summaryrefslogtreecommitdiff
path: root/opts/SkBlitRow_opts_SSE2.cpp
blob: 391b24c8673809c9a40a0225be52129af2369237 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
/*
 * Copyright 2012 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include <emmintrin.h>
#include "SkBitmapProcState_opts_SSE2.h"
#include "SkBlitRow_opts_SSE2.h"
#include "SkColorPriv.h"
#include "SkColor_opts_SSE2.h"
#include "SkDither.h"
#include "SkUtils.h"

/* SSE2 version of S32_Blend_BlitRow32()
 * portable version is in core/SkBlitRow_D32.cpp
 */
void S32_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
                              const SkPMColor* SK_RESTRICT src,
                              int count, U8CPU alpha) {
    SkASSERT(alpha <= 255);
    if (count <= 0) {
        return;
    }

    uint32_t src_scale = SkAlpha255To256(alpha);
    uint32_t dst_scale = 256 - src_scale;

    if (count >= 4) {
        SkASSERT(((size_t)dst & 0x03) == 0);
        while (((size_t)dst & 0x0F) != 0) {
            *dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale);
            src++;
            dst++;
            count--;
        }

        const __m128i *s = reinterpret_cast<const __m128i*>(src);
        __m128i *d = reinterpret_cast<__m128i*>(dst);
        __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
        __m128i ag_mask = _mm_set1_epi32(0xFF00FF00);

        // Move scale factors to upper byte of word
        __m128i src_scale_wide = _mm_set1_epi16(src_scale << 8);
        __m128i dst_scale_wide = _mm_set1_epi16(dst_scale << 8);
        while (count >= 4) {
            // Load 4 pixels each of src and dest.
            __m128i src_pixel = _mm_loadu_si128(s);
            __m128i dst_pixel = _mm_load_si128(d);

            // Interleave Atom port 0/1 operations based on the execution port
            // constraints that multiply can only be executed on port 0 (while
            // boolean operations can be executed on either port 0 or port 1)
            // because GCC currently doesn't do a good job scheduling
            // instructions based on these constraints.

            // Get red and blue pixels into lower byte of each word.
            // (0, r, 0, b, 0, r, 0, b, 0, r, 0, b, 0, r, 0, b)
            __m128i src_rb = _mm_and_si128(rb_mask, src_pixel);

            // Multiply by scale.
            // (4 x (0, rs.h, 0, bs.h))
            // where rs.h stands for the higher byte of r * scale, and
            // bs.h the higher byte of b * scale.
            src_rb = _mm_mulhi_epu16(src_rb, src_scale_wide);

            // Get alpha and green pixels into higher byte of each word.
            // (a, 0, g, 0, a, 0, g, 0, a, 0, g, 0, a, 0, g, 0)
            __m128i src_ag = _mm_and_si128(ag_mask, src_pixel);

            // Multiply by scale.
            // (4 x (as.h, as.l, gs.h, gs.l))
            src_ag = _mm_mulhi_epu16(src_ag, src_scale_wide);

            // Clear the lower byte of the a*scale and g*scale results
            // (4 x (as.h, 0, gs.h, 0))
            src_ag = _mm_and_si128(src_ag, ag_mask);

            // Operations the destination pixels are the same as on the
            // source pixels. See the comments above.
            __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
            dst_rb = _mm_mulhi_epu16(dst_rb, dst_scale_wide);
            __m128i dst_ag = _mm_and_si128(ag_mask, dst_pixel);
            dst_ag = _mm_mulhi_epu16(dst_ag, dst_scale_wide);
            dst_ag = _mm_and_si128(dst_ag, ag_mask);

            // Combine back into RGBA.
            // (4 x (as.h, rs.h, gs.h, bs.h))
            src_pixel = _mm_or_si128(src_rb, src_ag);
            dst_pixel = _mm_or_si128(dst_rb, dst_ag);

            // Add result
            __m128i result = _mm_add_epi8(src_pixel, dst_pixel);
            _mm_store_si128(d, result);
            s++;
            d++;
            count -= 4;
        }
        src = reinterpret_cast<const SkPMColor*>(s);
        dst = reinterpret_cast<SkPMColor*>(d);
    }

    while (count > 0) {
        *dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale);
        src++;
        dst++;
        count--;
    }
}

void S32A_Opaque_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
                                const SkPMColor* SK_RESTRICT src,
                                int count, U8CPU alpha) {
    SkASSERT(alpha == 255);
    if (count <= 0) {
        return;
    }

    if (count >= 4) {
        SkASSERT(((size_t)dst & 0x03) == 0);
        while (((size_t)dst & 0x0F) != 0) {
            *dst = SkPMSrcOver(*src, *dst);
            src++;
            dst++;
            count--;
        }

        const __m128i *s = reinterpret_cast<const __m128i*>(src);
        __m128i *d = reinterpret_cast<__m128i*>(dst);
#ifdef SK_USE_ACCURATE_BLENDING
        __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
        __m128i c_128 = _mm_set1_epi16(128);  // 8 copies of 128 (16-bit)
        __m128i c_255 = _mm_set1_epi16(255);  // 8 copies of 255 (16-bit)
        while (count >= 4) {
            // Load 4 pixels
            __m128i src_pixel = _mm_loadu_si128(s);
            __m128i dst_pixel = _mm_load_si128(d);

            __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
            __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8);
            // Shift alphas down to lower 8 bits of each quad.
            __m128i alpha = _mm_srli_epi32(src_pixel, 24);

            // Copy alpha to upper 3rd byte of each quad
            alpha = _mm_or_si128(alpha, _mm_slli_epi32(alpha, 16));

            // Subtract alphas from 255, to get 0..255
            alpha = _mm_sub_epi16(c_255, alpha);

            // Multiply by red and blue by src alpha.
            dst_rb = _mm_mullo_epi16(dst_rb, alpha);
            // Multiply by alpha and green by src alpha.
            dst_ag = _mm_mullo_epi16(dst_ag, alpha);

            // dst_rb_low = (dst_rb >> 8)
            __m128i dst_rb_low = _mm_srli_epi16(dst_rb, 8);
            __m128i dst_ag_low = _mm_srli_epi16(dst_ag, 8);

            // dst_rb = (dst_rb + dst_rb_low + 128) >> 8
            dst_rb = _mm_add_epi16(dst_rb, dst_rb_low);
            dst_rb = _mm_add_epi16(dst_rb, c_128);
            dst_rb = _mm_srli_epi16(dst_rb, 8);

            // dst_ag = (dst_ag + dst_ag_low + 128) & ag_mask
            dst_ag = _mm_add_epi16(dst_ag, dst_ag_low);
            dst_ag = _mm_add_epi16(dst_ag, c_128);
            dst_ag = _mm_andnot_si128(rb_mask, dst_ag);

            // Combine back into RGBA.
            dst_pixel = _mm_or_si128(dst_rb, dst_ag);

            // Add result
            __m128i result = _mm_add_epi8(src_pixel, dst_pixel);
            _mm_store_si128(d, result);
            s++;
            d++;
            count -= 4;
        }
#else
        __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
        __m128i c_256 = _mm_set1_epi16(0x0100);  // 8 copies of 256 (16-bit)
        while (count >= 4) {
            // Load 4 pixels
            __m128i src_pixel = _mm_loadu_si128(s);
            __m128i dst_pixel = _mm_load_si128(d);

