aboutsummaryrefslogtreecommitdiff
path: root/util/cache.cc
blob: 8b197bc02a98e639dc72a58bd7de59603ab77cbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

#include "leveldb/cache.h"
#include "port/port.h"
#include "util/hash.h"
#include "util/mutexlock.h"

namespace leveldb {

Cache::~Cache() {
}

namespace {

// LRU cache implementation

// An entry is a variable length heap-allocated structure.  Entries
// are kept in a circular doubly linked list ordered by access time.
struct LRUHandle {
  void* value;
  void (*deleter)(const Slice&, void* value);
  LRUHandle* next_hash;
  LRUHandle* next;
  LRUHandle* prev;
  size_t charge;      // TODO(opt): Only allow uint32_t?
  size_t key_length;
  uint32_t refs;
  uint32_t hash;      // Hash of key(); used for fast sharding and comparisons
  char key_data[1];   // Beginning of key

  Slice key() const {
    // For cheaper lookups, we allow a temporary Handle object
    // to store a pointer to a key in "value".
    if (next == this) {
      return *(reinterpret_cast<Slice*>(value));
    } else {
      return Slice(key_data, key_length);
    }
  }
};

// We provide our own simple hash table since it removes a whole bunch
// of porting hacks and is also faster than some of the built-in hash
// table implementations in some of the compiler/runtime combinations
// we have tested.  E.g., readrandom speeds up by ~5% over the g++
// 4.4.3's builtin hashtable.
class HandleTable {
 public:
  HandleTable() : length_(0), elems_(0), list_(NULL) { Resize(); }
  ~HandleTable() { delete[] list_; }

  LRUHandle* Lookup(const Slice& key, uint32_t hash) {
    return *FindPointer(key, hash);
  }

  LRUHandle* Insert(LRUHandle* h) {
    LRUHandle** ptr = FindPointer(h->key(), h->hash);
    LRUHandle* old = *ptr;
    h->next_hash = (old == NULL ? NULL : old->next_hash);
    *ptr = h;
    if (old == NULL) {
      ++elems_;
      if (elems_ > length_) {
        // Since each cache entry is fairly large, we aim for a small
        // average linked list length (<= 1).
        Resize();
      }
    }
    return old;
  }

  LRUHandle* Remove(const Slice& key, uint32_t hash) {
    LRUHandle** ptr = FindPointer(key, hash);
    LRUHandle* result = *ptr;
    if (result != NULL) {
      *ptr = result->next_hash;
      --elems_;
    }
    return result;
  }

 private:
  // The table consists of an array of buckets where each bucket is
  // a linked list of cache entries that hash into the bucket.
  uint32_t length_;
  uint32_t elems_;
  LRUHandle** list_;

  // Return a pointer to slot that points to a cache entry that
  // matches key/hash.  If there is no such cache entry, return a
  // pointer to the trailing slot in the corresponding linked list.
  LRUHandle** FindPointer(const Slice& key, uint32_t hash) {
    LRUHandle** ptr = &list_[hash & (length_ - 1)];
    while (*ptr != NULL &&
           ((*ptr)->hash != hash || key != (*ptr)->key())) {
      ptr = &(*ptr)->next_hash;
    }
    return ptr;
  }

  void Resize() {
    uint32_t new_length = 4;
    while (new_length < elems_) {
      new_length *= 2;
    }
    LRUHandle** new_list = new LRUHandle*[new_length];
    memset(new_list, 0, sizeof(new_list[0]) * new_length);
    uint32_t count = 0;
    for (uint32_t i = 0; i < length_; i++) {
      LRUHandle* h = list_[i];
      while (h != NULL) {
        LRUHandle* next = h->next_hash;
        uint32_t hash = h->hash;
        LRUHandle** ptr = &new_list[hash & (new_length - 1)];
        h->next_hash = *ptr;
        *ptr = h;
        h = next;
        count++;
      }
    }
    assert(elems_ == count);
    delete[] list_;
    list_ = new_list;
    length_ = new_length;
  }
};

// A single shard of sharded cache.
class LRUCache {
 public:
  LRUCache();
  ~LRUCache();

  // Separate from constructor so caller can easily make an array of LRUCache
  void SetCapacity(size_t capacity) { capacity_ = capacity; }

  // Like Cache methods, but with an extra "hash" parameter.
  Cache::Handle* Insert(const Slice& key, uint32_t hash,
                        void* value, size_t charge,
                        void (*deleter)(const Slice& key, void* value));
  Cache::Handle* Lookup(const Slice& key, uint32_t hash);
  void Release(Cache::Handle* handle);
  void Erase(const Slice& key, uint32_t hash);

 private:
  void LRU_Remove(LRUHandle* e);
  void LRU_Append(LRUHandle* e);
  void Unref(LRUHandle* e);

  // Initialized before use.
  size_t capacity_;

