aboutsummaryrefslogtreecommitdiff
path: root/include/fmt/format.h
blob: 1a037b02b7e475fbdff757594b40ffd3cfdcf5a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
/*
 Formatting library for C++

 Copyright (c) 2012 - present, Victor Zverovich

 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:

 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 --- Optional exception to the license ---

 As an exception, if, as a result of your compiling your source code, portions
 of this Software are embedded into a machine-executable object form of such
 source code, you may redistribute such embedded portions in such object form
 without including the above copyright and permission notices.
 */

#ifndef FMT_FORMAT_H_
#define FMT_FORMAT_H_

#include <algorithm>
#include <cerrno>
#include <cmath>
#include <cstdint>
#include <limits>
#include <memory>
#include <stdexcept>

#include "core.h"

#ifdef __INTEL_COMPILER
#  define FMT_ICC_VERSION __INTEL_COMPILER
#elif defined(__ICL)
#  define FMT_ICC_VERSION __ICL
#else
#  define FMT_ICC_VERSION 0
#endif

#ifdef __NVCC__
#  define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
#else
#  define FMT_CUDA_VERSION 0
#endif

#ifdef __has_builtin
#  define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
#  define FMT_HAS_BUILTIN(x) 0
#endif

#if FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_NOINLINE __attribute__((noinline))
#else
#  define FMT_NOINLINE
#endif

#if __cplusplus == 201103L || __cplusplus == 201402L
#  if defined(__INTEL_COMPILER) || defined(__PGI)
#    define FMT_FALLTHROUGH
#  elif defined(__clang__)
#    define FMT_FALLTHROUGH [[clang::fallthrough]]
#  elif FMT_GCC_VERSION >= 700 && \
      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
#    define FMT_FALLTHROUGH [[gnu::fallthrough]]
#  else
#    define FMT_FALLTHROUGH
#  endif
#elif FMT_HAS_CPP17_ATTRIBUTE(fallthrough) || \
    (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#  define FMT_FALLTHROUGH [[fallthrough]]
#else
#  define FMT_FALLTHROUGH
#endif

#ifndef FMT_MAYBE_UNUSED
#  if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
#    define FMT_MAYBE_UNUSED [[maybe_unused]]
#  else
#    define FMT_MAYBE_UNUSED
#  endif
#endif

#ifndef FMT_THROW
#  if FMT_EXCEPTIONS
#    if FMT_MSC_VER || FMT_NVCC
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename Exception> inline void do_throw(const Exception& x) {
  // Silence unreachable code warnings in MSVC and NVCC because these
  // are nearly impossible to fix in a generic code.
  volatile bool b = true;
  if (b) throw x;
}
}  // namespace detail
FMT_END_NAMESPACE
#      define FMT_THROW(x) detail::do_throw(x)
#    else
#      define FMT_THROW(x) throw x
#    endif
#  else
#    define FMT_THROW(x)              \
      do {                            \
        static_cast<void>(sizeof(x)); \
        FMT_ASSERT(false, "");        \
      } while (false)
#  endif
#endif

#if FMT_EXCEPTIONS
#  define FMT_TRY try
#  define FMT_CATCH(x) catch (x)
#else
#  define FMT_TRY if (true)
#  define FMT_CATCH(x) if (false)
#endif

#ifndef FMT_USE_USER_DEFINED_LITERALS
// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
#  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \
       FMT_MSC_VER >= 1900) &&                                         \
      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
#    define FMT_USE_USER_DEFINED_LITERALS 1
#  else
#    define FMT_USE_USER_DEFINED_LITERALS 0
#  endif
#endif

#ifndef FMT_USE_UDL_TEMPLATE
// EDG frontend based compilers (icc, nvcc, PGI, etc) and GCC < 6.4 do not
// properly support UDL templates and GCC >= 9 warns about them.
#  if FMT_USE_USER_DEFINED_LITERALS &&                         \
      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 501) && \
      ((FMT_GCC_VERSION >= 604 && __cplusplus >= 201402L) ||   \
       FMT_CLANG_VERSION >= 304) &&                            \
      !defined(__PGI) && !defined(__NVCC__)
#    define FMT_USE_UDL_TEMPLATE 1
#  else
#    define FMT_USE_UDL_TEMPLATE 0
#  endif
#endif

#ifndef FMT_USE_FLOAT
#  define FMT_USE_FLOAT 1
#endif

#ifndef FMT_USE_DOUBLE
#  define FMT_USE_DOUBLE 1
#endif

#ifndef FMT_USE_LONG_DOUBLE
#  define FMT_USE_LONG_DOUBLE 1
#endif

// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
// int_writer template instances to just one by only using the largest integer
// type. This results in a reduction in binary size but will cause a decrease in
// integer formatting performance.
#if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
#  define FMT_REDUCE_INT_INSTANTIATIONS 0
#endif

// __builtin_clz is broken in clang with Microsoft CodeGen:
// https://github.com/fmtlib/fmt/issues/519
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clz)) && !FMT_MSC_VER
#  define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clzll)) && !FMT_MSC_VER
#  define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctz))
#  define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctzll))
#  define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
#endif

#if FMT_MSC_VER
#  include <intrin.h>  // _BitScanReverse[64], _BitScanForward[64], _umul128
#endif

// Some compilers masquerade as both MSVC and GCC-likes or otherwise support
// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
// MSVC intrinsics if the clz and clzll builtins are not available.
#if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && \
    !defined(FMT_BUILTIN_CTZLL) && !defined(_MANAGED)
FMT_BEGIN_NAMESPACE
namespace detail {
// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
#  ifndef __clang__
#    pragma intrinsic(_BitScanForward)
#    pragma intrinsic(_BitScanReverse)
#  endif
#  if defined(_WIN64) && !defined(__clang__)
#    pragma intrinsic(_BitScanForward64)
#    pragma intrinsic(_BitScanReverse64)
#  endif

inline int clz(uint32_t x) {
  unsigned long r = 0;
  _BitScanReverse(&r, x);
  FMT_ASSERT(x != 0, "");
  // Static analysis complains about using uninitialized data
  // "r", but the only way that can happen is if "x" is 0,
  // which the callers guarantee to not happen.
  FMT_SUPPRESS_MSC_WARNING(6102)
  return 31 ^ static_cast<int>(r);
}
#  define FMT_BUILTIN_CLZ(n) detail::clz(n)

inline int clzll(uint64_t x) {
  unsigned long r = 0;
#  ifdef _WIN64
  _BitScanReverse64(&r, x);
#  else
  // Scan the high 32 bits.
  if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 ^ (r + 32);
  // Scan the low 32 bits.
  _BitScanReverse(&r, static_cast<uint32_t>(x));
#  endif
  FMT_ASSERT(x != 0, "");
  FMT_SUPPRESS_MSC_WARNING(6102)  // Suppress a bogus static analysis warning.
  return 63 ^ static_cast<int>(r);
}
#  define FMT_BUILTIN_CLZLL(n) detail::clzll(n)

inline int ctz(uint32_t x) {
  unsigned long r = 0;
  _BitScanForward(&r, x);
  FMT_ASSERT(x != 0, "");
  FMT_SUPPRESS_MSC_WARNING(6102)  // Suppress a bogus static analysis warning.
  return static_cast<int>(r);
}
#  define FMT_BUILTIN_CTZ(n) detail::ctz(n)

inline int ctzll(uint64_t x) {
  unsigned long r = 0;
  FMT_ASSERT(x != 0, "");
  FMT_SUPPRESS_MSC_WARNING(6102)  // Suppress a bogus static analysis warning.
#  ifdef _WIN64
  _BitScanForward64(&r, x);
#  else
  // Scan the low 32 bits.
  if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
  // Scan the high 32 bits.
  _BitScanForward(&r, static_cast<uint32_t>(x >> 32));
  r += 32;
#  endif
  return static_cast<int>(r);
}
#  define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
}  // namespace detail
FMT_END_NAMESPACE
#endif

// Enable the deprecated numeric alignment.
#ifndef FMT_DEPRECATED_NUMERIC_ALIGN
#  define FMT_DEPRECATED_NUMERIC_ALIGN 0
#endif

FMT_BEGIN_NAMESPACE
namespace detail {

// An equivalent of `*reinterpret_cast<Dest*>(&source)` that doesn't have
// undefined behavior (e.g. due to type aliasing).
// Example: uint64_t d = bit_cast<uint64_t>(2.718);
template <typename Dest, typename Source>
inline Dest bit_cast(const Source& source) {
  static_assert(sizeof(Dest) == sizeof(Source), "size mismatch");
  Dest dest;
  std::memcpy(&dest, &source, sizeof(dest));
  return dest;
}

inline bool is_big_endian() {
  const auto u = 1u;
  struct bytes {
    char data[sizeof(u)];
  };
  return bit_cast<bytes>(u).data[0] == 0;
}

// A fallback implementation of uintptr_t for systems that lack it.
struct fallback_uintptr {
  unsigned char value[sizeof(void*)];

  fallback_uintptr() = default;
  explicit fallback_uintptr(const void* p) {
    *this = bit_cast<fallback_uintptr>(p);
    if (is_big_endian()) {
      for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j)
        std::swap(value[i], value[j]);
    }
  }
};
#ifdef UINTPTR_MAX
using uintptr_t = ::uintptr_t;
inline uintptr_t to_uintptr(const void* p) { return bit_cast<uintptr_t>(p); }
#else
using uintptr_t = fallback_uintptr;
inline fallback_uintptr to_uintptr(const void* p) {
  return fallback_uintptr(p);
}
#endif

// Returns the largest possible value for type T. Same as
// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
template <typename T> constexpr T max_value() {
  return (std::numeric_limits<T>::max)();
}
template <typename T> constexpr int num_bits() {
  return std::numeric_limits<T>::digits;
}
// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
template <> constexpr int num_bits<int128_t>() { return 128; }
template <> constexpr int num_bits<uint128_t>() { return 128; }
template <> constexpr int num_bits<fallback_uintptr>() {
  return static_cast<int>(sizeof(void*) *
                          std::numeric_limits<unsigned char>::digits);
}

FMT_INLINE void assume(bool condition) {
  (void)condition;
#if FMT_HAS_BUILTIN(__builtin_assume)
  __builtin_assume(condition);
#endif
}

// An approximation of iterator_t for pre-C++20 systems.
template <typename T>
using iterator_t = decltype(std::begin(std::declval<T&>()));
template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));

// A workaround for std::string not having mutable data() until C++17.
template <typename Char> inline Char* get_data(std::basic_string<Char>& s) {
  return &s[0];
}
template <typename Container>
inline typename Container::value_type* get_data(Container& c) {
  return c.data();
}

#if defined(_SECURE_SCL) && _SECURE_SCL
// Make a checked iterator to avoid MSVC warnings.
template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
template <typename T> checked_ptr<T> make_checked(T* p, size_t size) {
  return {p, size};
}
#else
template <typename T> using checked_ptr = T*;
template <typename T> inline T* make_checked(T* p, size_t) { return p; }
#endif

template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
#if FMT_CLANG_VERSION
__attribute__((no_sanitize("undefined")))
#endif
inline checked_ptr<typename Container::value_type>
reserve(std::back_insert_iterator<Container> it, size_t n) {
  Container& c = get_container(it);
  size_t size = c.size();
  c.resize(size + n);
  return make_checked(get_data(c) + size, n);
}

template <typename T>
inline buffer_appender<T> reserve(buffer_appender<T> it, size_t n) {
  buffer<T>& buf = get_container(it);
  buf.try_reserve(buf.size() + n);
  return it;
}

template <typename Iterator> inline Iterator& reserve(Iterator& it, size_t) {
  return it;
}

template <typename T, typename OutputIt>
constexpr T* to_pointer(OutputIt, size_t) {
  return nullptr;
}
template <typename T> T* to_pointer(buffer_appender<T> it, size_t n) {
  buffer<T>& buf = get_container(it);
  auto size = buf.size();
  if (buf.capacity() < size + n) return nullptr;
  buf.try_resize(size + n);
  return buf.data() + size;
}

template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
inline std::back_insert_iterator<Container> base_iterator(
    std::back_insert_iterator<Container>& it,
    checked_ptr<typename Container::value_type>) {
  return it;
}

template <typename Iterator>
inline Iterator base_iterator(Iterator, Iterator it) {
  return it;
}

// An output iterator that counts the number of objects written to it and
// discards them.
class counting_iterator {
 private:
  size_t count_;

 public:
  using iterator_category = std::output_iterator_tag;
  using difference_type = std::ptrdiff_t;
  using pointer = void;
  using reference = void;
  using _Unchecked_type = counting_iterator;  // Mark iterator as checked.

  struct value_type {
    template <typename T> void operator=(const T&) {}
  };

  counting_iterator() : count_(0) {}

  size_t count() const { return count_; }

  counting_iterator& operator++() {
    ++count_;
    return *this;
  }
  counting_iterator operator++(int) {
    auto it = *this;
    ++*this;
    return it;
  }

  friend counting_iterator operator+(counting_iterator it, difference_type n) {
    it.count_ += static_cast<size_t>(n);
    return it;
  }

  value_type operator*() const { return {}; }
};

template <typename OutputIt> class truncating_iterator_base {
 protected:
  OutputIt out_;
  size_t limit_;
  size_t count_;

  truncating_iterator_base(OutputIt out, size_t limit)
      : out_(out), limit_(limit), count_(0) {}

 public:
  using iterator_category = std::output_iterator_tag;
  using value_type = typename std::iterator_traits<OutputIt>::value_type;
  using difference_type = void;
  using pointer = void;
  using reference = void;
  using _Unchecked_type =
      truncating_iterator_base;  // Mark iterator as checked.