            __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
            __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8);

            // (a0, g0, a1, g1, a2, g2, a3, g3)  (low byte of each word)
            __m128i alpha = _mm_srli_epi16(src_pixel, 8);

            // (a0, a0, a1, a1, a2, g2, a3, g3)
            alpha = _mm_shufflehi_epi16(alpha, 0xF5);

            // (a0, a0, a1, a1, a2, a2, a3, a3)
            alpha = _mm_shufflelo_epi16(alpha, 0xF5);

            // Subtract alphas from 256, to get 1..256
            alpha = _mm_sub_epi16(c_256, alpha);

            // Multiply by red and blue by src alpha.
            dst_rb = _mm_mullo_epi16(dst_rb, alpha);
            // Multiply by alpha and green by src alpha.
            dst_ag = _mm_mullo_epi16(dst_ag, alpha);

            // Divide by 256.
            dst_rb = _mm_srli_epi16(dst_rb, 8);

            // Mask out high bits (already in the right place)
            dst_ag = _mm_andnot_si128(rb_mask, dst_ag);

            // Combine back into RGBA.
            dst_pixel = _mm_or_si128(dst_rb, dst_ag);

            // Add result
            __m128i result = _mm_add_epi8(src_pixel, dst_pixel);
            _mm_store_si128(d, result);
            s++;
            d++;
            count -= 4;
        }
#endif
        src = reinterpret_cast<const SkPMColor*>(s);
        dst = reinterpret_cast<SkPMColor*>(d);
    }

    while (count > 0) {
        *dst = SkPMSrcOver(*src, *dst);
        src++;
        dst++;
        count--;
    }
}

void S32A_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
                               const SkPMColor* SK_RESTRICT src,
                               int count, U8CPU alpha) {
    SkASSERT(alpha <= 255);
    if (count <= 0) {
        return;
    }

    if (count >= 4) {
        while (((size_t)dst & 0x0F) != 0) {
            *dst = SkBlendARGB32(*src, *dst, alpha);
            src++;
            dst++;
            count--;
        }

        uint32_t src_scale = SkAlpha255To256(alpha);

        const __m128i *s = reinterpret_cast<const __m128i*>(src);
        __m128i *d = reinterpret_cast<__m128i*>(dst);
        __m128i src_scale_wide = _mm_set1_epi16(src_scale << 8);
        __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
        __m128i c_256 = _mm_set1_epi16(256);  // 8 copies of 256 (16-bit)
        while (count >= 4) {
            // Load 4 pixels each of src and dest.
            __m128i src_pixel = _mm_loadu_si128(s);
            __m128i dst_pixel = _mm_load_si128(d);

            // Get red and blue pixels into lower byte of each word.
            __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
            __m128i src_rb = _mm_and_si128(rb_mask, src_pixel);

            // Get alpha and green into lower byte of each word.
            __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8);
            __m128i src_ag = _mm_srli_epi16(src_pixel, 8);

            // Put per-pixel alpha in low byte of each word.
            // After the following two statements, the dst_alpha looks like
            // (0, a0, 0, a0, 0, a1, 0, a1, 0, a2, 0, a2, 0, a3, 0, a3)
            __m128i dst_alpha = _mm_shufflehi_epi16(src_ag, 0xF5);
            dst_alpha = _mm_shufflelo_epi16(dst_alpha, 0xF5);

            // dst_alpha = dst_alpha * src_scale
            // Because src_scales are in the higher byte of each word and
            // we use mulhi here, the resulting alpha values are already
            // in the right place and don't need to be divided by 256.
            // (0, sa0, 0, sa0, 0, sa1, 0, sa1, 0, sa2, 0, sa2, 0, sa3, 0, sa3)
            dst_alpha = _mm_mulhi_epu16(dst_alpha, src_scale_wide);

            // Subtract alphas from 256, to get 1..256
            dst_alpha = _mm_sub_epi16(c_256, dst_alpha);

            // Multiply red and blue by dst pixel alpha.
            dst_rb = _mm_mullo_epi16(dst_rb, dst_alpha);
            // Multiply alpha and green by dst pixel alpha.
            dst_ag = _mm_mullo_epi16(dst_ag, dst_alpha);

            // Multiply red and blue by global alpha.
            // (4 x (0, rs.h, 0, bs.h))
            // where rs.h stands for the higher byte of r * src_scale,
            // and bs.h the higher byte of b * src_scale.
            // Again, because we use mulhi, the resuling red and blue
            // values are already in the right place and don't need to
            // be divided by 256.
            src_rb = _mm_mulhi_epu16(src_rb, src_scale_wide);
            // Multiply alpha and green by global alpha.
            // (4 x (0, as.h, 0, gs.h))
            src_ag = _mm_mulhi_epu16(src_ag, src_scale_wide);

            // Divide by 256.
            dst_rb = _mm_srli_epi16(dst_rb, 8);

            // Mask out low bits (goodies already in the right place; no need to divide)
            dst_ag = _mm_andnot_si128(rb_mask, dst_ag);
            // Shift alpha and green to higher byte of each word.
            // (4 x (as.h, 0, gs.h, 0))
            src_ag = _mm_slli_epi16(src_ag, 8);

            // Combine back into RGBA.
            dst_pixel = _mm_or_si128(dst_rb, dst_ag);
            src_pixel = _mm_or_si128(src_rb, src_ag);

            // Add two pixels into result.
            __m128i result = _mm_add_epi8(src_pixel, dst_pixel);
            _mm_store_si128(d, result);
            s++;
            d++;
            count -= 4;
        }
        src = reinterpret_cast<const SkPMColor*>(s);
        dst = reinterpret_cast<SkPMColor*>(d);
    }

    while (count > 0) {
        *dst = SkBlendARGB32(*src, *dst, alpha);
        src++;
        dst++;
        count--;
    }
}

/* SSE2 version of Color32()
 * portable version is in core/SkBlitRow_D32.cpp
 */
void Color32_SSE2(SkPMColor dst[], const SkPMColor src[], int count,
                  SkPMColor color) {
    if (count <= 0) {
        return;
    }

    if (0 == color) {
        if (src != dst) {
            memcpy(dst, src, count * sizeof(SkPMColor));
        }
        return;
    }

    unsigned colorA = SkGetPackedA32(color);
    if (255 == colorA) {
        sk_memset32(dst, color, count);
    } else {
        unsigned scale = 256 - SkAlpha255To256(colorA);

        if (count >= 4) {
            SkASSERT(((size_t)dst & 0x03) == 0);
            while (((size_t)dst & 0x0F) != 0) {
                *dst = color + SkAlphaMulQ(*src, scale);
                src++;
                dst++;
                count--;
            }

            const __m128i *s = reinterpret_cast<const __m128i*>(src);
            __m128i *d = reinterpret_cast<__m128i*>(dst);
            __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
            __m128i src_scale_wide = _mm_set1_epi16(scale);
            __m128i color_wide = _mm_set1_epi32(color);
            while (count >= 4) {
                // Load 4 pixels each of src and dest.
                __m128i src_pixel = _mm_loadu_si128(s);

