aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorZoltan Szabadka <szabadka@google.com>2014-02-14 15:04:23 +0100
committerZoltan Szabadka <szabadka@google.com>2014-02-14 15:04:23 +0100
commitcbd5cb55f487eda746b0d6f8b5742b5a8e5c846a (patch)
tree3b3542e1d85a71c6f93d5dda16b04619e33c9982
parentdfc5a9f2151a7c88914c236c7db8fa119fee249c (diff)
downloadsrc-cbd5cb55f487eda746b0d6f8b5742b5a8e5c846a.tar.gz
Updates to Brotli compression format, decoder and encoder
This commit contains a batch of changes that were made to the Brotli compression algorithm in the last month. Most important changes: * Fixes to the spec. * Change of code length code order. * Use a 2-level Huffman lookup table in the decoder. * Faster uncompressed meta-block decoding. * Optimized encoding of the Huffman code. * Detection of UTF-8 input encoding. * UTF-8 based literal cost modeling for improved backward reference selection.
-rw-r--r--brotli/brotlispec.txt25
-rw-r--r--brotli/dec/bit_reader.c4
-rw-r--r--brotli/dec/bit_reader.h31
-rw-r--r--brotli/dec/decode.c540
-rw-r--r--brotli/dec/decode.h2
-rw-r--r--brotli/dec/huffman.c307
-rw-r--r--brotli/dec/huffman.h49
-rw-r--r--brotli/enc/backward_references.cc152
-rw-r--r--brotli/enc/bit_cost.h2
-rw-r--r--brotli/enc/block_splitter.cc6
-rw-r--r--brotli/enc/encode.cc189
-rw-r--r--brotli/enc/entropy_encode.cc119
-rw-r--r--brotli/enc/entropy_encode.h2
-rw-r--r--brotli/enc/hash.h13
-rw-r--r--brotli/enc/literal_cost.cc99
-rw-r--r--brotli/enc/literal_cost.h7
16 files changed, 912 insertions, 635 deletions
diff --git a/brotli/brotlispec.txt b/brotli/brotlispec.txt
index 23de497..087c939 100644
--- a/brotli/brotlispec.txt
+++ b/brotli/brotlispec.txt
@@ -498,11 +498,11 @@ Abstract
Symbol Code
------ ----
0 00
- 1 1010
- 2 100
- 3 11
- 4 01
- 5 1011
+ 1 1110
+ 2 110
+ 3 01
+ 4 10
+ 5 1111
We can now define the format of the complex Huffman code as
follows:
@@ -513,7 +513,7 @@ Abstract
Code lengths for symbols in the code length alphabet given
- just above, in the order: 1, 2, 3, 4, 0, 17, 5, 6, 16, 7,
+ just above, in the order: 1, 2, 3, 4, 0, 5, 17, 6, 16, 7,
8, 9, 10, 11, 12, 13, 14, 15
The code lengths of code length symbols are between 0 and
@@ -572,7 +572,7 @@ Abstract
6: last distance - 2
7: last distance + 2
8: last distance - 3
- 9: last disatnce + 3
+ 9: last distance + 3
10: second last distance - 1
11: second last distance + 1
12: second last distance - 2
@@ -647,7 +647,7 @@ Abstract
---- ---- ------ ---- ---- ------- ---- ---- -------
0 0 0 8 2 10-13 16 6 130-193
1 0 1 9 2 14-17 17 7 194-321
- 2 0 2 10 3 18-25 18 8 322-527
+ 2 0 2 10 3 18-25 18 8 322-577
3 0 3 11 3 26-33 19 9 578-1089
4 0 4 12 4 34-49 20 10 1090-2113
5 0 5 13 4 50-65 21 12 2114-6209
@@ -681,7 +681,7 @@ Abstract
| | |
+---------+---------+---------+
| | | |
- 0-7 | 128-191 | 192-255 | 383-447 |
+ 0-7 | 128-191 | 192-255 | 384-447 |
| | | |
+---------+---------+---------+
| | | |
@@ -689,7 +689,7 @@ Abstract
| | | |
+---------+---------+---------+
| | | |
- 16-23 | 448-551 | 576-639 | 640-703 |
+ 16-23 | 448-511 | 576-639 | 640-703 |
| | | |
+---------+---------+---------+
@@ -1008,9 +1008,10 @@ Abstract
1 bit: ISEMPTY, set to 1 if the meta-block is empty, this
field is only present if ISLAST bit is set, since
only the last meta-block can be empty
