aboutsummaryrefslogtreecommitdiff
path: root/epid/member/tiny/src/signbasic.c
blob: bc374ccd663a7b994aa745d1c5d324e9ec1f178a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*############################################################################
# Copyright 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
############################################################################*/
/// Basic signature computation.
/*! \file */

#include "epid/member/tiny/src/signbasic.h"

#include "epid/common/types.h"
#include "epid/member/tiny/math/efq.h"
#include "epid/member/tiny/math/fp.h"
#include "epid/member/tiny/math/hashwrap.h"
#include "epid/member/tiny/math/serialize.h"
#include "epid/member/tiny/src/context.h"
#include "epid/member/tiny/src/native_types.h"
#include "epid/member/tiny/src/presig_compute.h"
#include "epid/member/tiny/stdlib/tiny_stdlib.h"

static const FpElemStr epid20_p_str = {
    {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, 0xF0, 0xCD, 0x46, 0xE5, 0xF2,
      0x5E, 0xEE, 0x71, 0xA4, 0x9E, 0x0C, 0xDC, 0x65, 0xFB, 0x12, 0x99,
      0x92, 0x1A, 0xF6, 0x2D, 0x53, 0x6C, 0xD1, 0x0B, 0x50, 0x0D}}};

static const G2ElemStr epid20_g2_str = {
    {{{{0xE2, 0x01, 0x71, 0xC5, 0x4A, 0xA3, 0xDA, 0x05, 0x21, 0x67, 0x04,
        0x13, 0x74, 0x3C, 0xCF, 0x22, 0xD2, 0x5D, 0x52, 0x68, 0x3D, 0x32,
        0x47, 0x0E, 0xF6, 0x02, 0x13, 0x43, 0xBF, 0x28, 0x23, 0x94}}},
     {{{0x59, 0x2D, 0x1E, 0xF6, 0x53, 0xA8, 0x5A, 0x80, 0x46, 0xCC, 0xDC,
        0x25, 0x4F, 0xBB, 0x56, 0x56, 0x43, 0x43, 0x3B, 0xF6, 0x28, 0x96,
        0x53, 0xE2, 0x7D, 0xF7, 0xB2, 0x12, 0xBA, 0xA1, 0x89, 0xBE}}}},
    {{{{0xAE, 0x60, 0xA4, 0xE7, 0x51, 0xFF, 0xD3, 0x50, 0xC6, 0x21, 0xE7,
        0x03, 0x31, 0x28, 0x26, 0xBD, 0x55, 0xE8, 0xB5, 0x9A, 0x4D, 0x91,
        0x68, 0x38, 0x41, 0x4D, 0xB8, 0x22, 0xDD, 0x23, 0x35, 0xAE}}},
     {{{0x1A, 0xB4, 0x42, 0xF9, 0x89, 0xAF, 0xE5, 0xAD, 0xF8, 0x02, 0x74,
        0xF8, 0x76, 0x45, 0xE2, 0x53, 0x2C, 0xDC, 0x61, 0x81, 0x90, 0x93,
        0xD6, 0x13, 0x2C, 0x90, 0xFE, 0x89, 0x51, 0xB9, 0x24, 0x21}}}}};

static const G1ElemStr epid20_g1_str = {
    {{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}}},
    {{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02}}}};

EpidStatus EpidSignBasic(MemberCtx const* ctx, void const* msg, size_t msg_len,
                         void const* basename, size_t basename_len,
                         NativeBasicSignature* sig) {
  EpidStatus sts = kEpidErr;
  PreComputedSignatureData presig;
  tiny_sha sha_state;
  sha_digest digest;
  G1ElemStr g1_str;
  Fq12ElemStr fq12_str;
  FpElemStr fp_str;
  FpElem x;