                // Get red and blue pixels into lower byte of each word.
                __m128i src_rb = _mm_and_si128(rb_mask, src_pixel);

                // Get alpha and green into lower byte of each word.
                __m128i src_ag = _mm_srli_epi16(src_pixel, 8);

                // Multiply by scale.
                src_rb = _mm_mullo_epi16(src_rb, src_scale_wide);
                src_ag = _mm_mullo_epi16(src_ag, src_scale_wide);

                // Divide by 256.
                src_rb = _mm_srli_epi16(src_rb, 8);
                src_ag = _mm_andnot_si128(rb_mask, src_ag);

                // Combine back into RGBA.
                src_pixel = _mm_or_si128(src_rb, src_ag);

                // Add color to result.
                __m128i result = _mm_add_epi8(color_wide, src_pixel);

                // Store result.
                _mm_store_si128(d, result);
                s++;
                d++;
                count -= 4;
            }
            src = reinterpret_cast<const SkPMColor*>(s);
            dst = reinterpret_cast<SkPMColor*>(d);
        }

        while (count > 0) {
            *dst = color + SkAlphaMulQ(*src, scale);
            src += 1;
            dst += 1;
            count--;
        }
    }
}

void SkARGB32_A8_BlitMask_SSE2(void* device, size_t dstRB, const void* maskPtr,
                               size_t maskRB, SkColor origColor,
                               int width, int height) {
    SkPMColor color = SkPreMultiplyColor(origColor);
    size_t dstOffset = dstRB - (width << 2);
    size_t maskOffset = maskRB - width;
    SkPMColor* dst = (SkPMColor *)device;
    const uint8_t* mask = (const uint8_t*)maskPtr;
    do {
        int count = width;
        if (count >= 4) {
            while (((size_t)dst & 0x0F) != 0 && (count > 0)) {
                *dst = SkBlendARGB32(color, *dst, *mask);
                mask++;
                dst++;
                count--;
            }
            __m128i *d = reinterpret_cast<__m128i*>(dst);
            __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
            __m128i c_256 = _mm_set1_epi16(256);
            __m128i c_1 = _mm_set1_epi16(1);
            __m128i src_pixel = _mm_set1_epi32(color);
            while (count >= 4) {
                // Load 4 pixels each of src and dest.
                __m128i dst_pixel = _mm_load_si128(d);

                //set the aphla value
                __m128i src_scale_wide =  _mm_set_epi8(0, *(mask+3),\
                                0, *(mask+3),0, \
                                *(mask+2),0, *(mask+2),\
                                0,*(mask+1), 0,*(mask+1),\
                                0, *mask,0,*mask);

                //call SkAlpha255To256()
                src_scale_wide = _mm_add_epi16(src_scale_wide, c_1);

                // Get red and blue pixels into lower byte of each word.
                __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
                __m128i src_rb = _mm_and_si128(rb_mask, src_pixel);

                // Get alpha and green into lower byte of each word.
                __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8);
                __m128i src_ag = _mm_srli_epi16(src_pixel, 8);

                // Put per-pixel alpha in low byte of each word.
                __m128i dst_alpha = _mm_shufflehi_epi16(src_ag, 0xF5);
                dst_alpha = _mm_shufflelo_epi16(dst_alpha, 0xF5);

                // dst_alpha = dst_alpha * src_scale
                dst_alpha = _mm_mullo_epi16(dst_alpha, src_scale_wide);

                // Divide by 256.
                dst_alpha = _mm_srli_epi16(dst_alpha, 8);

                // Subtract alphas from 256, to get 1..256
                dst_alpha = _mm_sub_epi16(c_256, dst_alpha);
                // Multiply red and blue by dst pixel alpha.
                dst_rb = _mm_mullo_epi16(dst_rb, dst_alpha);
                // Multiply alpha and green by dst pixel alpha.
                dst_ag = _mm_mullo_epi16(dst_ag, dst_alpha);

                // Multiply red and blue by global alpha.
                src_rb = _mm_mullo_epi16(src_rb, src_scale_wide);
                // Multiply alpha and green by global alpha.
                src_ag = _mm_mullo_epi16(src_ag, src_scale_wide);
                // Divide by 256.
                dst_rb = _mm_srli_epi16(dst_rb, 8);
                src_rb = _mm_srli_epi16(src_rb, 8);

                // Mask out low bits (goodies already in the right place; no need to divide)
                dst_ag = _mm_andnot_si128(rb_mask, dst_ag);
                src_ag = _mm_andnot_si128(rb_mask, src_ag);

                // Combine back into RGBA.
                dst_pixel = _mm_or_si128(dst_rb, dst_ag);
                __m128i tmp_src_pixel = _mm_or_si128(src_rb, src_ag);

                // Add two pixels into result.
                __m128i result = _mm_add_epi8(tmp_src_pixel, dst_pixel);
                _mm_store_si128(d, result);
                // load the next 4 pixel
                mask = mask + 4;
                d++;
                count -= 4;
            }
            dst = reinterpret_cast<SkPMColor *>(d);
        }
        while (count > 0) {
            *dst= SkBlendARGB32(color, *dst, *mask);
            dst += 1;
            mask++;
            count --;
        }
        dst = (SkPMColor *)((char*)dst + dstOffset);
        mask += maskOffset;
    } while (--height != 0);
}

// The following (left) shifts cause the top 5 bits of the mask components to
// line up with the corresponding components in an SkPMColor.
// Note that the mask's RGB16 order may differ from the SkPMColor order.
#define SK_R16x5_R32x5_SHIFT (SK_R32_SHIFT - SK_R16_SHIFT - SK_R16_BITS + 5)
#define SK_G16x5_G32x5_SHIFT (SK_G32_SHIFT - SK_G16_SHIFT - SK_G16_BITS + 5)
#define SK_B16x5_B32x5_SHIFT (SK_B32_SHIFT - SK_B16_SHIFT - SK_B16_BITS + 5)

#if SK_R16x5_R32x5_SHIFT == 0
    #define SkPackedR16x5ToUnmaskedR32x5_SSE2(x) (x)
#elif SK_R16x5_R32x5_SHIFT > 0
    #define SkPackedR16x5ToUnmaskedR32x5_SSE2(x) (_mm_slli_epi32(x, SK_R16x5_R32x5_SHIFT))
#else
    #define SkPackedR16x5ToUnmaskedR32x5_SSE2(x) (_mm_srli_epi32(x, -SK_R16x5_R32x5_SHIFT))
#endif

#if SK_G16x5_G32x5_SHIFT == 0
    #define SkPackedG16x5ToUnmaskedG32x5_SSE2(x) (x)
#elif SK_G16x5_G32x5_SHIFT > 0
    #define SkPackedG16x5ToUnmaskedG32x5_SSE2(x) (_mm_slli_epi32(x, SK_G16x5_G32x5_SHIFT))
#else
    #define SkPackedG16x5ToUnmaskedG32x5_SSE2(x) (_mm_srli_epi32(x, -SK_G16x5_G32x5_SHIFT))
#endif

#if SK_B16x5_B32x5_SHIFT == 0
    #define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (x)
#elif SK_B16x5_B32x5_SHIFT > 0
    #define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (_mm_slli_epi32(x, SK_B16x5_B32x5_SHIFT))
#else
    #define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (_mm_srli_epi32(x, -SK_B16x5_B32x5_SHIFT))
#endif

static __m128i SkBlendLCD16_SSE2(__m128i &src, __m128i &dst,
                                 __m128i &mask, __m128i &srcA) {
    // In the following comments, the components of src, dst and mask are
    // abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
    // by an R, G, B, or A suffix. Components of one of the four pixels that
    // are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
    // example is the blue channel of the second destination pixel. Memory
    // layout is shown for an ARGB byte order in a color value.

