = md.FullName().Append(protoreflect.Name(strs.MapEntryName(string(fd.Name()))))
				md2.L0.ParentFile = md.L0.ParentFile
				md2.L0.Parent = md
				md2.L0.Index = n

				md2.L1.IsMapEntry = true
				md2.L2.Options = func() protoreflect.ProtoMessage {
					opts := descopts.Message.ProtoReflect().New()
					opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
					return opts.Interface()
				}

				aberrantAppendField(md2, t.Key(), tagKey, "", "")
				aberrantAppendField(md2, t.Elem(), tagVal, "", "")

				fd.L1.Message = md2
				break
			}
			fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
		}
	}
}

type placeholderEnumValues struct {
	protoreflect.EnumValueDescriptors
}

func (placeholderEnumValues) ByNumber(n protoreflect.EnumNumber) protoreflect.EnumValueDescriptor {
	return filedesc.PlaceholderEnumValue(protoreflect.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
}

// legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
type legacyMarshaler interface {
	Marshal() ([]byte, error)
}

// legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
type legacyUnmarshaler interface {
	Unmarshal([]byte) error
}

// legacyMerger is the proto.Merger interface superseded by protoiface.Methoder.
type legacyMerger interface {
	Merge(protoiface.MessageV1)
}

var aberrantProtoMethods = &protoiface.Methods{
	Marshal:   legacyMarshal,
	Unmarshal: legacyUnmarshal,
	Merge:     legacyMerge,

	// We have no way to tell whether the type's Marshal method
	// supports deterministic serialization or not, but this
	// preserves the v1 implementation's behavior of always
	// calling Marshal methods when present.
	Flags: protoiface.SupportMarshalDeterministic,
}

func legacyMarshal(in protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
	v := in.Message.(unwrapper).protoUnwrap()
	marshaler, ok := v.(legacyMarshaler)
	if !ok {
		return protoiface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
	}
	out, err := marshaler.Marshal()
	if in.Buf != nil {
		out = append(in.Buf, out...)
	}
	return protoiface.MarshalOutput{
		Buf: out,
	}, err
}

func legacyUnmarshal(in protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) {
	v := in.Message.(unwrapper).protoUnwrap()
	unmarshaler, ok := v.(legacyUnmarshaler)
	if !ok {
		return protoiface.UnmarshalOutput{}, errors.New("%T does not implement Unmarshal", v)
	}
	return protoiface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
}

func legacyMerge(in protoiface.MergeInput) protoiface.MergeOutput {
	// Check whether this supports the legacy merger.
	dstv := in.Destination.(unwrapper).protoUnwrap()
	merger, ok := dstv.(legacyMerger)
	if ok {
		merger.Merge(Export{}.ProtoMessageV1Of(in.Source))
		return protoiface.MergeOutput{Flags: protoiface.MergeComplete}
	}

	// If legacy merger is unavailable, implement merge in terms of
	// a marshal and unmarshal operation.
	srcv := in.Source.(unwrapper).protoUnwrap()
	marshaler, ok := srcv.(legacyMarshaler)
	if !ok {
		return protoiface.MergeOutput{}
	}
	dstv = in.Destination.(unwrapper).protoUnwrap()
	unmarshaler, ok := dstv.(legacyUnmarshaler)
	if !ok {
		return protoiface.MergeOutput{}
	}
	if !in.Source.IsValid() {
		// Legacy Marshal methods may not function on nil messages.
		// Check for a typed nil source only after we confirm that
		// legacy Marshal/Unmarshal methods are present, for
		// consistency.
		return protoiface.MergeOutput{Flags: protoiface.MergeComplete}
	}
	b, err := marshaler.Marshal()
	if err != nil {
		return protoiface.MergeOutput{}
	}
	err = unmarshaler.Unmarshal(b)
	if err != nil {
		return protoiface.MergeOutput{}
	}
	return protoiface.MergeOutput{Flags: protoiface.MergeComplete}
}

