// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package impl import ( "fmt" "reflect" "strings" "sync" "google.golang.org/protobuf/internal/descopts" ptag "google.golang.org/protobuf/internal/encoding/tag" "google.golang.org/protobuf/internal/errors" "google.golang.org/protobuf/internal/filedesc" "google.golang.org/protobuf/internal/strs" "google.golang.org/protobuf/reflect/protoreflect" "google.golang.org/protobuf/runtime/protoiface" ) // legacyWrapMessage wraps v as a protoreflect.Message, // where v must be a *struct kind and not implement the v2 API already. func legacyWrapMessage(v reflect.Value) protoreflect.Message { t := v.Type() if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct { return aberrantMessage{v: v} } mt := legacyLoadMessageInfo(t, "") return mt.MessageOf(v.Interface()) } // legacyLoadMessageType dynamically loads a protoreflect.Type for t, // where t must be not implement the v2 API already. // The provided name is used if it cannot be determined from the message. func legacyLoadMessageType(t reflect.Type, name protoreflect.FullName) protoreflect.MessageType { if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct { return aberrantMessageType{t} } return legacyLoadMessageInfo(t, name) } var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo // legacyLoadMessageInfo dynamically loads a *MessageInfo for t, // where t must be a *struct kind and not implement the v2 API already. // The provided name is used if it cannot be determined from the message. func legacyLoadMessageInfo(t reflect.Type, name protoreflect.FullName) *MessageInfo { // Fast-path: check if a MessageInfo is cached for this concrete type. if mt, ok := legacyMessageTypeCache.Load(t); ok { return mt.(*MessageInfo) } // Slow-path: derive message descriptor and initialize MessageInfo. mi := &MessageInfo{ Desc: legacyLoadMessageDesc(t, name), GoReflectType: t, } var hasMarshal, hasUnmarshal bool v := reflect.Zero(t).Interface() if _, hasMarshal = v.(legacyMarshaler); hasMarshal { mi.methods.Marshal = legacyMarshal // We have no way to tell whether the type's Marshal method // supports deterministic serialization or not, but this // preserves the v1 implementation's behavior of always // calling Marshal methods when present. mi.methods.Flags |= protoiface.SupportMarshalDeterministic } if _, hasUnmarshal = v.(legacyUnmarshaler); hasUnmarshal { mi.methods.Unmarshal = legacyUnmarshal } if _, hasMerge := v.(legacyMerger); hasMerge || (hasMarshal && hasUnmarshal) { mi.methods.Merge = legacyMerge } if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok { return mi.(*MessageInfo) } return mi } var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor // LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type, // which should be a *struct kind and must not implement the v2 API already. // // This is exported for testing purposes. func LegacyLoadMessageDesc(t reflect.Type) protoreflect.MessageDescriptor { return legacyLoadMessageDesc(t, "") } func legacyLoadMessageDesc(t reflect.Type, name protoreflect.FullName) protoreflect.MessageDescriptor { // Fast-path: check if a MessageDescriptor is cached for this concrete type. if mi, ok := legacyMessageDescCache.Load(t); ok { return mi.(protoreflect.MessageDescriptor) } // Slow-path: initialize MessageDescriptor from the raw descriptor. mv := reflect.Zero(t).Interface() if _, ok := mv.(protoreflect.ProtoMessage); ok { panic(fmt.Sprintf("%v already implements proto.Message", t)) } mdV1, ok := mv.(messageV1) if !ok { return aberrantLoadMessageDesc(t, name) } // If this is a dynamic message type where there isn't a 1-1 mapping between // Go and protobuf types, calling the Descriptor method on the zero value of // the message type isn't likely to work. If it panics, swallow the panic and // continue as if the Descriptor method wasn't present. b, idxs := func() ([]byte, []int) { defer func() { recover() }() return mdV1.Descriptor() }() if b == nil { return aberrantLoadMessageDesc(t, name) } // If the Go type has no fields, then this might be a proto3 empty message // from before the size cache was added. If there are any fields, check to // see that at least one of them looks like something we generated. if t.Elem().Kind() == reflect.Struct { if nfield := t.Elem().NumField(); nfield > 0 { hasProtoField := false for i := 0; i < nfield; i++ { f := t.Elem().Field(i) if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") { hasProtoField = true break } } if !hasProtoField { return aberrantLoadMessageDesc(t, name) } } } md := legacyLoadFileDesc(b).Messages().Get(idxs[0]) for _, i := range idxs[1:] { md = md.Messages().Get(i) } if name != "" && md.FullName() != name { panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name)) } if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok { return md.