    // src and srcA store 8-bit values interleaved with zeros.
    // src  = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
    // srcA = (srcA, 0, srcA, 0, srcA, 0, srcA, 0,
    //         srcA, 0, srcA, 0, srcA, 0, srcA, 0)
    // mask stores 16-bit values (compressed three channels) interleaved with zeros.
    // Lo and Hi denote the low and high bytes of a 16-bit value, respectively.
    // mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
    //         m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)

    // Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
    // r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0)
    __m128i r = _mm_and_si128(SkPackedR16x5ToUnmaskedR32x5_SSE2(mask),
                              _mm_set1_epi32(0x1F << SK_R32_SHIFT));

    // g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0)
    __m128i g = _mm_and_si128(SkPackedG16x5ToUnmaskedG32x5_SSE2(mask),
                              _mm_set1_epi32(0x1F << SK_G32_SHIFT));

    // b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B)
    __m128i b = _mm_and_si128(SkPackedB16x5ToUnmaskedB32x5_SSE2(mask),
                              _mm_set1_epi32(0x1F << SK_B32_SHIFT));

    // Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
    // Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
    // 8-bit position
    // mask = (0, m0R, m0G, m0B, 0, m1R, m1G, m1B,
    //         0, m2R, m2G, m2B, 0, m3R, m3G, m3B)
    mask = _mm_or_si128(_mm_or_si128(r, g), b);

    // Interleave R,G,B into the lower byte of word.
    // i.e. split the sixteen 8-bit values from mask into two sets of eight
    // 16-bit values, padded by zero.
    __m128i maskLo, maskHi;
    // maskLo = (0, 0, m0R, 0, m0G, 0, m0B, 0, 0, 0, m1R, 0, m1G, 0, m1B, 0)
    maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128());
    // maskHi = (0, 0, m2R, 0, m2G, 0, m2B, 0, 0, 0, m3R, 0, m3G, 0, m3B, 0)
    maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128());

    // Upscale from 0..31 to 0..32
    // (allows to replace division by left-shift further down)
    // Left-shift each component by 4 and add the result back to that component,
    // mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
    maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4));
    maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4));

    // Multiply each component of maskLo and maskHi by srcA
    maskLo = _mm_mullo_epi16(maskLo, srcA);
    maskHi = _mm_mullo_epi16(maskHi, srcA);

    // Left shift mask components by 8 (divide by 256)
    maskLo = _mm_srli_epi16(maskLo, 8);
    maskHi = _mm_srli_epi16(maskHi, 8);

    // Interleave R,G,B into the lower byte of the word
    // dstLo = (0, 0, d0R, 0, d0G, 0, d0B, 0, 0, 0, d1R, 0, d1G, 0, d1B, 0)
    __m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
    // dstLo = (0, 0, d2R, 0, d2G, 0, d2B, 0, 0, 0, d3R, 0, d3G, 0, d3B, 0)
    __m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128());

    // mask = (src - dst) * mask
    maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(src, dstLo));
    maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(src, dstHi));

    // mask = (src - dst) * mask >> 5
    maskLo = _mm_srai_epi16(maskLo, 5);
    maskHi = _mm_srai_epi16(maskHi, 5);

    // Add two pixels into result.
    // result = dst + ((src - dst) * mask >> 5)
    __m128i resultLo = _mm_add_epi16(dstLo, maskLo);
    __m128i resultHi = _mm_add_epi16(dstHi, maskHi);

    // Pack into 4 32bit dst pixels.
    // resultLo and resultHi contain eight 16-bit components (two pixels) each.
    // Merge into one SSE regsiter with sixteen 8-bit values (four pixels),
    // clamping to 255 if necessary.
    return _mm_packus_epi16(resultLo, resultHi);
}

static __m128i SkBlendLCD16Opaque_SSE2(__m128i &src, __m128i &dst,
                                       __m128i &mask) {
    // In the following comments, the components of src, dst and mask are
    // abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
    // by an R, G, B, or A suffix. Components of one of the four pixels that
    // are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
    // example is the blue channel of the second destination pixel. Memory
    // layout is shown for an ARGB byte order in a color value.

    // src and srcA store 8-bit values interleaved with zeros.
    // src  = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
    // mask stores 16-bit values (shown as high and low bytes) interleaved with
    // zeros
    // mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
    //         m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)

    // Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
    // r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0)
    __m128i r = _mm_and_si128(SkPackedR16x5ToUnmaskedR32x5_SSE2(mask),
                              _mm_set1_epi32(0x1F << SK_R32_SHIFT));

    // g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0)
    __m128i g = _mm_and_si128(SkPackedG16x5ToUnmaskedG32x5_SSE2(mask),
                              _mm_set1_epi32(0x1F << SK_G32_SHIFT));

    // b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B)
    __m128i b = _mm_and_si128(SkPackedB16x5ToUnmaskedB32x5_SSE2(mask),
                              _mm_set1_epi32(0x1F << SK_B32_SHIFT));

    // Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
    // Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
    // 8-bit position
    // mask = (0, m0R, m0G, m0B, 0, m1R, m1G, m1B,
    //         0, m2R, m2G, m2B, 0, m3R, m3G, m3B)
    mask = _mm_or_si128(_mm_or_si128(r, g), b);

    // Interleave R,G,B into the lower byte of word.
    // i.e. split the sixteen 8-bit values from mask into two sets of eight
    // 16-bit values, padded by zero.
    __m128i maskLo, maskHi;
    // maskLo = (0, 0, m0R, 0, m0G, 0, m0B, 0, 0, 0, m1R, 0, m1G, 0, m1B, 0)
    maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128());
    // maskHi = (0, 0, m2R, 0, m2G, 0, m2B, 0, 0, 0, m3R, 0, m3G, 0, m3B, 0)
    maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128());

    // Upscale from 0..31 to 0..32
    // (allows to replace division by left-shift further down)
    // Left-shift each component by 4 and add the result back to that component,
    // mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
    maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4));
    maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4));

    // Interleave R,G,B into the lower byte of the word
    // dstLo = (0, 0, d0R, 0, d0G, 0, d0B, 0, 0, 0, d1R, 0, d1G, 0, d1B, 0)
    __m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
    // dstLo = (0, 0, d2R, 0, d2G, 0, d2B, 0, 0, 0, d3R, 0, d3G, 0, d3B, 0)
    __m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128());

    // mask = (src - dst) * mask
    maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(src, dstLo));
    maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(src, dstHi));