- 2 bits: MNIBBLES, (# of nibbles to represent the length) - 4
+ 2 bits: MNIBBLES - 4, where MNIBBLES is # of nibbles to represent
+ the length
- (MNIBBLES + 4) x 4 bits: MLEN - 1, where MLEN is the length
+ MNIBBLES x 4 bits: MLEN - 1, where MLEN is the length
of the meta-block in the input data in bytes
1 bit: ISUNCOMPRESSED, if set to 1, any bits of input up to
diff --git a/brotli/dec/bit_reader.c b/brotli/dec/bit_reader.c
index 25e33e3..981dccf 100644
--- a/brotli/dec/bit_reader.c
+++ b/brotli/dec/bit_reader.c
@@ -33,7 +33,7 @@ int BrotliInitBitReader(BrotliBitReader* const br, BrotliInput input) {
br->val_ = 0;
br->pos_ = 0;
br->bit_pos_ = 0;
- br->bits_left_ = 64;
+ br->bit_end_pos_ = 0;
br->eos_ = 0;
if (!BrotliReadMoreInput(br)) {
return 0;
@@ -42,7 +42,7 @@ int BrotliInitBitReader(BrotliBitReader* const br, BrotliInput input) {
br->val_ |= ((uint64_t)br->buf_[br->pos_]) << (8 * i);
++br->pos_;
}
- return (br->bits_left_ > 64);
+ return (br->bit_end_pos_ > 0);
}
#if defined(__cplusplus) || defined(c_plusplus)
diff --git a/brotli/dec/bit_reader.h b/brotli/dec/bit_reader.h
index 551cc14..3221cdd 100644
--- a/brotli/dec/bit_reader.h
+++ b/brotli/dec/bit_reader.h
@@ -31,7 +31,7 @@ extern "C" {
#define BROTLI_IBUF_SIZE (2 * BROTLI_READ_SIZE + 32)
#define BROTLI_IBUF_MASK (2 * BROTLI_READ_SIZE - 1)
-#define UNALIGNED_COPY64(dst, src) *(uint64_t*)(dst) = *(const uint64_t*)(src)
+#define UNALIGNED_COPY64(dst, src) memcpy(dst, src, 8)
static const uint32_t kBitMask[BROTLI_MAX_NUM_BIT_READ] = {
0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767,
@@ -42,13 +42,13 @@ typedef struct {
/* Input byte buffer, consist of a ringbuffer and a "slack" region where */
/* bytes from the start of the ringbuffer are copied. */
uint8_t buf_[BROTLI_IBUF_SIZE];
- uint8_t* buf_ptr_; /* next input will write here */
- BrotliInput input_; /* input callback */
- uint64_t val_; /* pre-fetched bits */
- uint32_t pos_; /* byte position in stream */
- uint32_t bit_pos_; /* current bit-reading position in val_ */
- uint32_t bits_left_; /* how many valid bits left */
- int eos_; /* input stream is finished */
+ uint8_t* buf_ptr_; /* next input will write here */
+ BrotliInput input_; /* input callback */
+ uint64_t val_; /* pre-fetched bits */
+ uint32_t pos_; /* byte position in stream */
+ uint32_t bit_pos_; /* current bit-reading position in val_ */
+ uint32_t bit_end_pos_; /* bit-reading end position from LSB of val_ */
+ int eos_; /* input stream is finished */
} BrotliBitReader;
int BrotliInitBitReader(BrotliBitReader* const br, BrotliInput input);
@@ -65,7 +65,7 @@ static BROTLI_INLINE void BrotliSetBitPos(BrotliBitReader* const br,
#ifdef BROTLI_DECODE_DEBUG
uint32_t n_bits = val - br->bit_pos_;
const uint32_t bval = (uint32_t)(br->val_ >> br->bit_pos_) & kBitMask[n_bits];
- printf("[BrotliReadBits] %010ld %2d val: %6x\n",
+ printf("[BrotliReadBits] %010d %2d val: %6x\n",
(br->pos_ << 3) + br->bit_pos_ - 64, n_bits, bval);
#endif
br->bit_pos_ = val;
@@ -78,7 +78,7 @@ static BROTLI_INLINE void ShiftBytes(BrotliBitReader* const br) {
br->val_ |= ((uint64_t)br->buf_[br->pos_ & BROTLI_IBUF_MASK]) << 56;
++br->pos_;
br->bit_pos_ -= 8;
- br->bits_left_ -= 8;
+ br->bit_end_pos_ -= 8;
}
}
@@ -95,10 +95,10 @@ static BROTLI_INLINE void ShiftBytes(BrotliBitReader* const br) {
every 32 bytes of input is read.