(protoreflect.MessageDescriptor) } return md } var ( aberrantMessageDescLock sync.Mutex aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor ) // aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type, // which must not implement protoreflect.ProtoMessage or messageV1. // // This is a best-effort derivation of the message descriptor using the protobuf // tags on the struct fields. func aberrantLoadMessageDesc(t reflect.Type, name protoreflect.FullName) protoreflect.MessageDescriptor { aberrantMessageDescLock.Lock() defer aberrantMessageDescLock.Unlock() if aberrantMessageDescCache == nil { aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor) } return aberrantLoadMessageDescReentrant(t, name) } func aberrantLoadMessageDescReentrant(t reflect.Type, name protoreflect.FullName) protoreflect.MessageDescriptor { // Fast-path: check if an MessageDescriptor is cached for this concrete type. if md, ok := aberrantMessageDescCache[t]; ok { return md } // Slow-path: construct a descriptor from the Go struct type (best-effort). // Cache the MessageDescriptor early on so that we can resolve internal // cyclic references. md := &filedesc.Message{L2: new(filedesc.MessageL2)} md.L0.FullName = aberrantDeriveMessageName(t, name) md.L0.ParentFile = filedesc.SurrogateProto2 aberrantMessageDescCache[t] = md if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct { return md } // Try to determine if the message is using proto3 by checking scalars. for i := 0; i < t.Elem().NumField(); i++ { f := t.Elem().Field(i) if tag := f.Tag.Get("protobuf"); tag != "" { switch f.Type.Kind() { case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String: md.L0.ParentFile = filedesc.SurrogateProto3 } for _, s := range strings.Split(tag, ",") { if s == "proto3" { md.L0.ParentFile = filedesc.SurrogateProto3 } } } } // Obtain a list of oneof wrapper types. var oneofWrappers []reflect.Type for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} { if fn, ok := t.MethodByName(method); ok { for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) { if vs, ok := v.Interface().([]interface{}); ok { for _, v := range vs { oneofWrappers = append(oneofWrappers, reflect.TypeOf(v)) } } } } } // Obtain a list of the extension ranges. if fn, ok := t.MethodByName("ExtensionRangeArray"); ok { vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0] for i := 0; i < vs.Len(); i++ { v := vs.Index(i) md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]protoreflect.FieldNumber{ protoreflect.FieldNumber(v.FieldByName("Start").Int()), protoreflect.FieldNumber(v.FieldByName("End").Int() + 1), }) md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil) } } // Derive the message fields by inspecting the struct fields. for i := 0; i < t.Elem().NumField(); i++ { f := t.Elem().Field(i) if tag := f.Tag.Get("protobuf"); tag != "" { tagKey := f.Tag.Get("protobuf_key") tagVal := f.Tag.Get("protobuf_val") aberrantAppendField(md, f.Type, tag, tagKey, tagVal) } if tag := f.Tag.Get("protobuf_oneof"); tag != "" { n := len(md.L2.Oneofs.List) md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{}) od := &md.L2.Oneofs.List[n] od.L0.FullName = md.FullName().Append(protoreflect.Name(tag)) od.L0.ParentFile = md.L0.ParentFile od.L0.Parent = md od.L0.Index = n for _, t := range oneofWrappers { if t.Implements(f.Type) { f := t.Elem().Field(0) if tag := f.Tag.Get("protobuf"); tag != "" { aberrantAppendField(md, f.Type, tag, "", "") fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1] fd.L1.ContainingOneof = od od.L1.Fields.List = append(od.L1.Fields.List, fd) } } } } } return md } func aberrantDeriveMessageName(t reflect.Type, name protoreflect.FullName) protoreflect.FullName { if name.IsValid() { return name } func() { defer func() { recover() }() // swallow possible nil panics if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok { name = protoreflect.FullName(m.XXX_MessageName()) } }() if name.IsValid() { return name } if t.Kind() == reflect.Ptr { t = t.Elem() } return AberrantDeriveFullName(t) } func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) { t := goType isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8 if isOptional || isRepeated { t = t.Elem() } fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field) // Append field descriptor to the message. n := len(md.L2.Fields.List) md.L2.Fields.List = append(md.L2.Fields.List, *fd) fd = &md.L2.Fields.List[n] fd.L0.FullName = md.FullName().Append(fd.Name()) fd.L0.ParentFile = md.L0.ParentFile fd.L0.Parent = md fd.L0.Index = n if fd.L1.IsWeak || fd.L1.HasPacked { fd.L1.Options = func() protoreflect.ProtoMessage { opts := descopts.Field.ProtoReflect().New() if fd.L1.IsWeak { opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true)) } if fd.L1.HasPacked { opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked)) } return opts.Interface() } } // Populate Enum and Message. if fd.Enum() == nil && fd.Kind() == protoreflect.EnumKind { switch v := reflect.Zero(t).Interface().(type) { case protoreflect.Enum: fd.L1.Enum = v.Descriptor() default: fd.L1.Enum = LegacyLoadEnumDesc(t) } } if fd.Message() == nil && (fd.Kind() == protoreflect.MessageKind || fd.Kind() == protoreflect.GroupKind) { switch v := reflect.Zero(t).Interface().(type) { case protoreflect.ProtoMessage: fd.L1.Message = v.ProtoReflect().Descriptor() case messageV1: fd.L1.Message = LegacyLoadMessageDesc(t) default: if t.Kind() == reflect.Map { n := len(md.L1.Messages.List) md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)}) md2 := &md.L1.Messages.List[n] md2.L0.FullName = md.FullName().Append(protoreflect.Name(strs.MapEntryName(string(fd.Name())))) md2.L0.ParentFile = md.L0.ParentFile md2.L0.Parent = md md2.L0.Index = n md2.L1.IsMapEntry = true md2.L2.Options = func() protoreflect.ProtoMessage { opts := descopts.Message.ProtoReflect().New() opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true)) return opts.Interface() } aberrantAppendField(md2, t.Key(), tagKey, "", "") aberrantAppendField(md2, t.Elem(), tagVal, "", "") fd.L1.Message = md2 break } fd.L1.Message = aberrantLoadMessageDescReentrant(t, "") } } } type placeholderEnumValues struct { protoreflect.EnumValueDescriptors } func (placeholderEnumValues) ByNumber(n protoreflect.EnumNumber) protoreflect.EnumValueDescriptor { return filedesc.PlaceholderEnumValue(protoreflect.FullName(fmt.Sprintf("UNKNOWN_%d", n))) } // legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder. type legacyMarshaler interface { Marshal() ([]byte, error) } // legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder. type legacyUnmarshaler interface { Unmarshal([]byte) error } // legacyMerger is the proto.Merger interface superseded by protoiface.Methoder. type legacyMerger interface { Merge(protoiface.MessageV1) } var aberrantProtoMethods = &protoiface.Methods{ Marshal: legacyMarshal, Unmarshal: legacyUnmarshal, Merge: legacyMerge, // We have no way to tell whether the type's Marshal method // supports deterministic serialization or not, but this // preserves the v1 implementation's behavior of always // calling Marshal methods when present. Flags: protoiface.SupportMarshalDeterministic, } func legacyMarshal(in protoiface.MarshalInput) (protoiface.MarshalOutput, error) { v := in.Message.(unwrapper).protoUnwrap() marshaler, ok := v.(legacyMarshaler) if !ok { return protoiface.MarshalOutput{}, errors.New("%T does not implement Marshal", v) } out, err := marshaler.Marshal() if in.Buf != nil { out = append(in.Buf, out...) } return protoiface.MarshalOutput{ Buf: out, }, err } func legacyUnmarshal(in protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) { v := in.Message.(unwrapper).protoUnwrap() unmarshaler, ok := v.(legacyUnmarshaler) if !ok { return protoiface.UnmarshalOutput{}, errors.New("%T does not implement Unmarshal", v) } return protoiface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf) } func legacyMerge(in protoiface.MergeInput) protoiface.MergeOutput { // Check whether this supports the legacy merger. dstv := in.Destination.(unwrapper).protoUnwrap() merger, ok := dstv.(legacyMerger) if ok { merger.Merge(Export{}.ProtoMessageV1Of(in.Source)) return protoiface.MergeOutput{Flags: protoiface.MergeComplete} } // If legacy merger is unavailable, implement merge in terms of // a marshal and unmarshal operation. srcv := in.Source.