    // mask = (src - dst) * mask >> 5
    maskLo = _mm_srai_epi16(maskLo, 5);
    maskHi = _mm_srai_epi16(maskHi, 5);

    // Add two pixels into result.
    // result = dst + ((src - dst) * mask >> 5)
    __m128i resultLo = _mm_add_epi16(dstLo, maskLo);
    __m128i resultHi = _mm_add_epi16(dstHi, maskHi);

    // Pack into 4 32bit dst pixels and force opaque.
    // resultLo and resultHi contain eight 16-bit components (two pixels) each.
    // Merge into one SSE regsiter with sixteen 8-bit values (four pixels),
    // clamping to 255 if necessary. Set alpha components to 0xFF.
    return _mm_or_si128(_mm_packus_epi16(resultLo, resultHi),
                        _mm_set1_epi32(SK_A32_MASK << SK_A32_SHIFT));
}

void SkBlitLCD16Row_SSE2(SkPMColor dst[], const uint16_t mask[],
                         SkColor src, int width, SkPMColor) {
    if (width <= 0) {
        return;
    }

    int srcA = SkColorGetA(src);
    int srcR = SkColorGetR(src);
    int srcG = SkColorGetG(src);
    int srcB = SkColorGetB(src);

    srcA = SkAlpha255To256(srcA);

    if (width >= 4) {
        SkASSERT(((size_t)dst & 0x03) == 0);
        while (((size_t)dst & 0x0F) != 0) {
            *dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *mask);
            mask++;
            dst++;
            width--;
        }

        __m128i *d = reinterpret_cast<__m128i*>(dst);
        // Set alpha to 0xFF and replicate source four times in SSE register.
        __m128i src_sse = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
        // Interleave with zeros to get two sets of four 16-bit values.
        src_sse = _mm_unpacklo_epi8(src_sse, _mm_setzero_si128());
        // Set srcA_sse to contain eight copies of srcA, padded with zero.
        // src_sse=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
        __m128i srcA_sse = _mm_set1_epi16(srcA);
        while (width >= 4) {
            // Load four destination pixels into dst_sse.
            __m128i dst_sse = _mm_load_si128(d);
            // Load four 16-bit masks into lower half of mask_sse.
            __m128i mask_sse = _mm_loadl_epi64(
                                   reinterpret_cast<const __m128i*>(mask));

            // Check whether masks are equal to 0 and get the highest bit
            // of each byte of result, if masks are all zero, we will get
            // pack_cmp to 0xFFFF
            int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_sse,
                                             _mm_setzero_si128()));

            // if mask pixels are not all zero, we will blend the dst pixels
            if (pack_cmp != 0xFFFF) {
                // Unpack 4 16bit mask pixels to
                // mask_sse = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
                //             m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
                mask_sse = _mm_unpacklo_epi16(mask_sse,
                                              _mm_setzero_si128());

                // Process 4 32bit dst pixels
                __m128i result = SkBlendLCD16_SSE2(src_sse, dst_sse,
                                                   mask_sse, srcA_sse);
                _mm_store_si128(d, result);
            }

            d++;
            mask += 4;
            width -= 4;
        }

        dst = reinterpret_cast<SkPMColor*>(d);
    }

    while (width > 0) {
        *dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *mask);
        mask++;
        dst++;
        width--;
    }
}

void SkBlitLCD16OpaqueRow_SSE2(SkPMColor dst[], const uint16_t mask[],
                               SkColor src, int width, SkPMColor opaqueDst) {
    if (width <= 0) {
        return;
    }

    int srcR = SkColorGetR(src);
    int srcG = SkColorGetG(src);
    int srcB = SkColorGetB(src);

    if (width >= 4) {
        SkASSERT(((size_t)dst & 0x03) == 0);
        while (((size_t)dst & 0x0F) != 0) {
            *dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
            mask++;
            dst++;
            width--;
        }

        __m128i *d = reinterpret_cast<__m128i*>(dst);
        // Set alpha to 0xFF and replicate source four times in SSE register.
        __m128i src_sse = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
        // Set srcA_sse to contain eight copies of srcA, padded with zero.
        // src_sse=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
        src_sse = _mm_unpacklo_epi8(src_sse, _mm_setzero_si128());
        while (width >= 4) {
            // Load four destination pixels into dst_sse.
            __m128i dst_sse = _mm_load_si128(d);
            // Load four 16-bit masks into lower half of mask_sse.
            __m128i mask_sse = _mm_loadl_epi64(
                                   reinterpret_cast<const __m128i*>(mask));

            // Check whether masks are equal to 0 and get the highest bit
            // of each byte of result, if masks are all zero, we will get
            // pack_cmp to 0xFFFF
            int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_sse,
                                             _mm_setzero_si128()));

            // if mask pixels are not all zero, we will blend the dst pixels
            if (pack_cmp != 0xFFFF) {
                // Unpack 4 16bit mask pixels to
                // mask_sse = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
                //             m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
                mask_sse = _mm_unpacklo_epi16(mask_sse,
                                              _mm_setzero_si128());

                // Process 4 32bit dst pixels
                __m128i result = SkBlendLCD16Opaque_SSE2(src_sse, dst_sse,
                                                         mask_sse);
                _mm_store_si128(d, result);
            }

            d++;
            mask += 4;
            width -= 4;
        }

        dst = reinterpret_cast<SkPMColor*>(d);
    }

    while (width > 0) {
        *dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
        mask++;
        dst++;
        width--;
    }
}

/* SSE2 version of S32_D565_Opaque()
 * portable version is in core/SkBlitRow_D16.cpp
 */
void S32_D565_Opaque_SSE2(uint16_t* SK_RESTRICT dst,
                          const SkPMColor* SK_RESTRICT src, int count,
                          U8CPU alpha, int /*x*/, int /*y*/) {
    SkASSERT(255 == alpha);

    if (count <= 0) {
        return;
    }

    if (count >= 8) {
        while (((size_t)dst & 0x0F) != 0) {
            SkPMColor c = *src++;
            SkPMColorAssert(c);

            *dst++ = SkPixel32ToPixel16_ToU16(c);
            count--;
        }

        const __m128i* s = reinterpret_cast<const __m128i*>(src);
        __m128i* d = reinterpret_cast<__m128i*>(dst);
        __m128i r16_mask = _mm_set1_epi32(SK_R16_MASK);
        __m128i g16_mask = _mm_set1_epi32(SK_G16_MASK);
        __m128i b16_mask = _mm_set1_epi32(SK_B16_MASK);

        while (count >= 8) {
            // Load 8 pixels of src.
            __m128i src_pixel1 = _mm_loadu_si128(s++);
            __m128i src_pixel2 = _mm_loadu_si128(s++);

            // Calculate result r.
            __m128i r1 = _mm_srli_epi32(src_pixel1,
                                        SK_R32_SHIFT + (8 - SK_R16_BITS));
            r1 = _mm_and_si128(r1, r16_mask);
            __m128i r2 = _mm_srli_epi32(src_pixel2,
                                        SK_R32_SHIFT + (8 - SK_R16_BITS));
            r2 = _mm_and_si128(r2, r16_mask);
            __m128i r = _mm_packs_epi32(r1, r2);