  FpDeserialize(&x, &ctx->credential.x);
  do {
    sts = EpidMemberComputePreSig(ctx, &presig);
    if (kEpidNoErr != sts) {
      break;
    }
    // B <- random
    if (basename) {
      if (!IsBasenameAllowed(ctx->allowed_basenames, basename, basename_len)) {
        sts = kEpidBadArgErr;
        break;
      }
      /* Basename, K is linked to fixed B */
      if (!EFqHash(&sig->B, (const unsigned char*)basename, basename_len,
                   ctx->hash_alg)) {
        break;
      }
    } else {
      /* No basename, B is random */
      if (!EFqRand(&sig->B, ctx->rnd_func, ctx->rnd_param)) {
        break;
      }
    }
    // K <- B^f
    // guaranteed not to fail, based on f nonzero, B not identity
    EFqAffineExp(&sig->K, &sig->B, &ctx->f);
    EFqCp(&sig->T, &presig.T);

    // R1 = B^rf
    // guaranteed not to fail, if rf != p or 0, but bad inputs could cause it to
    // fail
    if (!EFqAffineExp(&presig.R1, &sig->B, &presig.rf)) {
      break;
    }

    // 5.  The member computes
    // t3 = Fp.hash(p || g1 || g2 || h1 || h2 || w || B || K || T || R1 || R2).
    tinysha_init(ctx->hash_alg, &sha_state);

    tinysha_update(&sha_state, (void const*)&epid20_p_str,
                   sizeof(epid20_p_str));
    tinysha_update(&sha_state, (void const*)&epid20_g1_str,
                   sizeof(epid20_g1_str));
    tinysha_update(&sha_state, (void const*)&epid20_g2_str,
                   sizeof(epid20_g2_str));
    tinysha_update(&sha_state, (void const*)&ctx->pub_key.h1,
                   sizeof(ctx->pub_key.h1));
    tinysha_update(&sha_state, (void const*)&ctx->pub_key.h2,
                   sizeof(ctx->pub_key.h2));
    tinysha_update(&sha_state, (void const*)&ctx->pub_key.w,
                   sizeof(ctx->pub_key.w));
    EFqSerialize(&g1_str, &sig->B);
    tinysha_update(&sha_state, (void const*)&g1_str, sizeof(g1_str));
    EFqSerialize(&g1_str, &sig->K);
    tinysha_update(&sha_state, (void const*)&g1_str, sizeof(g1_str));
    EFqSerialize(&g1_str, &sig->T);
    tinysha_update(&sha_state, (void const*)&g1_str, sizeof(g1_str));
    EFqSerialize(&g1_str, &presig.R1);
    tinysha_update(&sha_state, (void const*)&g1_str, sizeof(g1_str));
    Fq12Serialize(&fq12_str, &presig.R2);
    tinysha_update(&sha_state, (void const*)&fq12_str, sizeof(fq12_str));
    tinysha_final(digest.digest, &sha_state);
    FpFromHash(&sig->c, digest.digest, tinysha_digest_size(&sha_state));

    // 6.  The member computes c = Fp.hash(t3 || m).
    tinysha_init(ctx->hash_alg, &sha_state);
    FpSerialize(&fp_str, &sig->c);
    tinysha_update(&sha_state, (void const*)&fp_str, sizeof(fp_str));
    tinysha_update(&sha_state, msg, msg_len);
    tinysha_final(digest.digest, &sha_state);

    FpFromHash(&sig->c, digest.digest, tinysha_digest_size(&sha_state));
    // The variables sx, sf, sa, sb are computed from x, f, a, b with random
    // elements
    // This randomness allows verification but means that the s variables reveal
    // no secret information
    FpMul(&sig->sx, &sig->c, &x);
    FpMul(&sig->sf, &sig->c, &ctx->f);
    FpMul(&sig->sa, &sig->c, &presig.a);
    FpMul(&sig->sb, &sig->c, &presig.b);
    FpAdd(&sig->sx, &sig->sx, &presig.rx);
    FpAdd(&sig->sf, &sig->sf, &presig.rf);
    FpAdd(&sig->sa, &sig->sa, &presig.ra);
    FpAdd(&sig->sb, &sig->sb, &presig.rb);
    sts = kEpidNoErr;
  } while (0);
  // clearing stack-allocated variables before function return
  (void)memset(&presig, 0, sizeof(presig));
  return sts;
}