  OutputIt base() const { return out_; }
  size_t count() const { return count_; }
};

// An output iterator that truncates the output and counts the number of objects
// written to it.
template <typename OutputIt,
          typename Enable = typename std::is_void<
              typename std::iterator_traits<OutputIt>::value_type>::type>
class truncating_iterator;

template <typename OutputIt>
class truncating_iterator<OutputIt, std::false_type>
    : public truncating_iterator_base<OutputIt> {
  mutable typename truncating_iterator_base<OutputIt>::value_type blackhole_;

 public:
  using value_type = typename truncating_iterator_base<OutputIt>::value_type;

  truncating_iterator(OutputIt out, size_t limit)
      : truncating_iterator_base<OutputIt>(out, limit) {}

  truncating_iterator& operator++() {
    if (this->count_++ < this->limit_) ++this->out_;
    return *this;
  }

  truncating_iterator operator++(int) {
    auto it = *this;
    ++*this;
    return it;
  }

  value_type& operator*() const {
    return this->count_ < this->limit_ ? *this->out_ : blackhole_;
  }
};

template <typename OutputIt>
class truncating_iterator<OutputIt, std::true_type>
    : public truncating_iterator_base<OutputIt> {
 public:
  truncating_iterator(OutputIt out, size_t limit)
      : truncating_iterator_base<OutputIt>(out, limit) {}

  template <typename T> truncating_iterator& operator=(T val) {
    if (this->count_++ < this->limit_) *this->out_++ = val;
    return *this;
  }

  truncating_iterator& operator++() { return *this; }
  truncating_iterator& operator++(int) { return *this; }
  truncating_iterator& operator*() { return *this; }
};

template <typename Char>
inline size_t count_code_points(basic_string_view<Char> s) {
  return s.size();
}

// Counts the number of code points in a UTF-8 string.
inline size_t count_code_points(basic_string_view<char> s) {
  const char* data = s.data();
  size_t num_code_points = 0;
  for (size_t i = 0, size = s.size(); i != size; ++i) {
    if ((data[i] & 0xc0) != 0x80) ++num_code_points;
  }
  return num_code_points;
}

inline size_t count_code_points(basic_string_view<char8_type> s) {
  return count_code_points(basic_string_view<char>(
      reinterpret_cast<const char*>(s.data()), s.size()));
}

template <typename Char>
inline size_t code_point_index(basic_string_view<Char> s, size_t n) {
  size_t size = s.size();
  return n < size ? n : size;
}

// Calculates the index of the nth code point in a UTF-8 string.
inline size_t code_point_index(basic_string_view<char8_type> s, size_t n) {
  const char8_type* data = s.data();
  size_t num_code_points = 0;
  for (size_t i = 0, size = s.size(); i != size; ++i) {
    if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) {
      return i;
    }
  }
  return s.size();
}

template <typename InputIt, typename OutChar>
using needs_conversion = bool_constant<
    std::is_same<typename std::iterator_traits<InputIt>::value_type,
                 char>::value &&
    std::is_same<OutChar, char8_type>::value>;

template <typename OutChar, typename InputIt, typename OutputIt,
          FMT_ENABLE_IF(!needs_conversion<InputIt, OutChar>::value)>
OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) {
  return std::copy(begin, end, it);
}

template <typename OutChar, typename InputIt, typename OutputIt,
          FMT_ENABLE_IF(needs_conversion<InputIt, OutChar>::value)>
OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) {
  return std::transform(begin, end, it,
                        [](char c) { return static_cast<char8_type>(c); });
}

template <typename Char, typename InputIt>
inline counting_iterator copy_str(InputIt begin, InputIt end,
                                  counting_iterator it) {
  return it + (end - begin);
}

template <typename T>
using is_fast_float = bool_constant<std::numeric_limits<T>::is_iec559 &&
                                    sizeof(T) <= sizeof(double)>;

#ifndef FMT_USE_FULL_CACHE_DRAGONBOX
#  define FMT_USE_FULL_CACHE_DRAGONBOX 0
#endif

template <typename T>
template <typename U>
void buffer<T>::append(const U* begin, const U* end) {
  do {
    auto count = to_unsigned(end - begin);
    try_reserve(size_ + count);
    auto free_cap = capacity_ - size_;
    if (free_cap < count) count = free_cap;
    std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count));
    size_ += count;
    begin += count;
  } while (begin != end);
}

template <typename OutputIt, typename T, typename Traits>
void iterator_buffer<OutputIt, T, Traits>::flush() {
  out_ = std::copy_n(data_, this->limit(this->size()), out_);
  this->clear();
}
}  // namespace detail

// The number of characters to store in the basic_memory_buffer object itself
// to avoid dynamic memory allocation.
enum { inline_buffer_size = 500 };

/**
  \rst
  A dynamically growing memory buffer for trivially copyable/constructible types
  with the first ``SIZE`` elements stored in the object itself.

  You can use one of the following type aliases for common character types:

  +----------------+------------------------------+
  | Type           | Definition                   |
  +================+==============================+
  | memory_buffer  | basic_memory_buffer<char>    |
  +----------------+------------------------------+
  | wmemory_buffer | basic_memory_buffer<wchar_t> |
  +----------------+------------------------------+

  **Example**::

     fmt::memory_buffer out;
     format_to(out, "The answer is {}.", 42);

  This will append the following output to the ``out`` object:

  .. code-block:: none

     The answer is 42.

  The output can be converted to an ``std::string`` with ``to_string(out)``.
  \endrst
 */
template <typename T, size_t SIZE = inline_buffer_size,
          typename Allocator = std::allocator<T>>
class basic_memory_buffer final : public detail::buffer<T> {
 private:
  T store_[SIZE];

  // Don't inherit from Allocator avoid generating type_info for it.
  Allocator alloc_;

  // Deallocate memory allocated by the buffer.
  void deallocate() {
    T* data = this->data();
    if (data != store_) alloc_.deallocate(data, this->capacity());
  }

 protected:
  void grow(size_t size) final FMT_OVERRIDE;

 public:
  using value_type = T;
  using const_reference = const T&;

  explicit basic_memory_buffer(const Allocator& alloc = Allocator())
      : alloc_(alloc) {
    this->set(store_, SIZE);
  }
  ~basic_memory_buffer() { deallocate(); }

 private:
  // Move data from other to this buffer.
  void move(basic_memory_buffer& other) {
    alloc_ = std::move(other.alloc_);
    T* data = other.data();
    size_t size = other.size(), capacity = other.capacity();
    if (data == other.store_) {
      this->set(store_, capacity);
      std::uninitialized_copy(other.store_, other.store_ + size,
                              detail::make_checked(store_, capacity));
    } else {
      this->set(data, capacity);
      // Set pointer to the inline array so that delete is not called
      // when deallocating.
      other.set(other.store_, 0);
    }
    this->resize(size);
  }

 public:
  /**
    \rst
    Constructs a :class:`fmt::basic_memory_buffer` object moving the content
    of the other object to it.
    \endrst
   */
  basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); }

  /**
    \rst
    Moves the content of the other ``basic_memory_buffer`` object to this one.
    \endrst
   */
  basic_memory_buffer& operator=(basic_memory_buffer&& other) FMT_NOEXCEPT {
    FMT_ASSERT(this != &other, "");
    deallocate();
    move(other);
    return *this;
  }

  // Returns a copy of the allocator associated with this buffer.
  Allocator get_allocator() const { return alloc_; }

  /**
    Resizes the buffer to contain *count* elements. If T is a POD type new
    elements may not be initialized.
   */
  void resize(size_t count) { this->try_resize(count); }

  /** Increases the buffer capacity to *new_capacity*. */
  void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }

  // Directly append data into the buffer
  using detail::buffer<T>::append;
  template <typename ContiguousRange>
  void append(const ContiguousRange& range) {
    append(range.data(), range.data() + range.size());
  }
};

template <typename T, size_t SIZE, typename Allocator>
void basic_memory_buffer<T, SIZE, Allocator>::grow(size_t size) {
#ifdef FMT_FUZZ
  if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much");
#endif
  size_t old_capacity = this->capacity();
  size_t new_capacity = old_capacity + old_capacity / 2;
  if (size > new_capacity) new_capacity = size;
  T* old_data = this->data();
  T* new_data =
      std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
  // The following code doesn't throw, so the raw pointer above doesn't leak.
  std::uninitialized_copy(old_data, old_data + this->size(),
                          detail::make_checked(new_data, new_capacity));
  this->set(new_data, new_capacity);
  // deallocate must not throw according to the standard, but even if it does,
  // the buffer already uses the new storage and will deallocate it in
  // destructor.
  if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
}

using memory_buffer = basic_memory_buffer<char>;
using wmemory_buffer = basic_memory_buffer<wchar_t>;

template <typename T, size_t SIZE, typename Allocator>
struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
};

/** A formatting error such as invalid format string. */
FMT_CLASS_API
class FMT_API format_error : public std::runtime_error {
 public:
  explicit format_error(const char* message) : std::runtime_error(message) {}
  explicit format_error(const std::string& message)
      : std::runtime_error(message) {}
  format_error(const format_error&) = default;
  format_error& operator=(const format_error&) = default;
  format_error(format_error&&) = default;
  format_error& operator=(format_error&&) = default;
  ~format_error() FMT_NOEXCEPT FMT_OVERRIDE;
};

namespace detail {

template <typename T>
using is_signed =
    std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
                                     std::is_same<T, int128_t>::value>;

// Returns true if value is negative, false otherwise.
// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
FMT_CONSTEXPR bool is_negative(T value) {
  return value < 0;
}
template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
FMT_CONSTEXPR bool is_negative(T) {
  return false;
}

template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
FMT_CONSTEXPR bool is_supported_floating_point(T) {
  return (std::is_same<T, float>::value && FMT_USE_FLOAT) ||
         (std::is_same<T, double>::value && FMT_USE_DOUBLE) ||
         (std::is_same<T, long double>::value && FMT_USE_LONG_DOUBLE);
}

// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
// represent all values of an integral type T.
template <typename T>
using uint32_or_64_or_128_t =
    conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
                  uint32_t,
                  conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;

// 128-bit integer type used internally
struct FMT_EXTERN_TEMPLATE_API uint128_wrapper {
  uint128_wrapper() = default;

#if FMT_USE_INT128
  uint128_t internal_;

  uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT
      : internal_{static_cast<uint128_t>(low) |
                  (static_cast<uint128_t>(high) << 64)} {}

  uint128_wrapper(uint128_t u) : internal_{u} {}

  uint64_t high() const FMT_NOEXCEPT { return uint64_t(internal_ >> 64); }
  uint64_t low() const FMT_NOEXCEPT { return uint64_t(internal_); }

  uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT {
    internal_ += n;
    return *this;
  }
#else
  uint64_t high_;
  uint64_t low_;

  uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT : high_{high},
                                                              low_{low} {}

  uint64_t high() const FMT_NOEXCEPT { return high_; }
  uint64_t low() const FMT_NOEXCEPT { return low_; }

  uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT {
#  if defined(_MSC_VER) && defined(_M_X64)
    unsigned char carry = _addcarry_u64(0, low_, n, &low_);
    _addcarry_u64(carry, high_, 0, &high_);
    return *this;
#  else
    uint64_t sum = low_ + n;
    high_ += (sum < low_ ? 1 : 0);
    low_ = sum;
    return *this;
#  endif
  }
#endif
};

// Table entry type for divisibility test used internally
template <typename T> struct FMT_EXTERN_TEMPLATE_API divtest_table_entry {
  T mod_inv;
  T max_quotient;
};

// Static data is placed in this class template for the header-only config.
template <typename T = void> struct FMT_EXTERN_TEMPLATE_API basic_data {
  static const uint64_t powers_of_10_64[];
  static const uint32_t zero_or_powers_of_10_32_new[];
  static const uint64_t zero_or_powers_of_10_64_new[];
  static const uint64_t grisu_pow10_significands[];
  static const int16_t grisu_pow10_exponents[];
  static const divtest_table_entry<uint32_t> divtest_table_for_pow5_32[];
  static const divtest_table_entry<uint64_t> divtest_table_for_pow5_64[];
  static const uint64_t dragonbox_pow10_significands_64[];
  static const uint128_wrapper dragonbox_pow10_significands_128[];
  // log10(2) = 0x0.4d104d427de7fbcc...
  static const uint64_t log10_2_significand = 0x4d104d427de7fbcc;
#if !FMT_USE_FULL_CACHE_DRAGONBOX
  static const uint64_t powers_of_5_64[];
  static const uint32_t dragonbox_pow10_recovery_errors[];
#endif
  // GCC generates slightly better code for pairs than chars.
  using digit_pair = char[2];
  static const digit_pair digits[];
  static const char hex_digits[];
  static const char foreground_color[];
  static const char background_color[];
  static const char reset_color[5];
  static const wchar_t wreset_color[5];
  static const char signs[];
  static const char left_padding_shifts[5];
  static const char right_padding_shifts[5];

  // DEPRECATED! These are for ABI compatibility.
  static const uint32_t zero_or_powers_of_10_32[];
  static const uint64_t zero_or_powers_of_10_64[];
};

// Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
// This is a function instead of an array to workaround a bug in GCC10 (#1810).
FMT_INLINE uint16_t bsr2log10(int bsr) {
  static constexpr uint16_t data[] = {
      1,  1,  1,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5,
      6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  9,  9,  9,  10, 10, 10,
      10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
      15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
  return data[bsr];
}

#ifndef FMT_EXPORTED
FMT_EXTERN template struct basic_data<void>;
#endif

// This is a struct rather than an alias to avoid shadowing warnings in gcc.
struct data : basic_data<> {};

#ifdef FMT_BUILTIN_CLZLL
// Returns the number of decimal digits in n. Leading zeros are not counted
// except for n == 0 in which case count_digits returns 1.
inline int count_digits(uint64_t n) {
  // https://github.com/fmtlib/format-benchmark/blob/master/digits10
  auto t = bsr2log10(FMT_BUILTIN_CLZLL(n | 1) ^ 63);
  return t - (n < data::zero_or_powers_of_10_64_new[t]);
}
#else
// Fallback version of count_digits used when __builtin_clz is not available.
inline int count_digits(uint64_t n) {
  int count = 1;
  for (;;) {
    // Integer division is slow so do it for a group of four digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000u;
    count += 4;
  }
}
#endif

#if FMT_USE_INT128
inline int count_digits(uint128_t n) {
  int count = 1;
  for (;;) {
    // Integer division is slow so do it for a group of four digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000U;
    count += 4;
  }
}
#endif

// Counts the number of digits in n. BITS = log2(radix).
template <unsigned BITS, typename UInt> inline int count_digits(UInt n) {
  int num_digits = 0;
  do {
    ++num_digits;
  } while ((n >>= BITS) != 0);
  return num_digits;
}

template <> int count_digits<4>(detail::fallback_uintptr n);

#if FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_ALWAYS_INLINE inline __attribute__((always_inline))
#elif FMT_MSC_VER
#  define FMT_ALWAYS_INLINE __forceinline
#else
#  define FMT_ALWAYS_INLINE inline
#endif

// To suppress unnecessary security cookie checks
#if FMT_MSC_VER && !FMT_CLANG_VERSION
#  define FMT_SAFEBUFFERS __declspec(safebuffers)
#else
#  define FMT_SAFEBUFFERS
#endif

#ifdef FMT_BUILTIN_CLZ
// Optional version of count_digits for better performance on 32-bit platforms.
inline int count_digits(uint32_t n) {
  auto t = bsr2log10(FMT_BUILTIN_CLZ(n | 1) ^ 31);
  return t - (n < data::zero_or_powers_of_10_32_new[t]);
}
#endif

template <typename Int> constexpr int digits10() FMT_NOEXCEPT {
  return std::numeric_limits<Int>::digits10;
}
template <> constexpr int digits10<int128_t>() FMT_NOEXCEPT { return 38; }
template <> constexpr int digits10<uint128_t>() FMT_NOEXCEPT { return 38; }

template <typename Char> FMT_API std::string grouping_impl(locale_ref loc);
template <typename Char> inline std::string grouping(locale_ref loc) {
  return grouping_impl<char>(loc);
}
template <> inline std::string grouping<wchar_t>(locale_ref loc) {
  return grouping_impl<wchar_t>(loc);
}

template <typename Char> FMT_API Char thousands_sep_impl(locale_ref loc);
template <typename Char> inline Char thousands_sep(locale_ref loc) {
  return Char(thousands_sep_impl<char>(loc));
}
template <> inline wchar_t thousands_sep(locale_ref loc) {
  return thousands_sep_impl<wchar_t>(loc);
}

template <typename Char> FMT_API Char decimal_point_impl(locale_ref loc);
template <typename Char> inline Char decimal_point(locale_ref loc) {
  return Char(decimal_point_impl<char>(loc));
}
template <> inline wchar_t decimal_point(locale_ref loc) {
  return decimal_point_impl<wchar_t>(loc);
}