(unwrapper).protoUnwrap() marshaler, ok := srcv.(legacyMarshaler) if !ok { return protoiface.MergeOutput{} } dstv = in.Destination.(unwrapper).protoUnwrap() unmarshaler, ok := dstv.(legacyUnmarshaler) if !ok { return protoiface.MergeOutput{} } if !in.Source.IsValid() { // Legacy Marshal methods may not function on nil messages. // Check for a typed nil source only after we confirm that // legacy Marshal/Unmarshal methods are present, for // consistency. return protoiface.MergeOutput{Flags: protoiface.MergeComplete} } b, err := marshaler.Marshal() if err != nil { return protoiface.MergeOutput{} } err = unmarshaler.Unmarshal(b) if err != nil { return protoiface.MergeOutput{} } return protoiface.MergeOutput{Flags: protoiface.MergeComplete} } // aberrantMessageType implements MessageType for all types other than pointer-to-struct. type aberrantMessageType struct { t reflect.Type } func (mt aberrantMessageType) New() protoreflect.Message { if mt.t.Kind() == reflect.Ptr { return aberrantMessage{reflect.New(mt.t.Elem())} } return aberrantMessage{reflect.Zero(mt.t)} } func (mt aberrantMessageType) Zero() protoreflect.Message { return aberrantMessage{reflect.Zero(mt.t)} } func (mt aberrantMessageType) GoType() reflect.Type { return mt.t } func (mt aberrantMessageType) Descriptor() protoreflect.MessageDescriptor { return LegacyLoadMessageDesc(mt.t) } // aberrantMessage implements Message for all types other than pointer-to-struct. // // When the underlying type implements legacyMarshaler or legacyUnmarshaler, // the aberrant Message can be marshaled or unmarshaled. Otherwise, there is // not much that can be done with values of this type. type aberrantMessage struct { v reflect.Value } // Reset implements the v1 proto.Message.Reset method. func (m aberrantMessage) Reset() { if mr, ok := m.v.Interface().(interface{ Reset() }); ok { mr.Reset() return } if m.v.Kind() == reflect.Ptr && !m.v.IsNil() { m.v.Elem().Set(reflect.Zero(m.v.Type().Elem())) } } func (m aberrantMessage) ProtoReflect() protoreflect.Message { return m } func (m aberrantMessage) Descriptor() protoreflect.MessageDescriptor { return LegacyLoadMessageDesc(m.v.Type()) } func (m aberrantMessage) Type() protoreflect.MessageType { return aberrantMessageType{m.v.Type()} } func (m aberrantMessage) New() protoreflect.Message { if m.v.Type().Kind() == reflect.Ptr { return aberrantMessage{reflect.New(m.v.Type().Elem())} } return aberrantMessage{reflect.Zero(m.v.Type())} } func (m aberrantMessage) Interface() protoreflect.ProtoMessage { return m } func (m aberrantMessage) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) { return } func (m aberrantMessage) Has(protoreflect.FieldDescriptor) bool { return false } func (m aberrantMessage) Clear(protoreflect.FieldDescriptor) { panic("invalid Message.Clear on " + string(m.Descriptor().FullName())) } func (m aberrantMessage) Get(fd protoreflect.FieldDescriptor) protoreflect.Value { if fd.Default().IsValid() { return fd.Default() } panic("invalid Message.Get on " + string(m.Descriptor().FullName())) } func (m aberrantMessage) Set(protoreflect.FieldDescriptor, protoreflect.Value) { panic("invalid Message.Set on " + string(m.Descriptor().FullName())) } func (m aberrantMessage) Mutable(protoreflect.FieldDescriptor) protoreflect.Value { panic("invalid Message.Mutable on " + string(m.Descriptor().FullName())) } func (m aberrantMessage) NewField(protoreflect.FieldDescriptor) protoreflect.Value { panic("invalid Message.NewField on " + string(m.Descriptor().FullName())) } func (m aberrantMessage) WhichOneof(protoreflect.OneofDescriptor) protoreflect.FieldDescriptor { panic("invalid Message.WhichOneof descriptor on " + string(m.Descriptor().FullName())) } func (m aberrantMessage) GetUnknown() protoreflect.RawFields { return nil } func (m aberrantMessage) SetUnknown(protoreflect.RawFields) { // SetUnknown discards its input on messages which don't support unknown field storage. } func (m aberrantMessage) IsValid() bool { if m.v.Kind() == reflect.Ptr { return !m.v.IsNil() } return false } func (m aberrantMessage) ProtoMethods() *protoiface.Methods { return aberrantProtoMethods } func (m aberrantMessage) protoUnwrap() interface{} { return m.v.Interface() }