            // Calculate result g.
            __m128i g1 = _mm_srli_epi32(src_pixel1,
                                        SK_G32_SHIFT + (8 - SK_G16_BITS));
            g1 = _mm_and_si128(g1, g16_mask);
            __m128i g2 = _mm_srli_epi32(src_pixel2,
                                        SK_G32_SHIFT + (8 - SK_G16_BITS));
            g2 = _mm_and_si128(g2, g16_mask);
            __m128i g = _mm_packs_epi32(g1, g2);

            // Calculate result b.
            __m128i b1 = _mm_srli_epi32(src_pixel1,
                                        SK_B32_SHIFT + (8 - SK_B16_BITS));
            b1 = _mm_and_si128(b1, b16_mask);
            __m128i b2 = _mm_srli_epi32(src_pixel2,
                                        SK_B32_SHIFT + (8 - SK_B16_BITS));
            b2 = _mm_and_si128(b2, b16_mask);
            __m128i b = _mm_packs_epi32(b1, b2);

            // Store 8 16-bit colors in dst.
            __m128i d_pixel = SkPackRGB16_SSE2(r, g, b);
            _mm_store_si128(d++, d_pixel);
            count -= 8;
        }
        src = reinterpret_cast<const SkPMColor*>(s);
        dst = reinterpret_cast<uint16_t*>(d);
    }

    if (count > 0) {
        do {
            SkPMColor c = *src++;
            SkPMColorAssert(c);
            *dst++ = SkPixel32ToPixel16_ToU16(c);
        } while (--count != 0);
    }
}

/* SSE2 version of S32A_D565_Opaque()
 * portable version is in core/SkBlitRow_D16.cpp
 */
void S32A_D565_Opaque_SSE2(uint16_t* SK_RESTRICT dst,
                           const SkPMColor* SK_RESTRICT src,
                           int count, U8CPU alpha, int /*x*/, int /*y*/) {
    SkASSERT(255 == alpha);

    if (count <= 0) {
        return;
    }

    if (count >= 8) {
        // Make dst 16 bytes alignment
        while (((size_t)dst & 0x0F) != 0) {
            SkPMColor c = *src++;
            if (c) {
              *dst = SkSrcOver32To16(c, *dst);
            }
            dst += 1;
            count--;
        }

        const __m128i* s = reinterpret_cast<const __m128i*>(src);
        __m128i* d = reinterpret_cast<__m128i*>(dst);
        __m128i var255 = _mm_set1_epi16(255);
        __m128i r16_mask = _mm_set1_epi16(SK_R16_MASK);
        __m128i g16_mask = _mm_set1_epi16(SK_G16_MASK);
        __m128i b16_mask = _mm_set1_epi16(SK_B16_MASK);

        while (count >= 8) {
            // Load 8 pixels of src.
            __m128i src_pixel1 = _mm_loadu_si128(s++);
            __m128i src_pixel2 = _mm_loadu_si128(s++);

            // Check whether src pixels are equal to 0 and get the highest bit
            // of each byte of result, if src pixels are all zero, src_cmp1 and
            // src_cmp2 will be 0xFFFF.
            int src_cmp1 = _mm_movemask_epi8(_mm_cmpeq_epi16(src_pixel1,
                                             _mm_setzero_si128()));
            int src_cmp2 = _mm_movemask_epi8(_mm_cmpeq_epi16(src_pixel2,
                                             _mm_setzero_si128()));
            if (src_cmp1 == 0xFFFF && src_cmp2 == 0xFFFF) {
                d++;
                count -= 8;
                continue;
            }

            // Load 8 pixels of dst.
            __m128i dst_pixel = _mm_load_si128(d);

            // Extract A from src.
            __m128i sa1 = _mm_slli_epi32(src_pixel1, (24 - SK_A32_SHIFT));
            sa1 = _mm_srli_epi32(sa1, 24);
            __m128i sa2 = _mm_slli_epi32(src_pixel2, (24 - SK_A32_SHIFT));
            sa2 = _mm_srli_epi32(sa2, 24);
            __m128i sa = _mm_packs_epi32(sa1, sa2);

            // Extract R from src.
            __m128i sr1 = _mm_slli_epi32(src_pixel1, (24 - SK_R32_SHIFT));
            sr1 = _mm_srli_epi32(sr1, 24);
            __m128i sr2 = _mm_slli_epi32(src_pixel2, (24 - SK_R32_SHIFT));
            sr2 = _mm_srli_epi32(sr2, 24);
            __m128i sr = _mm_packs_epi32(sr1, sr2);

            // Extract G from src.
            __m128i sg1 = _mm_slli_epi32(src_pixel1, (24 - SK_G32_SHIFT));
            sg1 = _mm_srli_epi32(sg1, 24);
            __m128i sg2 = _mm_slli_epi32(src_pixel2, (24 - SK_G32_SHIFT));
            sg2 = _mm_srli_epi32(sg2, 24);
            __m128i sg = _mm_packs_epi32(sg1, sg2);

            // Extract B from src.
            __m128i sb1 = _mm_slli_epi32(src_pixel1, (24 - SK_B32_SHIFT));
            sb1 = _mm_srli_epi32(sb1, 24);
            __m128i sb2 = _mm_slli_epi32(src_pixel2, (24 - SK_B32_SHIFT));
            sb2 = _mm_srli_epi32(sb2, 24);
            __m128i sb = _mm_packs_epi32(sb1, sb2);

            // Extract R G B from dst.
            __m128i dr = _mm_srli_epi16(dst_pixel, SK_R16_SHIFT);
            dr = _mm_and_si128(dr, r16_mask);
            __m128i dg = _mm_srli_epi16(dst_pixel, SK_G16_SHIFT);
            dg = _mm_and_si128(dg, g16_mask);
            __m128i db = _mm_srli_epi16(dst_pixel, SK_B16_SHIFT);
            db = _mm_and_si128(db, b16_mask);

            __m128i isa = _mm_sub_epi16(var255, sa); // 255 -sa

            // Calculate R G B of result.
            // Original algorithm is in SkSrcOver32To16().
            dr = _mm_add_epi16(sr, SkMul16ShiftRound_SSE2(dr, isa, SK_R16_BITS));
            dr = _mm_srli_epi16(dr, 8 - SK_R16_BITS);
            dg = _mm_add_epi16(sg, SkMul16ShiftRound_SSE2(dg, isa, SK_G16_BITS));
            dg = _mm_srli_epi16(dg, 8 - SK_G16_BITS);
            db = _mm_add_epi16(sb, SkMul16ShiftRound_SSE2(db, isa, SK_B16_BITS));
            db = _mm_srli_epi16(db, 8 - SK_B16_BITS);

            // Pack R G B into 16-bit color.
            __m128i d_pixel = SkPackRGB16_SSE2(dr, dg, db);