*/
static BROTLI_INLINE int BrotliReadMoreInput(BrotliBitReader* const br) {
- if (br->bits_left_ > 320) {
+ if (br->bit_end_pos_ > 256) {
return 1;
} else if (br->eos_) {
- return br->bit_pos_ <= br->bits_left_;
+ return br->bit_pos_ <= br->bit_end_pos_;
} else {
uint8_t* dst = br->buf_ptr_;
int bytes_read = BrotliRead(br->input_, dst, BROTLI_READ_SIZE);
@@ -131,7 +131,7 @@ static BROTLI_INLINE int BrotliReadMoreInput(BrotliBitReader* const br) {
} else {
br->buf_ptr_ = br->buf_;
}
- br->bits_left_ += ((uint32_t)bytes_read << 3);
+ br->bit_end_pos_ += ((uint32_t)bytes_read << 3);
return 1;
}
}
@@ -147,7 +147,7 @@ static BROTLI_INLINE void BrotliFillBitWindow(BrotliBitReader* const br) {
br->buf_ + (br->pos_ & BROTLI_IBUF_MASK)) << 24;
br->pos_ += 5;
br->bit_pos_ -= 40;
- br->bits_left_ -= 40;
+ br->bit_end_pos_ -= 40;
#else
ShiftBytes(br);
#endif
@@ -155,14 +155,13 @@ static BROTLI_INLINE void BrotliFillBitWindow(BrotliBitReader* const br) {
}
/* Reads the specified number of bits from Read Buffer. */
-/* Requires that n_bits is positive. */
static BROTLI_INLINE uint32_t BrotliReadBits(
BrotliBitReader* const br, int n_bits) {
uint32_t val;
BrotliFillBitWindow(br);
val = (uint32_t)(br->val_ >> br->bit_pos_) & kBitMask[n_bits];
#ifdef BROTLI_DECODE_DEBUG
- printf("[BrotliReadBits] %010ld %2d val: %6x\n",
+ printf("[BrotliReadBits] %010d %2d val: %6x\n",
(br->pos_ << 3) + br->bit_pos_ - 64, n_bits, val);
#endif
br->bit_pos_ += (uint32_t)n_bits;
diff --git a/brotli/dec/decode.c b/brotli/dec/decode.c
index a8e41ab..070abf1 100644
--- a/brotli/dec/decode.c
+++ b/brotli/dec/decode.c
@@ -46,9 +46,14 @@ static const int kNumBlockLengthCodes = 26;
static const int kLiteralContextBits = 6;
static const int kDistanceContextBits = 2;
+#define HUFFMAN_TABLE_BITS 8
+#define HUFFMAN_TABLE_MASK 0xff
+/* This is a rough estimate, not an exact bound. */
+#define HUFFMAN_MAX_TABLE_SIZE 2048
+
#define CODE_LENGTH_CODES 18
static const uint8_t kCodeLengthCodeOrder[CODE_LENGTH_CODES] = {
- 1, 2, 3, 4, 0, 17, 5, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15,
};
#define NUM_DISTANCE_SHORT_CODES 16
@@ -104,36 +109,19 @@ static void DecodeMetaBlockLength(BrotliBitReader* br,
}
/* Decodes the next Huffman code from bit-stream. */
-static BROTLI_INLINE int ReadSymbol(const HuffmanTree* tree,
+static BROTLI_INLINE int ReadSymbol(const HuffmanCode* table,
BrotliBitReader* br) {
- uint32_t bits;
- uint32_t bitpos;
- int lut_ix;
- uint8_t lut_bits;
- const HuffmanTreeNode* node = tree->root_;
+ int nbits;
BrotliFillBitWindow(br);
- bits = BrotliPrefetchBits(br);
- bitpos = br->bit_pos_;
- /* Check if we find the bit combination from the Huffman lookup table. */
- lut_ix = bits & (HUFF_LUT - 1);
- lut_bits = tree->lut_bits_[lut_ix];
- if (lut_bits <= HUFF_LUT_BITS) {
- BrotliSetBitPos(br, bitpos + lut_bits);
- return tree->lut_symbol_[lut_ix];
- }
- node += tree->lut_jump_[lut_ix];
- bitpos += HUFF_LUT_BITS;
- bits >>= HUFF_LUT_BITS;
-
- /* Decode the value from a binary tree. */
- assert(node != NULL);
- do {
- node = HuffmanTreeNextNode(node, bits & 1);
- bits >>= 1;
- ++bitpos;
- } while (HuffmanTreeNodeIsNotLeaf(node));
- BrotliSetBitPos(br, bitpos);
- return node->symbol_;
+ table += (int)(br->val_ >> br->bit_pos_) & HUFFMAN_TABLE_MASK;
+ nbits = table->bits - HUFFMAN_TABLE_BITS;
+ if (nbits > 0) {
+ br->bit_pos_ += HUFFMAN_TABLE_BITS;
+ table += table->value;
+ table += (int)(br->val_ >> br->bit_pos_) & ((1 << nbits) - 1);
+ }
+ br->bit_pos_ += table->bits;
+ return table->value;
}
static void PrintUcharVector(const uint8_t* v, int len) {