// aberrantMessageType implements MessageType for all types other than pointer-to-struct.
type aberrantMessageType struct {
	t reflect.Type
}

func (mt aberrantMessageType) New() protoreflect.Message {
	if mt.t.Kind() == reflect.Ptr {
		return aberrantMessage{reflect.New(mt.t.Elem())}
	}
	return aberrantMessage{reflect.Zero(mt.t)}
}
func (mt aberrantMessageType) Zero() protoreflect.Message {
	return aberrantMessage{reflect.Zero(mt.t)}
}
func (mt aberrantMessageType) GoType() reflect.Type {
	return mt.t
}
func (mt aberrantMessageType) Descriptor() protoreflect.MessageDescriptor {
	return LegacyLoadMessageDesc(mt.t)
}

// aberrantMessage implements Message for all types other than pointer-to-struct.
//
// When the underlying type implements legacyMarshaler or legacyUnmarshaler,
// the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
// not much that can be done with values of this type.
type aberrantMessage struct {
	v reflect.Value
}

// Reset implements the v1 proto.Message.Reset method.
func (m aberrantMessage) Reset() {
	if mr, ok := m.v.Interface().(interface{ Reset() }); ok {
		mr.Reset()
		return
	}
	if m.v.Kind() == reflect.Ptr && !m.v.IsNil() {
		m.v.Elem().Set(reflect.Zero(m.v.Type().Elem()))
	}
}

func (m aberrantMessage) ProtoReflect() protoreflect.Message {
	return m
}

func (m aberrantMessage) Descriptor() protoreflect.MessageDescriptor {
	return LegacyLoadMessageDesc(m.v.Type())
}
func (m aberrantMessage) Type() protoreflect.MessageType {
	return aberrantMessageType{m.v.Type()}
}
func (m aberrantMessage) New() protoreflect.Message {
	if m.v.Type().Kind() == reflect.Ptr {
		return aberrantMessage{reflect.New(m.v.Type().Elem())}
	}
	return aberrantMessage{reflect.Zero(m.v.Type())}
}
func (m aberrantMessage) Interface() protoreflect.ProtoMessage {
	return m
}
func (m aberrantMessage) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) {
	return
}
func (m aberrantMessage) Has(protoreflect.FieldDescriptor) bool {
	return false
}
func (m aberrantMessage) Clear(protoreflect.FieldDescriptor) {
	panic("invalid Message.Clear on " + string(m.Descriptor().FullName()))
}
func (m aberrantMessage) Get(fd protoreflect.FieldDescriptor) protoreflect.Value {
	if fd.Default().IsValid() {
		return fd.Default()
	}
	panic("invalid Message.Get on " + string(m.Descriptor().FullName()))
}
func (m aberrantMessage) Set(protoreflect.FieldDescriptor, protoreflect.Value) {
	panic("invalid Message.Set on " + string(m.Descriptor().FullName()))
}
func (m aberrantMessage) Mutable(protoreflect.FieldDescriptor) protoreflect.Value {
	panic("invalid Message.Mutable on " + string(m.Descriptor().FullName()))
}
func (m aberrantMessage) NewField(protoreflect.FieldDescriptor) protoreflect.Value {
	panic("invalid Message.NewField on " + string(m.Descriptor().FullName()))
}
func (m aberrantMessage) WhichOneof(protoreflect.OneofDescriptor) protoreflect.FieldDescriptor {
	panic("invalid Message.WhichOneof descriptor on " + string(m.Descriptor().FullName()))
}
func (m aberrantMessage) GetUnknown() protoreflect.RawFields {
	return nil
}
func (m aberrantMessage) SetUnknown(protoreflect.RawFields) {
	// SetUnknown discards its input on messages which don't support unknown field storage.
}
func (m aberrantMessage) IsValid() bool {
	if m.v.Kind() == reflect.Ptr {
		return !m.v.IsNil()
	}
	return false
}
func (m aberrantMessage) ProtoMethods() *protoiface.Methods {
	return aberrantProtoMethods
}
func (m aberrantMessage) protoUnwrap() interface{} {
	return m.v.Interface()
}