            // Store 8 16-bit colors in dst.
            _mm_store_si128(d++, d_pixel);
            count -= 8;
        }

        src = reinterpret_cast<const SkPMColor*>(s);
        dst = reinterpret_cast<uint16_t*>(d);
    }

    if (count > 0) {
        do {
            SkPMColor c = *src++;
            SkPMColorAssert(c);
            if (c) {
                *dst = SkSrcOver32To16(c, *dst);
            }
            dst += 1;
        } while (--count != 0);
    }
}

void S32_D565_Opaque_Dither_SSE2(uint16_t* SK_RESTRICT dst,
                                 const SkPMColor* SK_RESTRICT src,
                                 int count, U8CPU alpha, int x, int y) {
    SkASSERT(255 == alpha);

    if (count <= 0) {
        return;
    }

    if (count >= 8) {
        while (((size_t)dst & 0x0F) != 0) {
            DITHER_565_SCAN(y);
            SkPMColor c = *src++;
            SkPMColorAssert(c);

            unsigned dither = DITHER_VALUE(x);
            *dst++ = SkDitherRGB32To565(c, dither);
            DITHER_INC_X(x);
            count--;
        }

        unsigned short dither_value[8];
        __m128i dither;
#ifdef ENABLE_DITHER_MATRIX_4X4
        const uint8_t* dither_scan = gDitherMatrix_3Bit_4X4[(y) & 3];
        dither_value[0] = dither_value[4] = dither_scan[(x) & 3];
        dither_value[1] = dither_value[5] = dither_scan[(x + 1) & 3];
        dither_value[2] = dither_value[6] = dither_scan[(x + 2) & 3];
        dither_value[3] = dither_value[7] = dither_scan[(x + 3) & 3];
#else
        const uint16_t dither_scan = gDitherMatrix_3Bit_16[(y) & 3];
        dither_value[0] = dither_value[4] = (dither_scan
                                             >> (((x) & 3) << 2)) & 0xF;
        dither_value[1] = dither_value[5] = (dither_scan
                                             >> (((x + 1) & 3) << 2)) & 0xF;
        dither_value[2] = dither_value[6] = (dither_scan
                                             >> (((x + 2) & 3) << 2)) & 0xF;
        dither_value[3] = dither_value[7] = (dither_scan
                                             >> (((x + 3) & 3) << 2)) & 0xF;
#endif
        dither = _mm_loadu_si128((__m128i*) dither_value);

        const __m128i* s = reinterpret_cast<const __m128i*>(src);
        __m128i* d = reinterpret_cast<__m128i*>(dst);

        while (count >= 8) {
            // Load 8 pixels of src.
            __m128i src_pixel1 = _mm_loadu_si128(s++);
            __m128i src_pixel2 = _mm_loadu_si128(s++);

            // Extract R from src.
            __m128i sr1 = _mm_slli_epi32(src_pixel1, (24 - SK_R32_SHIFT));
            sr1 = _mm_srli_epi32(sr1, 24);
            __m128i sr2 = _mm_slli_epi32(src_pixel2, (24 - SK_R32_SHIFT));
            sr2 = _mm_srli_epi32(sr2, 24);
            __m128i sr = _mm_packs_epi32(sr1, sr2);

            // SkDITHER_R32To565(sr, dither)
            __m128i sr_offset = _mm_srli_epi16(sr, 5);
            sr = _mm_add_epi16(sr, dither);
            sr = _mm_sub_epi16(sr, sr_offset);
            sr = _mm_srli_epi16(sr, SK_R32_BITS - SK_R16_BITS);

            // Extract G from src.
            __m128i sg1 = _mm_slli_epi32(src_pixel1, (24 - SK_G32_SHIFT));
            sg1 = _mm_srli_epi32(sg1, 24);
            __m128i sg2 = _mm_slli_epi32(src_pixel2, (24 - SK_G32_SHIFT));
            sg2 = _mm_srli_epi32(sg2, 24);
            __m128i sg = _mm_packs_epi32(sg1, sg2);

            // SkDITHER_R32To565(sg, dither)
            __m128i sg_offset = _mm_srli_epi16(sg, 6);
            sg = _mm_add_epi16(sg, _mm_srli_epi16(dither, 1));
            sg = _mm_sub_epi16(sg, sg_offset);
            sg = _mm_srli_epi16(sg, SK_G32_BITS - SK_G16_BITS);

            // Extract B from src.
            __m128i sb1 = _mm_slli_epi32(src_pixel1, (24 - SK_B32_SHIFT));
            sb1 = _mm_srli_epi32(sb1, 24);
            __m128i sb2 = _mm_slli_epi32(src_pixel2, (24 - SK_B32_SHIFT));
            sb2 = _mm_srli_epi32(sb2, 24);
            __m128i sb = _mm_packs_epi32(sb1, sb2);

            // SkDITHER_R32To565(sb, dither)
            __m128i sb_offset = _mm_srli_epi16(sb, 5);
            sb = _mm_add_epi16(sb, dither);
            sb = _mm_sub_epi16(sb, sb_offset);
            sb = _mm_srli_epi16(sb, SK_B32_BITS - SK_B16_BITS);

            // Pack and store 16-bit dst pixel.
            __m128i d_pixel = SkPackRGB16_SSE2(sr, sg, sb);
            _mm_store_si128(d++, d_pixel);

            count -= 8;
            x += 8;
        }

        src = reinterpret_cast<const SkPMColor*>(s);
        dst = reinterpret_cast<uint16_t*>(d);
    }

    if (count > 0) {
        DITHER_565_SCAN(y);
        do {
            SkPMColor c = *src++;
            SkPMColorAssert(c);

            unsigned dither = DITHER_VALUE(x);
            *dst++ = SkDitherRGB32To565(c, dither);
            DITHER_INC_X(x);
        } while (--count != 0);
    }
}

/* SSE2 version of S32A_D565_Opaque_Dither()
 * portable version is in core/SkBlitRow_D16.cpp
 */
void S32A_D565_Opaque_Dither_SSE2(uint16_t* SK_RESTRICT dst,
                                  const SkPMColor* SK_RESTRICT src,
                                  int count, U8CPU alpha, int x, int y) {
    SkASSERT(255 == alpha);

    if (count <= 0) {
        return;
    }

    if (count >= 8) {
        while (((size_t)dst & 0x0F) != 0) {
            DITHER_565_SCAN(y);
            SkPMColor c = *src++;
            SkPMColorAssert(c);
            if (c) {
                unsigned a = SkGetPackedA32(c);

                int d = SkAlphaMul(DITHER_VALUE(x), SkAlpha255To256(a));

                unsigned sr = SkGetPackedR32(c);
                unsigned sg = SkGetPackedG32(c);
                unsigned sb = SkGetPackedB32(c);
                sr = SkDITHER_R32_FOR_565(sr, d);
                sg = SkDITHER_G32_FOR_565(sg, d);
                sb = SkDITHER_B32_FOR_565(sb, d);

                uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2);
                uint32_t dst_expanded = SkExpand_rgb_16(*dst);
                dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3);
                // now src and dst expanded are in g:11 r:10 x:1 b:10
                *dst = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5);
            }
            dst += 1;
            DITHER_INC_X(x);
            count--;
        }