// Compares two characters for equality.
template <typename Char> bool equal2(const Char* lhs, const char* rhs) {
  return lhs[0] == rhs[0] && lhs[1] == rhs[1];
}
inline bool equal2(const char* lhs, const char* rhs) {
  return memcmp(lhs, rhs, 2) == 0;
}

// Copies two characters from src to dst.
template <typename Char> void copy2(Char* dst, const char* src) {
  *dst++ = static_cast<Char>(*src++);
  *dst = static_cast<Char>(*src);
}
FMT_INLINE void copy2(char* dst, const char* src) { memcpy(dst, src, 2); }

template <typename Iterator> struct format_decimal_result {
  Iterator begin;
  Iterator end;
};

// Formats a decimal unsigned integer value writing into out pointing to a
// buffer of specified size. The caller must ensure that the buffer is large
// enough.
template <typename Char, typename UInt>
inline format_decimal_result<Char*> format_decimal(Char* out, UInt value,
                                                   int size) {
  FMT_ASSERT(size >= count_digits(value), "invalid digit count");
  out += size;
  Char* end = out;
  while (value >= 100) {
    // Integer division is slow so do it for a group of two digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    out -= 2;
    copy2(out, data::digits[value % 100]);
    value /= 100;
  }
  if (value < 10) {
    *--out = static_cast<Char>('0' + value);
    return {out, end};
  }
  out -= 2;
  copy2(out, data::digits[value]);
  return {out, end};
}

template <typename Char, typename UInt, typename Iterator,
          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
inline format_decimal_result<Iterator> format_decimal(Iterator out, UInt value,
                                                      int size) {
  // Buffer is large enough to hold all digits (digits10 + 1).
  Char buffer[digits10<UInt>() + 1];
  auto end = format_decimal(buffer, value, size).end;
  return {out, detail::copy_str<Char>(buffer, end, out)};
}

template <unsigned BASE_BITS, typename Char, typename UInt>
inline Char* format_uint(Char* buffer, UInt value, int num_digits,
                         bool upper = false) {
  buffer += num_digits;
  Char* end = buffer;
  do {
    const char* digits = upper ? "0123456789ABCDEF" : data::hex_digits;
    unsigned digit = (value & ((1 << BASE_BITS) - 1));
    *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
                                                : digits[digit]);
  } while ((value >>= BASE_BITS) != 0);
  return end;
}

template <unsigned BASE_BITS, typename Char>
Char* format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits,
                  bool = false) {
  auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
  int start = (num_digits + char_digits - 1) / char_digits - 1;
  if (int start_digits = num_digits % char_digits) {
    unsigned value = n.value[start--];
    buffer = format_uint<BASE_BITS>(buffer, value, start_digits);
  }
  for (; start >= 0; --start) {
    unsigned value = n.value[start];
    buffer += char_digits;
    auto p = buffer;
    for (int i = 0; i < char_digits; ++i) {
      unsigned digit = (value & ((1 << BASE_BITS) - 1));
      *--p = static_cast<Char>(data::hex_digits[digit]);
      value >>= BASE_BITS;
    }
  }
  return buffer;
}

template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
inline It format_uint(It out, UInt value, int num_digits, bool upper = false) {
  if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
    format_uint<BASE_BITS>(ptr, value, num_digits, upper);
    return out;
  }
  // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
  char buffer[num_bits<UInt>() / BASE_BITS + 1];
  format_uint<BASE_BITS>(buffer, value, num_digits, upper);
  return detail::copy_str<Char>(buffer, buffer + num_digits, out);
}

// A converter from UTF-8 to UTF-16.
class utf8_to_utf16 {
 private:
  wmemory_buffer buffer_;

 public:
  FMT_API explicit utf8_to_utf16(string_view s);
  operator wstring_view() const { return {&buffer_[0], size()}; }
  size_t size() const { return buffer_.size() - 1; }
  const wchar_t* c_str() const { return &buffer_[0]; }
  std::wstring str() const { return {&buffer_[0], size()}; }
};

template <typename T = void> struct null {};

// Workaround an array initialization issue in gcc 4.8.
template <typename Char> struct fill_t {
 private:
  enum { max_size = 4 };
  Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)};
  unsigned char size_ = 1;

 public:
  FMT_CONSTEXPR void operator=(basic_string_view<Char> s) {
    auto size = s.size();
    if (size > max_size) {
      FMT_THROW(format_error("invalid fill"));
      return;
    }
    for (size_t i = 0; i < size; ++i) data_[i] = s[i];
    size_ = static_cast<unsigned char>(size);
  }

  size_t size() const { return size_; }
  const Char* data() const { return data_; }

  FMT_CONSTEXPR Char& operator[](size_t index) { return data_[index]; }
  FMT_CONSTEXPR const Char& operator[](size_t index) const {
    return data_[index];
  }
};
}  // namespace detail

// We cannot use enum classes as bit fields because of a gcc bug
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414.
namespace align {
enum type { none, left, right, center, numeric };
}
using align_t = align::type;

namespace sign {
enum type { none, minus, plus, space };
}
using sign_t = sign::type;

// Format specifiers for built-in and string types.
template <typename Char> struct basic_format_specs {
  int width;
  int precision;
  char type;
  align_t align : 4;
  sign_t sign : 3;
  bool alt : 1;  // Alternate form ('#').
  detail::fill_t<Char> fill;

  constexpr basic_format_specs()
      : width(0),
        precision(-1),
        type(0),
        align(align::none),
        sign(sign::none),
        alt(false) {}
};

using format_specs = basic_format_specs<char>;

namespace detail {
namespace dragonbox {

// Type-specific information that Dragonbox uses.
template <class T> struct float_info;

template <> struct float_info<float> {
  using carrier_uint = uint32_t;
  static const int significand_bits = 23;
  static const int exponent_bits = 8;
  static const int min_exponent = -126;
  static const int max_exponent = 127;
  static const int exponent_bias = -127;
  static const int decimal_digits = 9;
  static const int kappa = 1;
  static const int big_divisor = 100;
  static const int small_divisor = 10;
  static const int min_k = -31;
  static const int max_k = 46;
  static const int cache_bits = 64;
  static const int divisibility_check_by_5_threshold = 39;
  static const int case_fc_pm_half_lower_threshold = -1;
  static const int case_fc_pm_half_upper_threshold = 6;
  static const int case_fc_lower_threshold = -2;
  static const int case_fc_upper_threshold = 6;
  static const int case_shorter_interval_left_endpoint_lower_threshold = 2;
  static const int case_shorter_interval_left_endpoint_upper_threshold = 3;
  static const int shorter_interval_tie_lower_threshold = -35;
  static const int shorter_interval_tie_upper_threshold = -35;
  static const int max_trailing_zeros = 7;
};

template <> struct float_info<double> {
  using carrier_uint = uint64_t;
  static const int significand_bits = 52;
  static const int exponent_bits = 11;
  static const int min_exponent = -1022;
  static const int max_exponent = 1023;
  static const int exponent_bias = -1023;
  static const int decimal_digits = 17;
  static const int kappa = 2;
  static const int big_divisor = 1000;
  static const int small_divisor = 100;
  static const int min_k = -292;
  static const int max_k = 326;
  static const int cache_bits = 128;
  static const int divisibility_check_by_5_threshold = 86;
  static const int case_fc_pm_half_lower_threshold = -2;
  static const int case_fc_pm_half_upper_threshold = 9;
  static const int case_fc_lower_threshold = -4;
  static const int case_fc_upper_threshold = 9;
  static const int case_shorter_interval_left_endpoint_lower_threshold = 2;
  static const int case_shorter_interval_left_endpoint_upper_threshold = 3;
  static const int shorter_interval_tie_lower_threshold = -77;
  static const int shorter_interval_tie_upper_threshold = -77;
  static const int max_trailing_zeros = 16;
};

template <typename T> struct decimal_fp {
  using significand_type = typename float_info<T>::carrier_uint;
  significand_type significand;
  int exponent;
};

template <typename T> FMT_API decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT;
}  // namespace dragonbox

template <typename T>
constexpr typename dragonbox::float_info<T>::carrier_uint exponent_mask() {
  using uint = typename dragonbox::float_info<T>::carrier_uint;
  return ((uint(1) << dragonbox::float_info<T>::exponent_bits) - 1)
         << dragonbox::float_info<T>::significand_bits;
}

// A floating-point presentation format.
enum class float_format : unsigned char {
  general,  // General: exponent notation or fixed point based on magnitude.
  exp,      // Exponent notation with the default precision of 6, e.g. 1.2e-3.
  fixed,    // Fixed point with the default precision of 6, e.g. 0.0012.
  hex
};

struct float_specs {
  int precision;
  float_format format : 8;
  sign_t sign : 8;
  bool upper : 1;
  bool locale : 1;
  bool binary32 : 1;
  bool use_grisu : 1;
  bool showpoint : 1;
};

// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
template <typename Char, typename It> It write_exponent(int exp, It it) {
  FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
  if (exp < 0) {
    *it++ = static_cast<Char>('-');
    exp = -exp;
  } else {
    *it++ = static_cast<Char>('+');
  }
  if (exp >= 100) {
    const char* top = data::digits[exp / 100];
    if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
    *it++ = static_cast<Char>(top[1]);
    exp %= 100;
  }
  const char* d = data::digits[exp];
  *it++ = static_cast<Char>(d[0]);
  *it++ = static_cast<Char>(d[1]);
  return it;
}

template <typename T>
int format_float(T value, int precision, float_specs specs, buffer<char>& buf);

// Formats a floating-point number with snprintf.
template <typename T>
int snprintf_float(T value, int precision, float_specs specs,
                   buffer<char>& buf);

template <typename T> T promote_float(T value) { return value; }
inline double promote_float(float value) { return static_cast<double>(value); }

template <typename Handler>
FMT_CONSTEXPR void handle_int_type_spec(char spec, Handler&& handler) {
  switch (spec) {
  case 0:
  case 'd':
    handler.on_dec();
    break;
  case 'x':
  case 'X':
    handler.on_hex();
    break;
  case 'b':
  case 'B':
    handler.on_bin();
    break;
  case 'o':
    handler.on_oct();
    break;
#ifdef FMT_DEPRECATED_N_SPECIFIER
  case 'n':
#endif
  case 'L':
    handler.on_num();
    break;
  case 'c':
    handler.on_chr();
    break;
  default:
    handler.on_error();
  }
}

template <typename ErrorHandler = error_handler, typename Char>
FMT_CONSTEXPR float_specs parse_float_type_spec(
    const basic_format_specs<Char>& specs, ErrorHandler&& eh = {}) {
  auto result = float_specs();
  result.showpoint = specs.alt;
  switch (specs.type) {
  case 0:
    result.format = float_format::general;
    result.showpoint |= specs.precision > 0;
    break;
  case 'G':
    result.upper = true;
    FMT_FALLTHROUGH;
  case 'g':
    result.format = float_format::general;
    break;
  case 'E':
    result.upper = true;
    FMT_FALLTHROUGH;
  case 'e':
    result.format = float_format::exp;
    result.showpoint |= specs.precision != 0;
    break;
  case 'F':
    result.upper = true;
    FMT_FALLTHROUGH;
  case 'f':
    result.format = float_format::fixed;
    result.showpoint |= specs.precision != 0;
    break;
  case 'A':
    result.upper = true;
    FMT_FALLTHROUGH;
  case 'a':
    result.format = float_format::hex;
    break;
#ifdef FMT_DEPRECATED_N_SPECIFIER
  case 'n':
#endif
  case 'L':
    result.locale = true;
    break;
  default:
    eh.on_error("invalid type specifier");
    break;
  }
  return result;
}

template <typename Char, typename Handler>
FMT_CONSTEXPR void handle_char_specs(const basic_format_specs<Char>* specs,
                                     Handler&& handler) {
  if (!specs) return handler.on_char();
  if (specs->type && specs->type != 'c') return handler.on_int();
  if (specs->align == align::numeric || specs->sign != sign::none || specs->alt)
    handler.on_error("invalid format specifier for char");
  handler.on_char();
}

template <typename Char, typename Handler>
FMT_CONSTEXPR void handle_cstring_type_spec(Char spec, Handler&& handler) {
  if (spec == 0 || spec == 's')
    handler.on_string();
  else if (spec == 'p')
    handler.on_pointer();
  else
    handler.on_error("invalid type specifier");
}

template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler&& eh) {
  if (spec != 0 && spec != 's') eh.on_error("invalid type specifier");
}

template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler&& eh) {
  if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier");
}

template <typename ErrorHandler> class int_type_checker : private ErrorHandler {
 public:
  FMT_CONSTEXPR explicit int_type_checker(ErrorHandler eh) : ErrorHandler(eh) {}

  FMT_CONSTEXPR void on_dec() {}
  FMT_CONSTEXPR void on_hex() {}
  FMT_CONSTEXPR void on_bin() {}
  FMT_CONSTEXPR void on_oct() {}
  FMT_CONSTEXPR void on_num() {}
  FMT_CONSTEXPR void on_chr() {}

  FMT_CONSTEXPR void on_error() {
    ErrorHandler::on_error("invalid type specifier");
  }
};

template <typename ErrorHandler>
class char_specs_checker : public ErrorHandler {
 private:
  char type_;

 public:
  FMT_CONSTEXPR char_specs_checker(char type, ErrorHandler eh)
      : ErrorHandler(eh), type_(type) {}

  FMT_CONSTEXPR void on_int() {
    handle_int_type_spec(type_, int_type_checker<ErrorHandler>(*this));
  }
  FMT_CONSTEXPR void on_char() {}
};

template <typename ErrorHandler>
class cstring_type_checker : public ErrorHandler {
 public:
  FMT_CONSTEXPR explicit cstring_type_checker(ErrorHandler eh)
      : ErrorHandler(eh) {}

  FMT_CONSTEXPR void on_string() {}
  FMT_CONSTEXPR void on_pointer() {}
};

template <typename OutputIt, typename Char>
FMT_NOINLINE OutputIt fill(OutputIt it, size_t n, const fill_t<Char>& fill) {
  auto fill_size = fill.size();
  if (fill_size == 1) return std::fill_n(it, n, fill[0]);
  for (size_t i = 0; i < n; ++i) it = std::copy_n(fill.data(), fill_size, it);
  return it;
}

// Writes the output of f, padded according to format specifications in specs.
// size: output size in code units.
// width: output display width in (terminal) column positions.
template <align::type align = align::left, typename OutputIt, typename Char,
          typename F>
inline OutputIt write_padded(OutputIt out,
                             const basic_format_specs<Char>& specs, size_t size,
                             size_t width, F&& f) {
  static_assert(align == align::left || align == align::right, "");
  unsigned spec_width = to_unsigned(specs.width);
  size_t padding = spec_width > width ? spec_width - width : 0;
  auto* shifts = align == align::left ? data::left_padding_shifts
                                      : data::right_padding_shifts;
  size_t left_padding = padding >> shifts[specs.align];
  auto it = reserve(out, size + padding * specs.fill.size());
  it = fill(it, left_padding, specs.fill);
  it = f(it);
  it = fill(it, padding - left_padding, specs.fill);
  return base_iterator(out, it);
}

template <align::type align = align::left, typename OutputIt, typename Char,
          typename F>
inline OutputIt write_padded(OutputIt out,
                             const basic_format_specs<Char>& specs, size_t size,
                             F&& f) {
  return write_padded<align>(out, specs, size, size, f);
}

template <typename Char, typename OutputIt>
OutputIt write_bytes(OutputIt out, string_view bytes,
                     const basic_format_specs<Char>& specs) {
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded(out, specs, bytes.size(), [bytes](iterator it) {
    const char* data = bytes.data();
    return copy_str<Char>(data, data + bytes.size(), it);
  });
}