  // mutex_ protects the following state.
  port::Mutex mutex_;
  size_t usage_;

  // Dummy head of LRU list.
  // lru.prev is newest entry, lru.next is oldest entry.
  LRUHandle lru_;

  HandleTable table_;
};

LRUCache::LRUCache()
    : usage_(0) {
  // Make empty circular linked list
  lru_.next = &lru_;
  lru_.prev = &lru_;
}

LRUCache::~LRUCache() {
  for (LRUHandle* e = lru_.next; e != &lru_; ) {
    LRUHandle* next = e->next;
    assert(e->refs == 1);  // Error if caller has an unreleased handle
    Unref(e);
    e = next;
  }
}

void LRUCache::Unref(LRUHandle* e) {
  assert(e->refs > 0);
  e->refs--;
  if (e->refs <= 0) {
    usage_ -= e->charge;
    (*e->deleter)(e->key(), e->value);
    free(e);
  }
}

void LRUCache::LRU_Remove(LRUHandle* e) {
  e->next->prev = e->prev;
  e->prev->next = e->next;
}

void LRUCache::LRU_Append(LRUHandle* e) {
  // Make "e" newest entry by inserting just before lru_
  e->next = &lru_;
  e->prev = lru_.prev;
  e->prev->next = e;
  e->next->prev = e;
}

Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) {
  MutexLock l(&mutex_);
  LRUHandle* e = table_.Lookup(key, hash);
  if (e != NULL) {
    e->refs++;
    LRU_Remove(e);
    LRU_Append(e);
  }
  return reinterpret_cast<Cache::Handle*>(e);
}

void LRUCache::Release(Cache::Handle* handle) {
  MutexLock l(&mutex_);
  Unref(reinterpret_cast<LRUHandle*>(handle));
}

Cache::Handle* LRUCache::Insert(
    const Slice& key, uint32_t hash, void* value, size_t charge,
    void (*deleter)(const Slice& key, void* value)) {
  MutexLock l(&mutex_);

  LRUHandle* e = reinterpret_cast<LRUHandle*>(
      malloc(sizeof(LRUHandle)-1 + key.size()));
  e->value = value;
  e->deleter = deleter;
  e->charge = charge;
  e->key_length = key.size();
  e->hash = hash;
  e->refs = 2;  // One from LRUCache, one for the returned handle
  memcpy(e->key_data, key.data(), key.size());
  LRU_Append(e);
  usage_ += charge;

  LRUHandle* old = table_.Insert(e);
  if (old != NULL) {
    LRU_Remove(old);
    Unref(old);
  }

  while (usage_ > capacity_ && lru_.next != &lru_) {
    LRUHandle* old = lru_.next;
    LRU_Remove(old);
    table_.Remove(old->key(), old->hash);
    Unref(old);
  }

  return reinterpret_cast<Cache::Handle*>(e);
}

void LRUCache::Erase(const Slice& key, uint32_t hash) {
  MutexLock l(&mutex_);
  LRUHandle* e = table_.Remove(key, hash);
  if (e != NULL) {
    LRU_Remove(e);
    Unref(e);
  }
}

static const int kNumShardBits = 4;
static const int kNumShards = 1 << kNumShardBits;

class ShardedLRUCache : public Cache {
 private:
  LRUCache shard_[kNumShards];
  port::Mutex id_mutex_;
  uint64_t last_id_;

  static inline uint32_t HashSlice(const Slice& s) {
    return Hash(s.data(), s.size(), 0);
  }

  static uint32_t Shard(uint32_t hash) {
    return hash >> (32 - kNumShardBits);
  }

 public:
  explicit ShardedLRUCache(size_t capacity)
      : last_id_(0) {
    const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards;
    for (int s = 0; s < kNumShards; s++) {
      shard_[s].SetCapacity(per_shard);
    }
  }
  virtual ~ShardedLRUCache() { }
  virtual Handle* Insert(const Slice& key, void* value, size_t charge,
                         void (*deleter)(const Slice& key, void* value)) {
    const uint32_t hash = HashSlice(key);
    return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter);
  }
  virtual Handle* Lookup(const Slice& key) {
    const uint32_t hash = HashSlice(key);
    return shard_[Shard(hash)].Lookup(key, hash);
  }
  virtual void Release(Handle* handle) {
    LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
    shard_[Shard(h->hash)].Release(handle);
  }
  virtual void Erase(const Slice& key) {
    const uint32_t hash = HashSlice(key);
    shard_[Shard(hash)].Erase(key, hash);
  }
  virtual void* Value(Handle* handle) {
    return reinterpret_cast<LRUHandle*>(handle)->value;
  }
  virtual uint64_t NewId() {
    MutexLock l(&id_mutex_);
    return ++(last_id_);
  }
};

}  // end anonymous namespace

Cache* NewLRUCache(size_t capacity) {
  return new ShardedLRUCache(capacity);
}

}  // namespace leveldb