        unsigned short dither_value[8];
        __m128i dither, dither_cur;
#ifdef ENABLE_DITHER_MATRIX_4X4
        const uint8_t* dither_scan = gDitherMatrix_3Bit_4X4[(y) & 3];
        dither_value[0] = dither_value[4] = dither_scan[(x) & 3];
        dither_value[1] = dither_value[5] = dither_scan[(x + 1) & 3];
        dither_value[2] = dither_value[6] = dither_scan[(x + 2) & 3];
        dither_value[3] = dither_value[7] = dither_scan[(x + 3) & 3];
#else
        const uint16_t dither_scan = gDitherMatrix_3Bit_16[(y) & 3];
        dither_value[0] = dither_value[4] = (dither_scan
                                             >> (((x) & 3) << 2)) & 0xF;
        dither_value[1] = dither_value[5] = (dither_scan
                                             >> (((x + 1) & 3) << 2)) & 0xF;
        dither_value[2] = dither_value[6] = (dither_scan
                                             >> (((x + 2) & 3) << 2)) & 0xF;
        dither_value[3] = dither_value[7] = (dither_scan
                                             >> (((x + 3) & 3) << 2)) & 0xF;
#endif
        dither = _mm_loadu_si128((__m128i*) dither_value);

        const __m128i* s = reinterpret_cast<const __m128i*>(src);
        __m128i* d = reinterpret_cast<__m128i*>(dst);
        __m128i var256 = _mm_set1_epi16(256);
        __m128i r16_mask = _mm_set1_epi16(SK_R16_MASK);
        __m128i g16_mask = _mm_set1_epi16(SK_G16_MASK);
        __m128i b16_mask = _mm_set1_epi16(SK_B16_MASK);

        while (count >= 8) {
            // Load 8 pixels of src and dst.
            __m128i src_pixel1 = _mm_loadu_si128(s++);
            __m128i src_pixel2 = _mm_loadu_si128(s++);
            __m128i dst_pixel = _mm_load_si128(d);

            // Extract A from src.
            __m128i sa1 = _mm_slli_epi32(src_pixel1, (24 - SK_A32_SHIFT));
            sa1 = _mm_srli_epi32(sa1, 24);
            __m128i sa2 = _mm_slli_epi32(src_pixel2, (24 - SK_A32_SHIFT));
            sa2 = _mm_srli_epi32(sa2, 24);
            __m128i sa = _mm_packs_epi32(sa1, sa2);

            // Calculate current dither value.
            dither_cur = _mm_mullo_epi16(dither,
                                         _mm_add_epi16(sa, _mm_set1_epi16(1)));
            dither_cur = _mm_srli_epi16(dither_cur, 8);

            // Extract R from src.
            __m128i sr1 = _mm_slli_epi32(src_pixel1, (24 - SK_R32_SHIFT));
            sr1 = _mm_srli_epi32(sr1, 24);
            __m128i sr2 = _mm_slli_epi32(src_pixel2, (24 - SK_R32_SHIFT));
            sr2 = _mm_srli_epi32(sr2, 24);
            __m128i sr = _mm_packs_epi32(sr1, sr2);

            // SkDITHER_R32_FOR_565(sr, d)
            __m128i sr_offset = _mm_srli_epi16(sr, 5);
            sr = _mm_add_epi16(sr, dither_cur);
            sr = _mm_sub_epi16(sr, sr_offset);

            // Expand sr.
            sr = _mm_slli_epi16(sr, 2);

            // Extract G from src.
            __m128i sg1 = _mm_slli_epi32(src_pixel1, (24 - SK_G32_SHIFT));
            sg1 = _mm_srli_epi32(sg1, 24);
            __m128i sg2 = _mm_slli_epi32(src_pixel2, (24 - SK_G32_SHIFT));
            sg2 = _mm_srli_epi32(sg2, 24);
            __m128i sg = _mm_packs_epi32(sg1, sg2);

            // sg = SkDITHER_G32_FOR_565(sg, d).
            __m128i sg_offset = _mm_srli_epi16(sg, 6);
            sg = _mm_add_epi16(sg, _mm_srli_epi16(dither_cur, 1));
            sg = _mm_sub_epi16(sg, sg_offset);

            // Expand sg.
            sg = _mm_slli_epi16(sg, 3);

            // Extract B from src.
            __m128i sb1 = _mm_slli_epi32(src_pixel1, (24 - SK_B32_SHIFT));
            sb1 = _mm_srli_epi32(sb1, 24);
            __m128i sb2 = _mm_slli_epi32(src_pixel2, (24 - SK_B32_SHIFT));
            sb2 = _mm_srli_epi32(sb2, 24);
            __m128i sb = _mm_packs_epi32(sb1, sb2);

            // sb = SkDITHER_B32_FOR_565(sb, d).
            __m128i sb_offset = _mm_srli_epi16(sb, 5);
            sb = _mm_add_epi16(sb, dither_cur);
            sb = _mm_sub_epi16(sb, sb_offset);

            // Expand sb.
            sb = _mm_slli_epi16(sb, 2);

            // Extract R G B from dst.
            __m128i dr = _mm_srli_epi16(dst_pixel, SK_R16_SHIFT);
            dr = _mm_and_si128(dr, r16_mask);
            __m128i dg = _mm_srli_epi16(dst_pixel, SK_G16_SHIFT);
            dg = _mm_and_si128(dg, g16_mask);
            __m128i db = _mm_srli_epi16(dst_pixel, SK_B16_SHIFT);
            db = _mm_and_si128(db, b16_mask);

            // SkAlpha255To256(255 - a) >> 3
            __m128i isa = _mm_sub_epi16(var256, sa);
            isa = _mm_srli_epi16(isa, 3);

            dr = _mm_mullo_epi16(dr, isa);
            dr = _mm_add_epi16(dr, sr);
            dr = _mm_srli_epi16(dr, 5);

            dg = _mm_mullo_epi16(dg, isa);
            dg = _mm_add_epi16(dg, sg);
            dg = _mm_srli_epi16(dg, 5);

            db = _mm_mullo_epi16(db, isa);
            db = _mm_add_epi16(db, sb);
            db = _mm_srli_epi16(db, 5);

            // Package and store dst pixel.
            __m128i d_pixel = SkPackRGB16_SSE2(dr, dg, db);
            _mm_store_si128(d++, d_pixel);

            count -= 8;
            x += 8;
        }

        src = reinterpret_cast<const SkPMColor*>(s);
        dst = reinterpret_cast<uint16_t*>(d);
    }

    if (count > 0) {
        DITHER_565_SCAN(y);
        do {
            SkPMColor c = *src++;
            SkPMColorAssert(c);
            if (c) {
                unsigned a = SkGetPackedA32(c);

                int d = SkAlphaMul(DITHER_VALUE(x), SkAlpha255To256(a));

                unsigned sr = SkGetPackedR32(c);
                unsigned sg = SkGetPackedG32(c);
                unsigned sb = SkGetPackedB32(c);
                sr = SkDITHER_R32_FOR_565(sr, d);
                sg = SkDITHER_G32_FOR_565(sg, d);
                sb = SkDITHER_B32_FOR_565(sb, d);

                uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2);
                uint32_t dst_expanded = SkExpand_rgb_16(*dst);
                dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3);
                // now src and dst expanded are in g:11 r:10 x:1 b:10
                *dst = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5);
            }
            dst += 1;
            DITHER_INC_X(x);
        } while (--count != 0);
    }
}