// Data for write_int that doesn't depend on output iterator type. It is used to
// avoid template code bloat.
template <typename Char> struct write_int_data {
  size_t size;
  size_t padding;

  write_int_data(int num_digits, string_view prefix,
                 const basic_format_specs<Char>& specs)
      : size(prefix.size() + to_unsigned(num_digits)), padding(0) {
    if (specs.align == align::numeric) {
      auto width = to_unsigned(specs.width);
      if (width > size) {
        padding = width - size;
        size = width;
      }
    } else if (specs.precision > num_digits) {
      size = prefix.size() + to_unsigned(specs.precision);
      padding = to_unsigned(specs.precision - num_digits);
    }
  }
};

// Writes an integer in the format
//   <left-padding><prefix><numeric-padding><digits><right-padding>
// where <digits> are written by f(it).
template <typename OutputIt, typename Char, typename F>
OutputIt write_int(OutputIt out, int num_digits, string_view prefix,
                   const basic_format_specs<Char>& specs, F f) {
  auto data = write_int_data<Char>(num_digits, prefix, specs);
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded<align::right>(out, specs, data.size, [=](iterator it) {
    if (prefix.size() != 0)
      it = copy_str<Char>(prefix.begin(), prefix.end(), it);
    it = std::fill_n(it, data.padding, static_cast<Char>('0'));
    return f(it);
  });
}

template <typename StrChar, typename Char, typename OutputIt>
OutputIt write(OutputIt out, basic_string_view<StrChar> s,
               const basic_format_specs<Char>& specs) {
  auto data = s.data();
  auto size = s.size();
  if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
    size = code_point_index(s, to_unsigned(specs.precision));
  auto width = specs.width != 0
                   ? count_code_points(basic_string_view<StrChar>(data, size))
                   : 0;
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded(out, specs, size, width, [=](iterator it) {
    return copy_str<Char>(data, data + size, it);
  });
}

// The handle_int_type_spec handler that writes an integer.
template <typename OutputIt, typename Char, typename UInt> struct int_writer {
  OutputIt out;
  locale_ref locale;
  const basic_format_specs<Char>& specs;
  UInt abs_value;
  char prefix[4];
  unsigned prefix_size;

  using iterator =
      remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;

  string_view get_prefix() const { return string_view(prefix, prefix_size); }

  template <typename Int>
  int_writer(OutputIt output, locale_ref loc, Int value,
             const basic_format_specs<Char>& s)
      : out(output),
        locale(loc),
        specs(s),
        abs_value(static_cast<UInt>(value)),
        prefix_size(0) {
    static_assert(std::is_same<uint32_or_64_or_128_t<Int>, UInt>::value, "");
    if (is_negative(value)) {
      prefix[0] = '-';
      ++prefix_size;
      abs_value = 0 - abs_value;
    } else if (specs.sign != sign::none && specs.sign != sign::minus) {
      prefix[0] = specs.sign == sign::plus ? '+' : ' ';
      ++prefix_size;
    }
  }

  void on_dec() {
    auto num_digits = count_digits(abs_value);
    out = write_int(
        out, num_digits, get_prefix(), specs, [this, num_digits](iterator it) {
          return format_decimal<Char>(it, abs_value, num_digits).end;
        });
  }

  void on_hex() {
    if (specs.alt) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = specs.type;
    }
    int num_digits = count_digits<4>(abs_value);
    out = write_int(out, num_digits, get_prefix(), specs,
                    [this, num_digits](iterator it) {
                      return format_uint<4, Char>(it, abs_value, num_digits,
                                                  specs.type != 'x');
                    });
  }

  void on_bin() {
    if (specs.alt) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = static_cast<char>(specs.type);
    }
    int num_digits = count_digits<1>(abs_value);
    out = write_int(out, num_digits, get_prefix(), specs,
                    [this, num_digits](iterator it) {
                      return format_uint<1, Char>(it, abs_value, num_digits);
                    });
  }

  void on_oct() {
    int num_digits = count_digits<3>(abs_value);
    if (specs.alt && specs.precision <= num_digits && abs_value != 0) {
      // Octal prefix '0' is counted as a digit, so only add it if precision
      // is not greater than the number of digits.
      prefix[prefix_size++] = '0';
    }
    out = write_int(out, num_digits, get_prefix(), specs,
                    [this, num_digits](iterator it) {
                      return format_uint<3, Char>(it, abs_value, num_digits);
                    });
  }

  enum { sep_size = 1 };

  void on_num() {
    std::string groups = grouping<Char>(locale);
    if (groups.empty()) return on_dec();
    auto sep = thousands_sep<Char>(locale);
    if (!sep) return on_dec();
    int num_digits = count_digits(abs_value);
    int size = num_digits, n = num_digits;
    std::string::const_iterator group = groups.cbegin();
    while (group != groups.cend() && n > *group && *group > 0 &&
           *group != max_value<char>()) {
      size += sep_size;
      n -= *group;
      ++group;
    }
    if (group == groups.cend()) size += sep_size * ((n - 1) / groups.back());
    char digits[40];
    format_decimal(digits, abs_value, num_digits);
    basic_memory_buffer<Char> buffer;
    size += static_cast<int>(prefix_size);
    const auto usize = to_unsigned(size);
    buffer.resize(usize);
    basic_string_view<Char> s(&sep, sep_size);
    // Index of a decimal digit with the least significant digit having index 0.
    int digit_index = 0;
    group = groups.cbegin();
    auto p = buffer.data() + size - 1;
    for (int i = num_digits - 1; i > 0; --i) {
      *p-- = static_cast<Char>(digits[i]);
      if (*group <= 0 || ++digit_index % *group != 0 ||
          *group == max_value<char>())
        continue;
      if (group + 1 != groups.cend()) {
        digit_index = 0;
        ++group;
      }
      std::uninitialized_copy(s.data(), s.data() + s.size(),
                              make_checked(p, s.size()));
      p -= s.size();
    }
    *p-- = static_cast<Char>(*digits);
    if (prefix_size != 0) *p = static_cast<Char>('-');
    auto data = buffer.data();
    out = write_padded<align::right>(
        out, specs, usize, usize,
        [=](iterator it) { return copy_str<Char>(data, data + size, it); });
  }

  void on_chr() { *out++ = static_cast<Char>(abs_value); }

  FMT_NORETURN void on_error() {
    FMT_THROW(format_error("invalid type specifier"));
  }
};

template <typename Char, typename OutputIt>
OutputIt write_nonfinite(OutputIt out, bool isinf,
                         const basic_format_specs<Char>& specs,
                         const float_specs& fspecs) {
  auto str =
      isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan");
  constexpr size_t str_size = 3;
  auto sign = fspecs.sign;
  auto size = str_size + (sign ? 1 : 0);
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded(out, specs, size, [=](iterator it) {
    if (sign) *it++ = static_cast<Char>(data::signs[sign]);
    return copy_str<Char>(str, str + str_size, it);
  });
}

// A decimal floating-point number significand * pow(10, exp).
struct big_decimal_fp {
  const char* significand;
  int significand_size;
  int exponent;
};

inline int get_significand_size(const big_decimal_fp& fp) {
  return fp.significand_size;
}
template <typename T>
inline int get_significand_size(const dragonbox::decimal_fp<T>& fp) {
  return count_digits(fp.significand);
}

template <typename Char, typename OutputIt>
inline OutputIt write_significand(OutputIt out, const char* significand,
                                  int& significand_size) {
  return copy_str<Char>(significand, significand + significand_size, out);
}
template <typename Char, typename OutputIt, typename UInt>
inline OutputIt write_significand(OutputIt out, UInt significand,
                                  int significand_size) {
  return format_decimal<Char>(out, significand, significand_size).end;
}

template <typename Char, typename UInt,
          FMT_ENABLE_IF(std::is_integral<UInt>::value)>
inline Char* write_significand(Char* out, UInt significand,
                               int significand_size, int integral_size,
                               Char decimal_point) {
  if (!decimal_point)
    return format_decimal(out, significand, significand_size).end;
  auto end = format_decimal(out + 1, significand, significand_size).end;
  if (integral_size == 1)
    out[0] = out[1];
  else
    std::copy_n(out + 1, integral_size, out);
  out[integral_size] = decimal_point;
  return end;
}

template <typename OutputIt, typename UInt, typename Char,
          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
inline OutputIt write_significand(OutputIt out, UInt significand,
                                  int significand_size, int integral_size,
                                  Char decimal_point) {
  // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
  Char buffer[digits10<UInt>() + 2];
  auto end = write_significand(buffer, significand, significand_size,
                               integral_size, decimal_point);
  return detail::copy_str<Char>(buffer, end, out);
}

template <typename OutputIt, typename Char>
inline OutputIt write_significand(OutputIt out, const char* significand,
                                  int significand_size, int integral_size,
                                  Char decimal_point) {
  out = detail::copy_str<Char>(significand, significand + integral_size, out);
  if (!decimal_point) return out;
  *out++ = decimal_point;
  return detail::copy_str<Char>(significand + integral_size,
                                significand + significand_size, out);
}

template <typename OutputIt, typename DecimalFP, typename Char>
OutputIt write_float(OutputIt out, const DecimalFP& fp,
                     const basic_format_specs<Char>& specs, float_specs fspecs,
                     Char decimal_point) {
  auto significand = fp.significand;
  int significand_size = get_significand_size(fp);
  static const Char zero = static_cast<Char>('0');
  auto sign = fspecs.sign;
  size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;

  int output_exp = fp.exponent + significand_size - 1;
  auto use_exp_format = [=]() {
    if (fspecs.format == float_format::exp) return true;
    if (fspecs.format != float_format::general) return false;
    // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
    // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
    const int exp_lower = -4, exp_upper = 16;
    return output_exp < exp_lower ||
           output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
  };
  if (use_exp_format()) {
    int num_zeros = 0;
    if (fspecs.showpoint) {
      num_zeros = (std::max)(fspecs.precision - significand_size, 0);
      size += to_unsigned(num_zeros);
    } else if (significand_size == 1) {
      decimal_point = Char();
    }
    auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
    int exp_digits = 2;
    if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;

    size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
    char exp_char = fspecs.upper ? 'E' : 'e';
    auto write = [=](iterator it) {
      if (sign) *it++ = static_cast<Char>(data::signs[sign]);
      // Insert a decimal point after the first digit and add an exponent.
      it = write_significand(it, significand, significand_size, 1,
                             decimal_point);
      if (num_zeros > 0) it = std::fill_n(it, num_zeros, zero);
      *it++ = static_cast<Char>(exp_char);
      return write_exponent<Char>(output_exp, it);
    };
    return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
                           : base_iterator(out, write(reserve(out, size)));
  }

  int exp = fp.exponent + significand_size;
  if (fp.exponent >= 0) {
    // 1234e5 -> 123400000[.0+]
    size += to_unsigned(fp.exponent);
    int num_zeros = fspecs.precision - exp;
#ifdef FMT_FUZZ
    if (num_zeros > 5000)
      throw std::runtime_error("fuzz mode - avoiding excessive cpu use");
#endif
    if (fspecs.showpoint) {
      if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1;
      if (num_zeros > 0) size += to_unsigned(num_zeros);
    }
    return write_padded<align::right>(out, specs, size, [&](iterator it) {
      if (sign) *it++ = static_cast<Char>(data::signs[sign]);
      it = write_significand<Char>(it, significand, significand_size);
      it = std::fill_n(it, fp.exponent, zero);
      if (!fspecs.showpoint) return it;
      *it++ = decimal_point;
      return num_zeros > 0 ? std::fill_n(it, num_zeros, zero) : it;
    });
  } else if (exp > 0) {
    // 1234e-2 -> 12.34[0+]
    int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
    size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
    return write_padded<align::right>(out, specs, size, [&](iterator it) {
      if (sign) *it++ = static_cast<Char>(data::signs[sign]);
      it = write_significand(it, significand, significand_size, exp,
                             decimal_point);
      return num_zeros > 0 ? std::fill_n(it, num_zeros, zero) : it;
    });
  }
  // 1234e-6 -> 0.001234
  int num_zeros = -exp;
  if (significand_size == 0 && fspecs.precision >= 0 &&
      fspecs.precision < num_zeros) {
    num_zeros = fspecs.precision;
  }
  size += 2 + to_unsigned(num_zeros);
  return write_padded<align::right>(out, specs, size, [&](iterator it) {
    if (sign) *it++ = static_cast<Char>(data::signs[sign]);
    *it++ = zero;
    if (num_zeros == 0 && significand_size == 0 && !fspecs.showpoint) return it;
    *it++ = decimal_point;
    it = std::fill_n(it, num_zeros, zero);
    return write_significand<Char>(it, significand, significand_size);
  });
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_floating_point<T>::value)>
OutputIt write(OutputIt out, T value, basic_format_specs<Char> specs,
               locale_ref loc = {}) {
  if (const_check(!is_supported_floating_point(value))) return out;
  float_specs fspecs = parse_float_type_spec(specs);
  fspecs.sign = specs.sign;
  if (std::signbit(value)) {  // value < 0 is false for NaN so use signbit.
    fspecs.sign = sign::minus;
    value = -value;
  } else if (fspecs.sign == sign::minus) {
    fspecs.sign = sign::none;
  }

  if (!std::isfinite(value))
    return write_nonfinite(out, std::isinf(value), specs, fspecs);

  if (specs.align == align::numeric && fspecs.sign) {
    auto it = reserve(out, 1);
    *it++ = static_cast<Char>(data::signs[fspecs.sign]);
    out = base_iterator(out, it);
    fspecs.sign = sign::none;
    if (specs.width != 0) --specs.width;
  }

  memory_buffer buffer;
  if (fspecs.format == float_format::hex) {
    if (fspecs.sign) buffer.push_back(data::signs[fspecs.sign]);
    snprintf_float(promote_float(value), specs.precision, fspecs, buffer);
    return write_bytes(out, {buffer.data(), buffer.size()}, specs);
  }
  int precision = specs.precision >= 0 || !specs.type ? specs.precision : 6;
  if (fspecs.format == float_format::exp) {
    if (precision == max_value<int>())
      FMT_THROW(format_error("number is too big"));
    else
      ++precision;
  }
  if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
  fspecs.use_grisu = is_fast_float<T>();
  int exp = format_float(promote_float(value), precision, fspecs, buffer);
  fspecs.precision = precision;
  Char point =
      fspecs.locale ? decimal_point<Char>(loc) : static_cast<Char>('.');
  auto fp = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
  return write_float(out, fp, specs, fspecs, point);
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_fast_float<T>::value)>
OutputIt write(OutputIt out, T value) {
  if (const_check(!is_supported_floating_point(value))) return out;

  using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
  using uint = typename dragonbox::float_info<floaty>::carrier_uint;
  auto bits = bit_cast<uint>(value);

  auto fspecs = float_specs();
  auto sign_bit = bits & (uint(1) << (num_bits<uint>() - 1));
  if (sign_bit != 0) {
    fspecs.sign = sign::minus;
    value = -value;
  }

  static const auto specs = basic_format_specs<Char>();
  uint mask = exponent_mask<floaty>();
  if ((bits & mask) == mask)
    return write_nonfinite(out, std::isinf(value), specs, fspecs);

  auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
  return write_float(out, dec, specs, fspecs, static_cast<Char>('.'));
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_floating_point<T>::value &&
                        !is_fast_float<T>::value)>
inline OutputIt write(OutputIt out, T value) {
  return write(out, value, basic_format_specs<Char>());
}

template <typename Char, typename OutputIt>
OutputIt write_char(OutputIt out, Char value,
                    const basic_format_specs<Char>& specs) {
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded(out, specs, 1, [=](iterator it) {
    *it++ = value;
    return it;
  });
}

template <typename Char, typename OutputIt, typename UIntPtr>
OutputIt write_ptr(OutputIt out, UIntPtr value,
                   const basic_format_specs<Char>* specs) {
  int num_digits = count_digits<4>(value);
  auto size = to_unsigned(num_digits) + size_t(2);
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  auto write = [=](iterator it) {
    *it++ = static_cast<Char>('0');
    *it++ = static_cast<Char>('x');
    return format_uint<4, Char>(it, value, num_digits);
  };
  return specs ? write_padded<align::right>(out, *specs, size, write)
               : base_iterator(out, write(reserve(out, size)));
}

template <typename T> struct is_integral : std::is_integral<T> {};
template <> struct is_integral<int128_t> : std::true_type {};
template <> struct is_integral<uint128_t> : std::true_type {};

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, monostate) {
  FMT_ASSERT(false, "");
  return out;
}

template <typename Char, typename OutputIt,
          FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
OutputIt write(OutputIt out, string_view value) {
  auto it = reserve(out, value.size());
  it = copy_str<Char>(value.begin(), value.end(), it);
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, basic_string_view<Char> value) {
  auto it = reserve(out, value.size());
  it = std::copy(value.begin(), value.end(), it);
  return base_iterator(out, it);
}

template <typename Char>
buffer_appender<Char> write(buffer_appender<Char> out,
                            basic_string_view<Char> value) {
  get_container(out).append(value.begin(), value.end());
  return out;
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_integral<T>::value &&
                        !std::is_same<T, bool>::value &&
                        !std::is_same<T, Char>::value)>
OutputIt write(OutputIt out, T value) {
  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
  bool negative = is_negative(value);
  // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
  if (negative) abs_value = ~abs_value + 1;
  int num_digits = count_digits(abs_value);
  auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
  auto it = reserve(out, size);
  if (auto ptr = to_pointer<Char>(it, size)) {
    if (negative) *ptr++ = static_cast<Char>('-');
    format_decimal<Char>(ptr, abs_value, num_digits);
    return out;
  }
  if (negative) *it++ = static_cast<Char>('-');
  it = format_decimal<Char>(it, abs_value, num_digits).end;
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, bool value) {
  return write<Char>(out, string_view(value ? "true" : "false"));
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, Char value) {
  auto it = reserve(out, 1);
  *it++ = value;
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, const Char* value) {
  if (!value) {
    FMT_THROW(format_error("string pointer is null"));
  } else {
    auto length = std::char_traits<Char>::length(value);
    out = write(out, basic_string_view<Char>(value, length));
  }
  return out;
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, const void* value) {
  return write_ptr<Char>(out, to_uintptr(value), nullptr);
}

template <typename Char, typename OutputIt, typename T>
auto write(OutputIt out, const T& value) -> typename std::enable_if<
    mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value ==
        type::custom_type,
    OutputIt>::type {
  using context_type = basic_format_context<OutputIt, Char>;
  using formatter_type =
      conditional_t<has_formatter<T, context_type>::value,
                    typename context_type::template formatter_type<T>,
                    fallback_formatter<T, Char>>;
  context_type ctx(out, {}, {});
  return formatter_type().format(value, ctx);
}

// An argument visitor that formats the argument and writes it via the output
// iterator. It's a class and not a generic lambda for compatibility with C++11.
template <typename OutputIt, typename Char> struct default_arg_formatter {
  using context = basic_format_context<OutputIt, Char>;

  OutputIt out;
  basic_format_args<context> args;
  locale_ref loc;

  template <typename T> OutputIt operator()(T value) {
    return write<Char>(out, value);
  }

  OutputIt operator()(typename basic_format_arg<context>::handle handle) {
    basic_format_parse_context<Char> parse_ctx({});
    basic_format_context<OutputIt, Char> format_ctx(out, args, loc);
    handle.format(parse_ctx, format_ctx);
    return format_ctx.out();
  }
};

template <typename OutputIt, typename Char,
          typename ErrorHandler = error_handler>
class arg_formatter_base {
 public:
  using iterator = OutputIt;
  using char_type = Char;
  using format_specs = basic_format_specs<Char>;

 private:
  iterator out_;
  locale_ref locale_;
  format_specs* specs_;

  // Attempts to reserve space for n extra characters in the output range.
  // Returns a pointer to the reserved range or a reference to out_.
  auto reserve(size_t n) -> decltype(detail::reserve(out_, n)) {
    return detail::reserve(out_, n);
  }

  using reserve_iterator = remove_reference_t<decltype(
      detail::reserve(std::declval<iterator&>(), 0))>;

  template <typename T> void write_int(T value, const format_specs& spec) {
    using uint_type = uint32_or_64_or_128_t<T>;
    int_writer<iterator, Char, uint_type> w(out_, locale_, value, spec);
    handle_int_type_spec(spec.type, w);
    out_ = w.out;
  }

  void write(char value) {
    auto&& it = reserve(1);
    *it++ = value;
  }

  template <typename Ch, FMT_ENABLE_IF(std::is_same<Ch, Char>::value)>
  void write(Ch value) {
    out_ = detail::write<Char>(out_, value);
  }

  void write(string_view value) {
    auto&& it = reserve(value.size());
    it = copy_str<Char>(value.begin(), value.end(), it);
  }
  void write(wstring_view value) {
    static_assert(std::is_same<Char, wchar_t>::value, "");
    auto&& it = reserve(value.size());
    it = std::copy(value.begin(), value.end(), it);
  }

  template <typename Ch>
  void write(const Ch* s, size_t size, const format_specs& specs) {
    auto width = specs.width != 0
                     ? count_code_points(basic_string_view<Ch>(s, size))
                     : 0;
    out_ = write_padded(out_, specs, size, width, [=](reserve_iterator it) {
      return copy_str<Char>(s, s + size, it);
    });
  }

  template <typename Ch>
  void write(basic_string_view<Ch> s, const format_specs& specs = {}) {
    out_ = detail::write(out_, s, specs);
  }

  void write_pointer(const void* p) {
    out_ = write_ptr<char_type>(out_, to_uintptr(p), specs_);
  }

  struct char_spec_handler : ErrorHandler {
    arg_formatter_base& formatter;
    Char value;

    char_spec_handler(arg_formatter_base& f, Char val)
        : formatter(f), value(val) {}

    void on_int() {
      // char is only formatted as int if there are specs.
      formatter.write_int(static_cast<int>(value), *formatter.specs_);
    }
    void on_char() {
      if (formatter.specs_)
        formatter.out_ = write_char(formatter.out_, value, *formatter.specs_);
      else
        formatter.write(value);
    }
  };

  struct cstring_spec_handler : error_handler {
    arg_formatter_base& formatter;
    const Char* value;

    cstring_spec_handler(arg_formatter_base& f, const Char* val)
        : formatter(f), value(val) {}

    void on_string() { formatter.write(value); }
    void on_pointer() { formatter.write_pointer(value); }
  };

 protected:
  iterator out() { return out_; }
  format_specs* specs() { return specs_; }

  void write(bool value) {
    if (specs_)
      write(string_view(value ? "true" : "false"), *specs_);
    else
      out_ = detail::write<Char>(out_, value);
  }

  void write(const Char* value) {
    if (!value) {
      FMT_THROW(format_error("string pointer is null"));
    } else {
      auto length = std::char_traits<char_type>::length(value);
      basic_string_view<char_type> sv(value, length);
      specs_ ? write(sv, *specs_) : write(sv);
    }
  }

 public:
  arg_formatter_base(OutputIt out, format_specs* s, locale_ref loc)
      : out_(out), locale_(loc), specs_(s) {}

  iterator operator()(monostate) {
    FMT_ASSERT(false, "invalid argument type");
    return out_;
  }

  template <typename T, FMT_ENABLE_IF(is_integral<T>::value)>
  FMT_INLINE iterator operator()(T value) {
    if (specs_)
      write_int(value, *specs_);
    else
      out_ = detail::write<Char>(out_, value);
    return out_;
  }

  iterator operator()(Char value) {
    handle_char_specs(specs_,
                      char_spec_handler(*this, static_cast<Char>(value)));
    return out_;
  }

  iterator operator()(bool value) {
    if (specs_ && specs_->type) return (*this)(value ? 1 : 0);
    write(value != 0);
    return out_;
  }

  template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
  iterator operator()(T value) {
    auto specs = specs_ ? *specs_ : format_specs();
    if (const_check(is_supported_floating_point(value)))
      out_ = detail::write(out_, value, specs, locale_);
    else
      FMT_ASSERT(false, "unsupported float argument type");
    return out_;
  }

  iterator operator()(const Char* value) {
    if (!specs_) return write(value), out_;
    handle_cstring_type_spec(specs_->type, cstring_spec_handler(*this, value));
    return out_;
  }

  iterator operator()(basic_string_view<Char> value) {
    if (specs_) {
      check_string_type_spec(specs_->type, error_handler());
      write(value, *specs_);
    } else {
      write(value);
    }
    return out_;
  }

  iterator operator()(const void* value) {
    if (specs_) check_pointer_type_spec(specs_->type, error_handler());
    write_pointer(value);
    return out_;
  }
};

/** The default argument formatter. */
template <typename OutputIt, typename Char>
class arg_formatter : public arg_formatter_base<OutputIt, Char> {
 private:
  using char_type = Char;
  using base = arg_formatter_base<OutputIt, Char>;
  using context_type = basic_format_context<OutputIt, Char>;

  context_type& ctx_;
  basic_format_parse_context<char_type>* parse_ctx_;
  const Char* ptr_;

 public:
  using iterator = typename base::iterator;
  using format_specs = typename base::format_specs;

  /**
    \rst
    Constructs an argument formatter object.
    *ctx* is a reference to the formatting context,
    *specs* contains format specifier information for standard argument types.
    \endrst
   */
  explicit arg_formatter(
      context_type& ctx,
      basic_format_parse_context<char_type>* parse_ctx = nullptr,
      format_specs* specs = nullptr, const Char* ptr = nullptr)
      : base(ctx.out(), specs, ctx.locale()),
        ctx_(ctx),
        parse_ctx_(parse_ctx),
        ptr_(ptr) {}

  using base::operator();

  /** Formats an argument of a user-defined type. */
  iterator operator()(typename basic_format_arg<context_type>::handle handle) {
    if (ptr_) advance_to(*parse_ctx_, ptr_);
    handle.format(*parse_ctx_, ctx_);
    return ctx_.out();
  }
};

template <typename Char> FMT_CONSTEXPR bool is_name_start(Char c) {
  return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c;
}

// Parses the range [begin, end) as an unsigned integer. This function assumes
// that the range is non-empty and the first character is a digit.
template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR int parse_nonnegative_int(const Char*& begin, const Char* end,
                                        ErrorHandler&& eh) {
  FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', "");
  unsigned value = 0;
  // Convert to unsigned to prevent a warning.
  constexpr unsigned max_int = max_value<int>();
  unsigned big = max_int / 10;
  do {
    // Check for overflow.
    if (value > big) {
      value = max_int + 1;
      break;
    }
    value = value * 10 + unsigned(*begin - '0');
    ++begin;
  } while (begin != end && '0' <= *begin && *begin <= '9');
  if (value > max_int) eh.on_error("number is too big");
  return static_cast<int>(value);
}

template <typename Context> class custom_formatter {
 private:
  using char_type = typename Context::char_type;

  basic_format_parse_context<char_type>& parse_ctx_;
  Context& ctx_;

 public:
  explicit custom_formatter(basic_format_parse_context<char_type>& parse_ctx,
                            Context& ctx)
      : parse_ctx_(parse_ctx), ctx_(ctx) {}

  void operator()(typename basic_format_arg<Context>::handle h) const {
    h.format(parse_ctx_, ctx_);
  }

  template <typename T> void operator()(T) const {}
};

template <typename T>
using is_integer =
    bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
                  !std::is_same<T, char>::value &&
                  !std::is_same<T, wchar_t>::value>;

template <typename ErrorHandler> class width_checker {
 public:
  explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {}

  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
  FMT_CONSTEXPR unsigned long long operator()(T value) {
    if (is_negative(value)) handler_.on_error("negative width");
    return static_cast<unsigned long long>(value);
  }

  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
  FMT_CONSTEXPR unsigned long long operator()(T) {
    handler_.on_error("width is not integer");
    return 0;
  }

 private:
  ErrorHandler& handler_;
};

template <typename ErrorHandler> class precision_checker {
 public:
  explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {}

  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
  FMT_CONSTEXPR unsigned long long operator()(T value) {
    if (is_negative(value)) handler_.on_error("negative precision");
    return static_cast<unsigned long long>(value);
  }

  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
  FMT_CONSTEXPR unsigned long long operator()(T) {
    handler_.on_error("precision is not integer");
    return 0;
  }

 private:
  ErrorHandler& handler_;
};

// A format specifier handler that sets fields in basic_format_specs.
template <typename Char> class specs_setter {
 public:
  explicit FMT_CONSTEXPR specs_setter(basic_format_specs<Char>& specs)
      : specs_(specs) {}

  FMT_CONSTEXPR specs_setter(const specs_setter& other)
      : specs_(other.specs_) {}

  FMT_CONSTEXPR void on_align(align_t align) { specs_.align = align; }
  FMT_CONSTEXPR void on_fill(basic_string_view<Char> fill) {
    specs_.fill = fill;
  }
  FMT_CONSTEXPR void on_plus() { specs_.sign = sign::plus; }
  FMT_CONSTEXPR void on_minus() { specs_.sign = sign::minus; }
  FMT_CONSTEXPR void on_space() { specs_.sign = sign::space; }
  FMT_CONSTEXPR void on_hash() { specs_.alt = true; }

  FMT_CONSTEXPR void on_zero() {
    specs_.align = align::numeric;
    specs_.fill[0] = Char('0');
  }

  FMT_CONSTEXPR void on_width(int width) { specs_.width = width; }
  FMT_CONSTEXPR void on_precision(int precision) {
    specs_.precision = precision;
  }
  FMT_CONSTEXPR void end_precision() {}

  FMT_CONSTEXPR void on_type(Char type) {
    specs_.type = static_cast<char>(type);
  }

 protected:
  basic_format_specs<Char>& specs_;
};

template <typename ErrorHandler> class numeric_specs_checker {
 public:
  FMT_CONSTEXPR numeric_specs_checker(ErrorHandler& eh, detail::type arg_type)
      : error_handler_(eh), arg_type_(arg_type) {}

  FMT_CONSTEXPR void require_numeric_argument() {
    if (!is_arithmetic_type(arg_type_))
      error_handler_.on_error("format specifier requires numeric argument");
  }

  FMT_CONSTEXPR void check_sign() {
    require_numeric_argument();
    if (is_integral_type(arg_type_) && arg_type_ != type::int_type &&
        arg_type_ != type::long_long_type && arg_type_ != type::char_type) {
      error_handler_.on_error("format specifier requires signed argument");
    }
  }

  FMT_CONSTEXPR void check_precision() {
    if (is_integral_type(arg_type_) || arg_type_ == type::pointer_type)
      error_handler_.on_error("precision not allowed for this argument type");
  }

 private:
  ErrorHandler& error_handler_;
  detail::type arg_type_;
};

// A format specifier handler that checks if specifiers are consistent with the
// argument type.
template <typename Handler> class specs_checker : public Handler {
 private:
  numeric_specs_checker<Handler> checker_;

  // Suppress an MSVC warning about using this in initializer list.
  FMT_CONSTEXPR Handler& error_handler() { return *this; }

 public:
  FMT_CONSTEXPR specs_checker(const Handler& handler, detail::type arg_type)
      : Handler(handler), checker_(error_handler(), arg_type) {}

  FMT_CONSTEXPR specs_checker(const specs_checker& other)
      : Handler(other), checker_(error_handler(), other.arg_type_) {}

  FMT_CONSTEXPR void on_align(align_t align) {
    if (align == align::numeric) checker_.require_numeric_argument();
    Handler::on_align(align);
  }

  FMT_CONSTEXPR void on_plus() {
    checker_.check_sign();
    Handler::on_plus();
  }

  FMT_CONSTEXPR void on_minus() {
    checker_.check_sign();
    Handler::on_minus();
  }

  FMT_CONSTEXPR void on_space() {
    checker_.check_sign();
    Handler::on_space();
  }

  FMT_CONSTEXPR void on_hash() {
    checker_.require_numeric_argument();
    Handler::on_hash();
  }

  FMT_CONSTEXPR void on_zero() {
    checker_.require_numeric_argument();
    Handler::on_zero();
  }

  FMT_CONSTEXPR void end_precision() { checker_.check_precision(); }
};

template <template <typename> class Handler, typename FormatArg,
          typename ErrorHandler>
FMT_CONSTEXPR int get_dynamic_spec(FormatArg arg, ErrorHandler eh) {
  unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg);
  if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big");
  return static_cast<int>(value);
}

struct auto_id {};

template <typename Context, typename ID>
FMT_CONSTEXPR typename Context::format_arg get_arg(Context& ctx, ID id) {
  auto arg = ctx.arg(id);
  if (!arg) ctx.on_error("argument not found");
  return arg;
}

// The standard format specifier handler with checking.
template <typename ParseContext, typename Context>
class specs_handler : public specs_setter<typename Context::char_type> {
 public:
  using char_type = typename Context::char_type;

  FMT_CONSTEXPR specs_handler(basic_format_specs<char_type>& specs,
                              ParseContext& parse_ctx, Context& ctx)
      : specs_setter<char_type>(specs),
        parse_context_(parse_ctx),
        context_(ctx) {}

  template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
    this->specs_.width = get_dynamic_spec<width_checker>(
        get_arg(arg_id), context_.error_handler());
  }

  template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
    this->specs_.precision = get_dynamic_spec<precision_checker>(
        get_arg(arg_id), context_.error_handler());
  }

  void on_error(const char* message) { context_.on_error(message); }

 private:
  // This is only needed for compatibility with gcc 4.4.
  using format_arg = typename Context::format_arg;

  FMT_CONSTEXPR format_arg get_arg(auto_id) {
    return detail::get_arg(context_, parse_context_.next_arg_id());
  }

  FMT_CONSTEXPR format_arg get_arg(int arg_id) {
    parse_context_.check_arg_id(arg_id);
    return detail::get_arg(context_, arg_id);
  }

  FMT_CONSTEXPR format_arg get_arg(basic_string_view<char_type> arg_id) {
    parse_context_.check_arg_id(arg_id);
    return detail::get_arg(context_, arg_id);
  }

  ParseContext& parse_context_;
  Context& context_;
};

enum class arg_id_kind { none, index, name };

// An argument reference.
template <typename Char> struct arg_ref {
  FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {}

  FMT_CONSTEXPR explicit arg_ref(int index)
      : kind(arg_id_kind::index), val(index) {}
  FMT_CONSTEXPR explicit arg_ref(basic_string_view<Char> name)
      : kind(arg_id_kind::name), val(name) {}

  FMT_CONSTEXPR arg_ref& operator=(int idx) {
    kind = arg_id_kind::index;
    val.index = idx;
    return *this;
  }

  arg_id_kind kind;
  union value {
    FMT_CONSTEXPR value(int id = 0) : index{id} {}
    FMT_CONSTEXPR value(basic_string_view<Char> n) : name(n) {}

    int index;
    basic_string_view<Char> name;
  } val;
};

// Format specifiers with width and precision resolved at formatting rather
// than parsing time to allow re-using the same parsed specifiers with
// different sets of arguments (precompilation of format strings).
template <typename Char>
struct dynamic_format_specs : basic_format_specs<Char> {
  arg_ref<Char> width_ref;
  arg_ref<Char> precision_ref;
};

// Format spec handler that saves references to arguments representing dynamic
// width and precision to be resolved at formatting time.
template <typename ParseContext>
class dynamic_specs_handler
    : public specs_setter<typename ParseContext::char_type> {
 public:
  using char_type = typename ParseContext::char_type;

  FMT_CONSTEXPR dynamic_specs_handler(dynamic_format_specs<char_type>& specs,
                                      ParseContext& ctx)
      : specs_setter<char_type>(specs), specs_(specs), context_(ctx) {}

  FMT_CONSTEXPR dynamic_specs_handler(const dynamic_specs_handler& other)
      : specs_setter<char_type>(other),
        specs_(other.specs_),
        context_(other.context_) {}

  template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
    specs_.width_ref = make_arg_ref(arg_id);
  }

  template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
    specs_.precision_ref = make_arg_ref(arg_id);
  }

  FMT_CONSTEXPR void on_error(const char* message) {
    context_.on_error(message);
  }

 private:
  using arg_ref_type = arg_ref<char_type>;

  FMT_CONSTEXPR arg_ref_type make_arg_ref(int arg_id) {
    context_.check_arg_id(arg_id);
    return arg_ref_type(arg_id);
  }

  FMT_CONSTEXPR arg_ref_type make_arg_ref(auto_id) {
    return arg_ref_type(context_.next_arg_id());
  }

  FMT_CONSTEXPR arg_ref_type make_arg_ref(basic_string_view<char_type> arg_id) {
    context_.check_arg_id(arg_id);
    basic_string_view<char_type> format_str(
        context_.begin(), to_unsigned(context_.end() - context_.begin()));
    return arg_ref_type(arg_id);
  }

  dynamic_format_specs<char_type>& specs_;
  ParseContext& context_;
};

template <typename Char, typename IDHandler>
FMT_CONSTEXPR const Char* parse_arg_id(const Char* begin, const Char* end,
                                       IDHandler&& handler) {
  FMT_ASSERT(begin != end, "");
  Char c = *begin;
  if (c == '}' || c == ':') {
    handler();
    return begin;
  }
  if (c >= '0' && c <= '9') {
    int index = 0;
    if (c != '0')
      index = parse_nonnegative_int(begin, end, handler);
    else
      ++begin;
    if (begin == end || (*begin != '}' && *begin != ':'))
      handler.on_error("invalid format string");
    else
      handler(index);
    return begin;
  }
  if (!is_name_start(c)) {
    handler.on_error("invalid format string");
    return begin;
  }
  auto it = begin;
  do {
    ++it;
  } while (it != end && (is_name_start(c = *it) || ('0' <= c && c <= '9')));
  handler(basic_string_view<Char>(begin, to_unsigned(it - begin)));
  return it;
}

// Adapts SpecHandler to IDHandler API for dynamic width.
template <typename SpecHandler, typename Char> struct width_adapter {
  explicit FMT_CONSTEXPR width_adapter(SpecHandler& h) : handler(h) {}

  FMT_CONSTEXPR void operator()() { handler.on_dynamic_width(auto_id()); }
  FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_width(id); }
  FMT_CONSTEXPR void operator()(basic_string_view<Char> id) {
    handler.on_dynamic_width(id);
  }

  FMT_CONSTEXPR void on_error(const char* message) {
    handler.on_error(message);
  }

  SpecHandler& handler;
};

// Adapts SpecHandler to IDHandler API for dynamic precision.
template <typename SpecHandler, typename Char> struct precision_adapter {
  explicit FMT_CONSTEXPR precision_adapter(SpecHandler& h) : handler(h) {}

  FMT_CONSTEXPR void operator()() { handler.on_dynamic_precision(auto_id()); }
  FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_precision(id); }
  FMT_CONSTEXPR void operator()(basic_string_view<Char> id) {
    handler.on_dynamic_precision(id);
  }

  FMT_CONSTEXPR void on_error(const char* message) {
    handler.on_error(message);
  }

  SpecHandler& handler;
};

template <typename Char>
FMT_CONSTEXPR int code_point_length(const Char* begin) {
  if (const_check(sizeof(Char) != 1)) return 1;
  constexpr char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                              0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 4, 0};
  int len = lengths[static_cast<unsigned char>(*begin) >> 3];

  // Compute the pointer to the next character early so that the next
  // iteration can start working on the next character. Neither Clang
  // nor GCC figure out this reordering on their own.
  return len + !len;
}

template <typename Char> constexpr bool is_ascii_letter(Char c) {
  return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
}

// Converts a character to ASCII. Returns a number > 127 on conversion failure.
template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)>
constexpr Char to_ascii(Char value) {
  return value;
}
template <typename Char, FMT_ENABLE_IF(std::is_enum<Char>::value)>
constexpr typename std::underlying_type<Char>::type to_ascii(Char value) {
  return value;
}

// Parses fill and alignment.
template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_align(const Char* begin, const Char* end,
                                      Handler&& handler) {
  FMT_ASSERT(begin != end, "");
  auto align = align::none;
  auto p = begin + code_point_length(begin);
  if (p >= end) p = begin;
  for (;;) {
    switch (to_ascii(*p)) {
    case '<':
      align = align::left;
      break;
    case '>':
      align = align::right;
      break;
#if FMT_DEPRECATED_NUMERIC_ALIGN
    case '=':
      align = align::numeric;
      break;
#endif
    case '^':
      align = align::center;
      break;
    }
    if (align != align::none) {
      if (p != begin) {
        auto c = *begin;
        if (c == '{')
          return handler.on_error("invalid fill character '{'"), begin;
        handler.on_fill(basic_string_view<Char>(begin, to_unsigned(p - begin)));
        begin = p + 1;
      } else
        ++begin;
      handler.on_align(align);
      break;
    } else if (p == begin) {
      break;
    }
    p = begin;
  }
  return begin;
}

template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_width(const Char* begin, const Char* end,
                                      Handler&& handler) {
  FMT_ASSERT(begin != end, "");
  if ('0' <= *begin && *begin <= '9') {
    handler.on_width(parse_nonnegative_int(begin, end, handler));
  } else if (*begin == '{') {
    ++begin;
    if (begin != end)
      begin = parse_arg_id(begin, end, width_adapter<Handler, Char>(handler));
    if (begin == end || *begin != '}')
      return handler.on_error("invalid format string"), begin;
    ++begin;
  }
  return begin;
}

template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_precision(const Char* begin, const Char* end,
                                          Handler&& handler) {
  ++begin;
  auto c = begin != end ? *begin : Char();
  if ('0' <= c && c <= '9') {
    handler.on_precision(parse_nonnegative_int(begin, end, handler));
  } else if (c == '{') {
    ++begin;
    if (begin != end) {
      begin =
          parse_arg_id(begin, end, precision_adapter<Handler, Char>(handler));
    }
    if (begin == end || *begin++ != '}')
      return handler.on_error("invalid format string"), begin;
  } else {
    return handler.on_error("missing precision specifier"), begin;
  }
  handler.end_precision();
  return begin;
}

// Parses standard format specifiers and sends notifications about parsed
// components to handler.
template <typename Char, typename SpecHandler>
FMT_CONSTEXPR const Char* parse_format_specs(const Char* begin, const Char* end,
                                             SpecHandler&& handler) {
  if (begin == end) return begin;

  begin = parse_align(begin, end, handler);
  if (begin == end) return begin;

  // Parse sign.
  switch (to_ascii(*begin)) {
  case '+':
    handler.on_plus();
    ++begin;
    break;
  case '-':
    handler.on_minus();
    ++begin;
    break;
  case ' ':
    handler.on_space();
    ++begin;
    break;
  }
  if (begin == end) return begin;

  if (*begin == '#') {
    handler.on_hash();
    if (++begin == end) return begin;
  }

  // Parse zero flag.
  if (*begin == '0') {
    handler.on_zero();
    if (++begin == end) return begin;
  }

  begin = parse_width(begin, end, handler);
  if (begin == end) return begin;

  // Parse precision.
  if (*begin == '.') {
    begin = parse_precision(begin, end, handler);
  }

  // Parse type.
  if (begin != end && *begin != '}') handler.on_type(*begin++);
  return begin;
}

// Return the result via the out param to workaround gcc bug 77539.
template <bool IS_CONSTEXPR, typename T, typename Ptr = const T*>
FMT_CONSTEXPR bool find(Ptr first, Ptr last, T value, Ptr& out) {
  for (out = first; out != last; ++out) {
    if (*out == value) return true;
  }
  return false;
}

template <>
inline bool find<false, char>(const char* first, const char* last, char value,
                              const char*& out) {
  out = static_cast<const char*>(
      std::memchr(first, value, detail::to_unsigned(last - first)));
  return out != nullptr;
}

template <typename Handler, typename Char> struct id_adapter {
  Handler& handler;
  int arg_id;

  FMT_CONSTEXPR void operator()() { arg_id = handler.on_arg_id(); }
  FMT_CONSTEXPR void operator()(int id) { arg_id = handler.on_arg_id(id); }
  FMT_CONSTEXPR void operator()(basic_string_view<Char> id) {
    arg_id = handler.on_arg_id(id);
  }
  FMT_CONSTEXPR void on_error(const char* message) {
    handler.on_error(message);
  }
};

template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_replacement_field(const Char* begin,
                                                  const Char* end,
                                                  Handler&& handler) {
  ++begin;
  if (begin == end) return handler.on_error("invalid format string"), end;
  if (*begin == '}') {
    handler.on_replacement_field(handler.on_arg_id(), begin);
  } else if (*begin == '{') {
    handler.on_text(begin, begin + 1);
  } else {
    auto adapter = id_adapter<Handler, Char>{handler, 0};
    begin = parse_arg_id(begin, end, adapter);
    Char c = begin != end ? *begin : Char();
    if (c == '}') {
      handler.on_replacement_field(adapter.arg_id, begin);
    } else if (c == ':') {
      begin = handler.on_format_specs(adapter.arg_id, begin + 1, end);
      if (begin == end || *begin != '}')
        return handler.on_error("unknown format specifier"), end;
    } else {
      return handler.on_error("missing '}' in format string"), end;
    }
  }
  return begin + 1;
}

template <bool IS_CONSTEXPR, typename Char, typename Handler>
FMT_CONSTEXPR_DECL FMT_INLINE void parse_format_string(
    basic_string_view<Char> format_str, Handler&& handler) {
  auto begin = format_str.data();
  auto end = begin + format_str.size();
  if (end - begin < 32) {
    // Use a simple loop instead of memchr for small strings.
    const Char* p = begin;
    while (p != end) {
      auto c = *p++;
      if (c == '{') {
        handler.on_text(begin, p - 1);
        begin = p = parse_replacement_field(p - 1, end, handler);
      } else if (c == '}') {
        if (p == end || *p != '}')
          return handler.on_error("unmatched '}' in format string");
        handler.on_text(begin, p);
        begin = ++p;
      }
    }
    handler.on_text(begin, end);
    return;
  }
  struct writer {
    FMT_CONSTEXPR void operator()(const Char* pbegin, const Char* pend) {
      if (pbegin == pend) return;
      for (;;) {
        const Char* p = nullptr;
        if (!find<IS_CONSTEXPR>(pbegin, pend, '}', p))
          return handler_.on_text(pbegin, pend);
        ++p;
        if (p == pend || *p != '}')
          return handler_.on_error("unmatched '}' in format string");
        handler_.on_text(pbegin, p);
        pbegin = p + 1;
      }
    }
    Handler& handler_;
  } write{handler};
  while (begin != end) {
    // Doing two passes with memchr (one for '{' and another for '}') is up to
    // 2.5x faster than the naive one-pass implementation on big format strings.
    const Char* p = begin;
    if (*begin != '{' && !find<IS_CONSTEXPR>(begin + 1, end, '{', p))
      return write(begin, end);
    write(begin, p);
    begin = parse_replacement_field(p, end, handler);
  }
}

template <typename T, typename ParseContext>
FMT_CONSTEXPR const typename ParseContext::char_type* parse_format_specs(
    ParseContext& ctx) {
  using char_type = typename ParseContext::char_type;
  using context = buffer_context<char_type>;
  using mapped_type =
      conditional_t<detail::mapped_type_constant<T, context>::value !=
                        type::custom_type,
                    decltype(arg_mapper<context>().map(std::declval<T>())), T>;
  auto f = conditional_t<has_formatter<mapped_type, context>::value,
                         formatter<mapped_type, char_type>,
                         detail::fallback_formatter<T, char_type>>();
  return f.parse(ctx);
}

template <typename OutputIt, typename Char, typename Context>
struct format_handler : detail::error_handler {
  basic_format_parse_context<Char> parse_context;
  Context context;

  format_handler(OutputIt out, basic_string_view<Char> str,
                 basic_format_args<Context> format_args, detail::locale_ref loc)
      : parse_context(str), context(out, format_args, loc) {}

  void on_text(const Char* begin, const Char* end) {
    auto size = to_unsigned(end - begin);
    auto out = context.out();
    auto&& it = reserve(out, size);
    it = std::copy_n(begin, size, it);
    context.advance_to(out);
  }

  int on_arg_id() { return parse_context.next_arg_id(); }
  int on_arg_id(int id) { return parse_context.check_arg_id(id), id; }
  int on_arg_id(basic_string_view<Char> id) {
    int arg_id = context.arg_id(id);
    if (arg_id < 0) on_error("argument not found");
    return arg_id;
  }

  FMT_INLINE void on_replacement_field(int id, const Char*) {
    auto arg = get_arg(context, id);
    context.advance_to(visit_format_arg(
        default_arg_formatter<OutputIt, Char>{context.out(), context.args(),
                                              context.locale()},
        arg));
  }

  const Char* on_format_specs(int id, const Char* begin, const Char* end) {
    auto arg = get_arg(context, id);
    if (arg.type() == type::custom_type) {
      advance_to(parse_context, begin);
      visit_format_arg(custom_formatter<Context>(parse_context, context), arg);
      return parse_context.begin();
    }
    auto specs = basic_format_specs<Char>();
    if (begin + 1 < end && begin[1] == '}' && is_ascii_letter(*begin)) {
      specs.type = static_cast<char>(*begin++);
    } else {
      using parse_context_t = basic_format_parse_context<Char>;
      specs_checker<specs_handler<parse_context_t, Context>> handler(
          specs_handler<parse_context_t, Context>(specs, parse_context,
                                                  context),
          arg.type());
      begin = parse_format_specs(begin, end, handler);
      if (begin == end || *begin != '}')
        on_error("missing '}' in format string");
    }
    context.advance_to(visit_format_arg(
        arg_formatter<OutputIt, Char>(context, &parse_context, &specs), arg));
    return begin;
  }
};

// A parse context with extra argument id checks. It is only used at compile
// time because adding checks at runtime would introduce substantial overhead
// and would be redundant since argument ids are checked when arguments are
// retrieved anyway.
template <typename Char, typename ErrorHandler = error_handler>
class compile_parse_context
    : public basic_format_parse_context<Char, ErrorHandler> {
 private:
  int num_args_;
  using base = basic_format_parse_context<Char, ErrorHandler>;

 public:
  explicit FMT_CONSTEXPR compile_parse_context(
      basic_string_view<Char> format_str, int num_args = max_value<int>(),
      ErrorHandler eh = {})
      : base(format_str, eh), num_args_(num_args) {}

  FMT_CONSTEXPR int next_arg_id() {
    int id = base::next_arg_id();
    if (id >= num_args_) this->on_error("argument not found");
    return id;
  }

  FMT_CONSTEXPR void check_arg_id(int id) {
    base::check_arg_id(id);
    if (id >= num_args_) this->on_error("argument not found");
  }
  using base::check_arg_id;
};

template <typename Char, typename ErrorHandler, typename... Args>
class format_string_checker {
 public:
  explicit FMT_CONSTEXPR format_string_checker(
      basic_string_view<Char> format_str, ErrorHandler eh)
      : context_(format_str, num_args, eh),
        parse_funcs_{&parse_format_specs<Args, parse_context_type>...} {}

  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}

  FMT_CONSTEXPR int on_arg_id() { return context_.next_arg_id(); }
  FMT_CONSTEXPR int on_arg_id(int id) { return context_.check_arg_id(id), id; }
  FMT_CONSTEXPR int on_arg_id(basic_string_view<Char>) {
    on_error("compile-time checks don't support named arguments");
    return 0;
  }

  FMT_CONSTEXPR void on_replacement_field(int, const Char*) {}

  FMT_CONSTEXPR const Char* on_format_specs(int id, const Char* begin,
                                            const Char*) {
    advance_to(context_, begin);
    return id < num_args ? parse_funcs_[id](context_) : begin;
  }

  FMT_CONSTEXPR void on_error(const char* message) {
    context_.on_error(message);
  }

 private:
  using parse_context_type = compile_parse_context<Char, ErrorHandler>;
  enum { num_args = sizeof...(Args) };

  // Format specifier parsing function.
  using parse_func = const Char* (*)(parse_context_type&);

  parse_context_type context_;
  parse_func parse_funcs_[num_args > 0 ? num_args : 1];
};

// Converts string literals to basic_string_view.
template <typename Char, size_t N>
FMT_CONSTEXPR basic_string_view<Char> compile_string_to_view(
    const Char (&s)[N]) {
  // Remove trailing null character if needed. Won't be present if this is used
  // with raw character array (i.e. not defined as a string).
  return {s,
          N - ((std::char_traits<Char>::to_int_type(s[N - 1]) == 0) ? 1 : 0)};
}

// Converts string_view to basic_string_view.
template <typename Char>
FMT_CONSTEXPR basic_string_view<Char> compile_string_to_view(
    const std_string_view<Char>& s) {
  return {s.data(), s.size()};
}

#define FMT_STRING_IMPL(s, base)                                  \
  [] {                                                            \
    /* Use a macro-like name to avoid shadowing warnings. */      \
    struct FMT_COMPILE_STRING : base {                            \
      using char_type = fmt::remove_cvref_t<decltype(s[0])>;      \
      FMT_MAYBE_UNUSED FMT_CONSTEXPR                              \
      operator fmt::basic_string_view<char_type>() const {        \
        return fmt::detail::compile_string_to_view<char_type>(s); \
      }                                                           \
    };                                                            \
    return FMT_COMPILE_STRING();                                  \
  }()

/**
  \rst
  Constructs a compile-time format string from a string literal *s*.

  **Example**::

    // A compile-time error because 'd' is an invalid specifier for strings.
    std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
  \endrst
 */
#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::compile_string)

template <typename... Args, typename S,
          enable_if_t<(is_compile_string<S>::value), int>>
void check_format_string(S format_str) {
  FMT_CONSTEXPR_DECL auto s = to_string_view(format_str);
  using checker = format_string_checker<typename S::char_type, error_handler,
                                        remove_cvref_t<Args>...>;
  FMT_CONSTEXPR_DECL bool invalid_format =
      (parse_format_string<true>(s, checker(s, {})), true);
  (void)invalid_format;
}

template <template <typename> class Handler, typename Context>
void handle_dynamic_spec(int& value, arg_ref<typename Context::char_type> ref,
                         Context& ctx) {
  switch (ref.kind) {
  case arg_id_kind::none:
    break;
  case arg_id_kind::index:
    value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index),
                                              ctx.error_handler());
    break;
  case arg_id_kind::name:
    value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name),
                                              ctx.error_handler());
    break;
  }
}

using format_func = void (*)(detail::buffer<char>&, int, string_view);

FMT_API void format_error_code(buffer<char>& out, int error_code,
                               string_view message) FMT_NOEXCEPT;

FMT_API void report_error(format_func func, int error_code,
                          string_view message) FMT_NOEXCEPT;
}  // namespace detail

template <typename OutputIt, typename Char>
using arg_formatter FMT_DEPRECATED_ALIAS =
    detail::arg_formatter<OutputIt, Char>;

/**
 An error returned by an operating system or a language runtime,
 for example a file opening error.
*/
FMT_CLASS_API
class FMT_API system_error : public std::runtime_error {
 private:
  void init(int err_code, string_view format_str, format_args args);

 protected:
  int error_code_;

  system_error() : std::runtime_error(""), error_code_(0) {}

 public:
  /**
   \rst
   Constructs a :class:`fmt::system_error` object with a description
   formatted with `fmt::format_system_error`. *message* and additional
   arguments passed into the constructor are formatted similarly to
   `fmt::format`.

   **Example**::

     // This throws a system_error with the description
     //   cannot open file 'madeup': No such file or directory
     // or similar (system message may vary).
     const char *filename = "madeup";
     std::FILE *file = std::fopen(filename, "r");
     if (!file)
       throw fmt::system_error(errno, "cannot open file '{}'", filename);
   \endrst
  */
  template <typename... Args>
  system_error(int error_code, string_view message, const Args&... args)
      : std::runtime_error("") {
    init(error_code, message, make_format_args(args...));
  }
  system_error(const system_error&) = default;
  system_error& operator=(const system_error&) = default;
  system_error(system_error&&) = default;
  system_error& operator=(system_error&&) = default;
  ~system_error() FMT_NOEXCEPT FMT_OVERRIDE;

  int error_code() const { return error_code_; }
};

/**
  \rst
  Formats an error returned by an operating system or a language runtime,
  for example a file opening error, and writes it to *out* in the following
  form:

  .. parsed-literal::
     *<message>*: *<system-message>*

  where *<message>* is the passed message and *<system-message>* is
  the system message corresponding to the error code.
  *error_code* is a system error code as given by ``errno``.
  If *error_code* is not a valid error code such as -1, the system message
  may look like "Unknown error -1" and is platform-dependent.
  \endrst
 */
FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
                                 string_view message) FMT_NOEXCEPT;

// Reports a system error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_system_error(int error_code,
                                 string_view message) FMT_NOEXCEPT;

/** Fast integer formatter. */
class format_int {
 private:
  // Buffer should be large enough to hold all digits (digits10 + 1),
  // a sign and a null character.
  enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
  mutable char buffer_[buffer_size];
  char* str_;

  template <typename UInt> char* format_unsigned(UInt value) {
    auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
    return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
  }

  template <typename Int> char* format_signed(Int value) {
    auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
    bool negative = value < 0;
    if (negative) abs_value = 0 - abs_value;
    auto begin = format_unsigned(abs_value);
    if (negative) *--begin = '-';
    return begin;
  }

 public:
  explicit format_int(int value) : str_(format_signed(value)) {}
  explicit format_int(long value) : str_(format_signed(value)) {}
  explicit format_int(long long value) : str_(format_signed(value)) {}
  explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
  explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
  explicit format_int(unsigned long long value)
      : str_(format_unsigned(value)) {}

  /** Returns the number of characters written to the output buffer. */
  size_t size() const {
    return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
  }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  const char* data() const { return str_; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  const char* c_str() const {
    buffer_[buffer_size - 1] = '\0';
    return str_;
  }

  /**
    \rst
    Returns the content of the output buffer as an ``std::string``.
    \endrst
   */
  std::string str() const { return std::string(str_, size()); }
};

// A formatter specialization for the core types corresponding to detail::type
// constants.
template <typename T, typename Char>
struct formatter<T, Char,
                 enable_if_t<detail::type_constant<T, Char>::value !=
                             detail::type::custom_type>> {
  FMT_CONSTEXPR formatter() = default;

  // Parses format specifiers stopping either at the end of the range or at the
  // terminating '}'.
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
    using handler_type = detail::dynamic_specs_handler<ParseContext>;
    auto type = detail::type_constant<T, Char>::value;
    detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
                                                type);
    auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
    auto eh = ctx.error_handler();
    switch (type) {
    case detail::type::none_type:
      FMT_ASSERT(false, "invalid argument type");
      break;
    case detail::type::int_type:
    case detail::type::uint_type:
    case detail::type::long_long_type:
    case detail::type::ulong_long_type:
    case detail::type::int128_type:
    case detail::type::uint128_type:
    case detail::type::bool_type:
      handle_int_type_spec(specs_.type,
                           detail::int_type_checker<decltype(eh)>(eh));
      break;
    case detail::type::char_type:
      handle_char_specs(
          &specs_, detail::char_specs_checker<decltype(eh)>(specs_.type, eh));
      break;
    case detail::type::float_type:
      if (detail::const_check(FMT_USE_FLOAT))
        detail::parse_float_type_spec(specs_, eh);
      else
        FMT_ASSERT(false, "float support disabled");
      break;
    case detail::type::double_type:
      if (detail::const_check(FMT_USE_DOUBLE))
        detail::parse_float_type_spec(specs_, eh);
      else
        FMT_ASSERT(false, "double support disabled");
      break;
    case detail::type::long_double_type:
      if (detail::const_check(FMT_USE_LONG_DOUBLE))
        detail::parse_float_type_spec(specs_, eh);
      else
        FMT_ASSERT(false, "long double support disabled");
      break;
    case detail::type::cstring_type:
      detail::handle_cstring_type_spec(
          specs_.type, detail::cstring_type_checker<decltype(eh)>(eh));
      break;
    case detail::type::string_type:
      detail::check_string_type_spec(specs_.type, eh);
      break;
    case detail::type::pointer_type:
      detail::check_pointer_type_spec(specs_.type, eh);
      break;
    case detail::type::custom_type:
      // Custom format specifiers should be checked in parse functions of
      // formatter specializations.
      break;
    }
    return it;
  }

  template <typename FormatContext>
  auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
    using af = detail::arg_formatter<typename FormatContext::iterator,
                                     typename FormatContext::char_type>;
    return visit_format_arg(af(ctx, nullptr, &specs_),
                            detail::make_arg<FormatContext>(val));
  }

 private:
  detail::dynamic_format_specs<Char> specs_;
};

#define FMT_FORMAT_AS(Type, Base)                                             \
  template <typename Char>                                                    \
  struct formatter<Type, Char> : formatter<Base, Char> {                      \
    template <typename FormatContext>                                         \
    auto format(Type const& val, FormatContext& ctx) -> decltype(ctx.out()) { \
      return formatter<Base, Char>::format(val, ctx);                         \
    }                                                                         \
  }

FMT_FORMAT_AS(signed char, int);
FMT_FORMAT_AS(unsigned char, unsigned);
FMT_FORMAT_AS(short, int);
FMT_FORMAT_AS(unsigned short, unsigned);
FMT_FORMAT_AS(long, long long);
FMT_FORMAT_AS(unsigned long, unsigned long long);
FMT_FORMAT_AS(Char*, const Char*);
FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
FMT_FORMAT_AS(std::nullptr_t, const void*);
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);

template <typename Char>
struct formatter<void*, Char> : formatter<const void*, Char> {
  template <typename FormatContext>
  auto format(void* val, FormatContext& ctx) -> decltype(ctx.out()) {
    return formatter<const void*, Char>::format(val, ctx);
  }
};

template <typename Char, size_t N>
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
  template <typename FormatContext>
  auto format(const Char* val, FormatContext& ctx) -> decltype(ctx.out()) {
    return formatter<basic_string_view<Char>, Char>::format(val, ctx);
  }
};

// A formatter for types known only at run time such as variant alternatives.
//
// Usage:
//   using variant = std::variant<int, std::string>;
//   template <>
//   struct formatter<variant>: dynamic_formatter<> {
//     auto format(const variant& v, format_context& ctx) {
//       return visit([&](const auto& val) {
//           return dynamic_formatter<>::format(val, ctx);
//       }, v);
//     }
//   };
template <typename Char = char> class dynamic_formatter {
 private:
  struct null_handler : detail::error_handler {
    void on_align(align_t) {}
    void on_plus() {}
    void on_minus() {}
    void on_space() {}
    void on_hash() {}
  };

 public:
  template <typename ParseContext>
  auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
    format_str_ = ctx.begin();
    // Checks are deferred to formatting time when the argument type is known.
    detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx);
    return parse_format_specs(ctx.begin(), ctx.end(), handler);
  }

  template <typename T, typename FormatContext>
  auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) {
    handle_specs(ctx);
    detail::specs_checker<null_handler> checker(
        null_handler(), detail::mapped_type_constant<T, FormatContext>::value);
    checker.on_align(specs_.align);
    switch (specs_.sign) {
    case sign::none:
      break;
    case sign::plus:
      checker.on_plus();
      break;
    case sign::minus:
      checker.on_minus();
      break;
    case sign::space:
      checker.on_space();
      break;
    }
    if (specs_.alt) checker.on_hash();
    if (specs_.precision >= 0) checker.end_precision();
    using af = detail::arg_formatter<typename FormatContext::iterator,
                                     typename FormatContext::char_type>;
    visit_format_arg(af(ctx, nullptr, &specs_),
                     detail::make_arg<FormatContext>(val));
    return ctx.out();
  }

 private:
  template <typename Context> void handle_specs(Context& ctx) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
  }

  detail::dynamic_format_specs<Char> specs_;
  const Char* format_str_;
};

template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR void advance_to(
    basic_format_parse_context<Char, ErrorHandler>& ctx, const Char* p) {
  ctx.advance_to(ctx.begin() + (p - &*ctx.begin()));
}

/**
  \rst
  Converts ``p`` to ``const void*`` for pointer formatting.

  **Example**::

    auto s = fmt::format("{}", fmt::ptr(p));
  \endrst
 */
template <typename T> inline const void* ptr(const T* p) { return p; }
template <typename T> inline const void* ptr(const std::unique_ptr<T>& p) {
  return p.get();
}
template <typename T> inline const void* ptr(const std::shared_ptr<T>& p) {
  return p.get();
}

class bytes {
 private:
  string_view data_;
  friend struct formatter<bytes>;

 public:
  explicit bytes(string_view data) : data_(data) {}
};

template <> struct formatter<bytes> {
 private:
  detail::dynamic_format_specs<char> specs_;

 public:
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
    using handler_type = detail::dynamic_specs_handler<ParseContext>;
    detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
                                                detail::type::string_type);
    auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
    detail::check_string_type_spec(specs_.type, ctx.error_handler());
    return it;
  }

  template <typename FormatContext>
  auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
    return detail::write_bytes(ctx.out(), b.data_, specs_);
  }
};

template <typename It, typename Sentinel, typename Char>
struct arg_join : detail::view {
  It begin;
  Sentinel end;
  basic_string_view<Char> sep;

  arg_join(It b, Sentinel e, basic_string_view<Char> s)
      : begin(b), end(e), sep(s) {}
};

template <typename It, typename Sentinel, typename Char>
struct formatter<arg_join<It, Sentinel, Char>, Char>
    : formatter<typename std::iterator_traits<It>::value_type, Char> {
  template <typename FormatContext>
  auto format(const arg_join<It, Sentinel, Char>& value, FormatContext& ctx)
      -> decltype(ctx.out()) {
    using base = formatter<typename std::iterator_traits<It>::value_type, Char>;
    auto it = value.begin;
    auto out = ctx.out();
    if (it != value.end) {
      out = base::format(*it++, ctx);
      while (it != value.end) {
        out = std::copy(value.sep.begin(), value.sep.end(), out);
        ctx.advance_to(out);
        out = base::format(*it++, ctx);
      }
    }
    return out;
  }
};

/**
  Returns an object that formats the iterator range `[begin, end)` with elements
  separated by `sep`.
 */
template <typename It, typename Sentinel>
arg_join<It, Sentinel, char> join(It begin, Sentinel end, string_view sep) {
  return {begin, end, sep};
}

template <typename It, typename Sentinel>
arg_join<It, Sentinel, wchar_t> join(It begin, Sentinel end, wstring_view sep) {
  return {begin, end, sep};
}

/**
  \rst
  Returns an object that formats `range` with elements separated by `sep`.

  **Example**::

    std::vector<int> v = {1, 2, 3};
    fmt::print("{}", fmt::join(v, ", "));
    // Output: "1, 2, 3"

  ``fmt::join`` applies passed format specifiers to the range elements::

    fmt::print("{:02}", fmt::join(v, ", "));
    // Output: "01, 02, 03"
  \endrst
 */
template <typename Range>
arg_join<detail::iterator_t<Range>, detail::sentinel_t<Range>, char> join(
    Range&& range, string_view sep) {
  return join(std::begin(range), std::end(range), sep);
}

template <typename Range>
arg_join<detail::iterator_t<Range>, detail::sentinel_t<Range>, wchar_t> join(
    Range&& range, wstring_view sep) {
  return join(std::begin(range), std::end(range), sep);
}

/**
  \rst
  Converts *value* to ``std::string`` using the default format for type *T*.

  **Example**::

    #include <fmt/format.h>

    std::string answer = fmt::to_string(42);
  \endrst
 */
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
inline std::string to_string(const T& value) {
  std::string result;
  detail::write<char>(std::back_inserter(result), value);
  return result;
}

template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline std::string to_string(T value) {
  // The buffer should be large enough to store the number including the sign or
  // "false" for bool.
  constexpr int max_size = detail::digits10<T>() + 2;
  char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
  char* begin = buffer;
  return std::string(begin, detail::write<char>(begin, value));
}

/**
  Converts *value* to ``std::wstring`` using the default format for type *T*.
 */
template <typename T> inline std::wstring to_wstring(const T& value) {
  return format(L"{}", value);
}

template <typename Char, size_t SIZE>
std::basic_string<Char> to_string(const basic_memory_buffer<Char, SIZE>& buf) {
  auto size = buf.size();
  detail::assume(size < std::basic_string<Char>().max_size());
  return std::basic_string<Char>(buf.data(), size);
}

template <typename Char>
void detail::vformat_to(
    detail::buffer<Char>& buf, basic_string_view<Char> format_str,
    basic_format_args<buffer_context<type_identity_t<Char>>> args,
    detail::locale_ref loc) {
  using iterator = typename buffer_context<Char>::iterator;
  auto out = buffer_appender<Char>(buf);
  if (format_str.size() == 2 && equal2(format_str.data(), "{}")) {
    auto arg = args.get(0);
    if (!arg) error_handler().on_error("argument not found");
    visit_format_arg(default_arg_formatter<iterator, Char>{out, args, loc},
                     arg);
    return;
  }
  format_handler<iterator, Char, buffer_context<Char>> h(out, format_str, args,
                                                         loc);
  parse_format_string<false>(format_str, h);
}

#ifndef FMT_HEADER_ONLY
extern template void detail::vformat_to(detail::buffer<char>&, string_view,
                                        basic_format_args<format_context>,
                                        detail::locale_ref);
namespace detail {

extern template FMT_API std::string grouping_impl<char>(locale_ref loc);
extern template FMT_API std::string grouping_impl<wchar_t>(locale_ref loc);
extern template FMT_API char thousands_sep_impl<char>(locale_ref loc);
extern template FMT_API wchar_t thousands_sep_impl<wchar_t>(locale_ref loc);
extern template FMT_API char decimal_point_impl(locale_ref loc);
extern template FMT_API wchar_t decimal_point_impl(locale_ref loc);
extern template int format_float<double>(double value, int precision,
                                         float_specs specs, buffer<char>& buf);
extern template int format_float<long double>(long double value, int precision,
                                              float_specs specs,
                                              buffer<char>& buf);
int snprintf_float(float value, int precision, float_specs specs,
                   buffer<char>& buf) = delete;
extern template int snprintf_float<double>(double value, int precision,
                                           float_specs specs,
                                           buffer<char>& buf);
extern template int snprintf_float<long double>(long double value,
                                                int precision,
                                                float_specs specs,
                                                buffer<char>& buf);
}  // namespace detail
#endif

template <typename S, typename Char = char_t<S>,
          FMT_ENABLE_IF(detail::is_string<S>::value)>
inline void vformat_to(
    detail::buffer<Char>& buf, const S& format_str,
    basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args) {
  return detail::vformat_to(buf, to_string_view(format_str), args);
}

template <typename S, typename... Args, size_t SIZE = inline_buffer_size,
          typename Char = enable_if_t<detail::is_string<S>::value, char_t<S>>>
inline typename buffer_context<Char>::iterator format_to(
    basic_memory_buffer<Char, SIZE>& buf, const S& format_str, Args&&... args) {
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
  detail::vformat_to(buf, to_string_view(format_str), vargs);
  return detail::buffer_appender<Char>(buf);
}

template <typename OutputIt, typename Char = char>
using format_context_t = basic_format_context<OutputIt, Char>;

template <typename OutputIt, typename Char = char>
using format_args_t = basic_format_args<format_context_t<OutputIt, Char>>;

template <typename OutputIt, typename Char = typename OutputIt::value_type>
using format_to_n_context FMT_DEPRECATED_ALIAS = buffer_context<Char>;

template <typename OutputIt, typename Char = typename OutputIt::value_type>
using format_to_n_args FMT_DEPRECATED_ALIAS =
    basic_format_args<buffer_context<Char>>;

template <typename OutputIt, typename Char, typename... Args>
FMT_DEPRECATED format_arg_store<buffer_context<Char>, Args...>
make_format_to_n_args(const Args&... args) {
  return format_arg_store<buffer_context<Char>, Args...>(args...);
}

template <typename Char, enable_if_t<(!std::is_same<Char, char>::value), int>>
std::basic_string<Char> detail::vformat(
    basic_string_view<Char> format_str,
    basic_format_args<buffer_context<type_identity_t<Char>>> args) {
  basic_memory_buffer<Char> buffer;
  detail::vformat_to(buffer, format_str, args);
  return to_string(buffer);
}

template <typename Char, FMT_ENABLE_IF(std::is_same<Char, wchar_t>::value)>
void vprint(std::FILE* f, basic_string_view<Char> format_str,
            wformat_args args) {
  wmemory_buffer buffer;
  detail::vformat_to(buffer, format_str, args);
  buffer.push_back(L'\0');
  if (std::fputws(buffer.data(), f) == -1)
    FMT_THROW(system_error(errno, "cannot write to file"));
}

template <typename Char, FMT_ENABLE_IF(std::is_same<Char, wchar_t>::value)>
void vprint(basic_string_view<Char> format_str, wformat_args args) {
  vprint(stdout, format_str, args);
}

#if FMT_USE_USER_DEFINED_LITERALS
namespace detail {

#  if FMT_USE_UDL_TEMPLATE
template <typename Char, Char... CHARS> class udl_formatter {
 public:
  template <typename... Args>
  std::basic_string<Char> operator()(Args&&... args) const {
    static FMT_CONSTEXPR_DECL Char s[] = {CHARS..., '\0'};
    return format(FMT_STRING(s), std::forward<Args>(args)...);
  }
};
#  else
template <typename Char> struct udl_formatter {
  basic_string_view<Char> str;

  template <typename... Args>
  std::basic_string<Char> operator()(Args&&... args) const {
    return format(str, std::forward<Args>(args)...);
  }
};
#  endif  // FMT_USE_UDL_TEMPLATE

template <typename Char> struct udl_arg {
  const Char* str;

  template <typename T> named_arg<Char, T> operator=(T&& value) const {
    return {str, std::forward<T>(value)};
  }
};
}  // namespace detail

inline namespace literals {
#  if FMT_USE_UDL_TEMPLATE
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wpedantic"
#    if FMT_CLANG_VERSION
#      pragma GCC diagnostic ignored "-Wgnu-string-literal-operator-template"
#    endif
template <typename Char, Char... CHARS>
FMT_CONSTEXPR detail::udl_formatter<Char, CHARS...> operator""_format() {
  return {};
}
#    pragma GCC diagnostic pop
#  else
/**
  \rst
  User-defined literal equivalent of :func:`fmt::format`.

  **Example**::

    using namespace fmt::literals;
    std::string message = "The answer is {}"_format(42);
  \endrst
 */
FMT_CONSTEXPR detail::udl_formatter<char> operator"" _format(const char* s,
                                                             size_t n) {
  return {{s, n}};
}
FMT_CONSTEXPR detail::udl_formatter<wchar_t> operator"" _format(
    const wchar_t* s, size_t n) {
  return {{s, n}};
}
#  endif  // FMT_USE_UDL_TEMPLATE

/**
  \rst
  User-defined literal equivalent of :func:`fmt::arg`.

  **Example**::

    using namespace fmt::literals;
    fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
  \endrst
 */
FMT_CONSTEXPR detail::udl_arg<char> operator"" _a(const char* s, size_t) {
  return {s};
}
FMT_CONSTEXPR detail::udl_arg<wchar_t> operator"" _a(const wchar_t* s, size_t) {
  return {s};
}
}  // namespace literals
#endif  // FMT_USE_USER_DEFINED_LITERALS
FMT_END_NAMESPACE

#ifdef FMT_HEADER_ONLY
#  define FMT_FUNC inline
#  include "format-inl.h"
#else
#  define FMT_FUNC
#endif

#endif  // FMT_FORMAT_H_