@@ -145,47 +133,34 @@ static int ReadHuffmanCodeLengths(
const uint8_t* code_length_code_lengths,
int num_symbols, uint8_t* code_lengths,
BrotliBitReader* br) {
- int ok = 0;
- int symbol;
+ int symbol = 0;
uint8_t prev_code_len = kDefaultCodeLength;
int repeat = 0;
- uint8_t repeat_length = 0;
+ uint8_t repeat_code_len = 0;
int space = 32768;
- HuffmanTree tree;
+ HuffmanCode table[32];
- if (!BrotliHuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
- CODE_LENGTH_CODES)) {
+ if (!BrotliBuildHuffmanTable(table, 5,
+ code_length_code_lengths,
+ CODE_LENGTH_CODES)) {
printf("[ReadHuffmanCodeLengths] Building code length tree failed: ");
PrintUcharVector(code_length_code_lengths, CODE_LENGTH_CODES);
return 0;
}
- if (!BrotliReadMoreInput(br)) {
- printf("[ReadHuffmanCodeLengths] Unexpected end of input.\n");
- return 0;
- }
-
- symbol = 0;
- while (symbol + repeat < num_symbols && space > 0) {
+ while (symbol < num_symbols && space > 0) {
+ const HuffmanCode* p = table;
uint8_t code_len;
if (!BrotliReadMoreInput(br)) {
printf("[ReadHuffmanCodeLengths] Unexpected end of input.\n");
- goto End;
- }
- code_len = (uint8_t)ReadSymbol(&tree, br);
- BROTLI_LOG_UINT(symbol);
- BROTLI_LOG_UINT(repeat);
- BROTLI_LOG_UINT(repeat_length);
- BROTLI_LOG_UINT(code_len);
- if ((code_len < kCodeLengthRepeatCode) ||
- (code_len == kCodeLengthRepeatCode && repeat_length == 0) ||
- (code_len > kCodeLengthRepeatCode && repeat_length > 0)) {
- while (repeat > 0) {
- code_lengths[symbol++] = repeat_length;
- --repeat;
- }
+ return 0;
}
+ BrotliFillBitWindow(br);
+ p += (br->val_ >> br->bit_pos_) & 31;
+ br->bit_pos_ += p->bits;
+ code_len = (uint8_t)p->value;
if (code_len < kCodeLengthRepeatCode) {
+ repeat = 0;
code_lengths[symbol++] = code_len;
if (code_len != 0) {
prev_code_len = code_len;
@@ -193,47 +168,46 @@ static int ReadHuffmanCodeLengths(
}
} else {
const int extra_bits = code_len - 14;
- int i = repeat;
+ int old_repeat;
+ int repeat_delta;
+ uint8_t new_len = 0;
+ if (code_len == kCodeLengthRepeatCode) {
+ new_len = prev_code_len;
+ }
+ if (repeat_code_len != new_len) {
+ repeat = 0;
+ repeat_code_len = new_len;
+ }
+ old_repeat = repeat;
if (repeat > 0) {
repeat -= 2;
repeat <<= extra_bits;
}
repeat += (int)BrotliReadBits(br, extra_bits) + 3;
- if (repeat + symbol > num_symbols) {
- goto End;
+ repeat_delta = repeat - old_repeat;
+ if (symbol + repeat_delta > num_symbols) {
+ return 0;
}
- if (code_len == kCodeLengthRepeatCode) {
- repeat_length = prev_code_len;
- for (; i < repeat; ++i) {
- space -= 32768 >> repeat_length;
- }
- } else {
- repeat_length = 0;
+ memset(&code_lengths[symbol], repeat_code_len, (size_t)repeat_delta);
+ symbol += repeat_delta;
+ if (repeat_code_len != 0) {
+ space -= repeat_delta << (15 - repeat_code_len);
}
}
}
if (space != 0) {
printf("[ReadHuffmanCodeLengths] space = %d\n", space);
- goto End;
- }
- if (symbol + repeat > num_symbols) {
- printf("[ReadHuffmanCodeLengths] symbol + repeat > num_symbols "
- "(%d + %d vs %d)\n", symbol, repeat, num_symbols);
- goto End;
+ return 0;
}
- while (repeat-- > 0) code_lengths[symbol++] = repeat_length;
- while (symbol < num_symbols) code_lengths[symbol++] = 0;
- ok = 1;
-
- End:
- BrotliHuffmanTreeRelease(&tree);
- return ok;
+ memset(&code_lengths[symbol], 0, (size_t)(num_symbols - symbol));
+ return 1;
}
static int ReadHuffmanCode(int alphabet_size,
- HuffmanTree* tree,
+ HuffmanCode* table,
BrotliBitReader* br) {
int ok = 1;
+ int table_size = 0;
int simple_code_or_skip;
uint8_t* code_lengths = NULL;
@@ -290,109 +264,49 @@ static int ReadHuffmanCode(int alphabet_size,
int i;
uint8_t code_length_code_lengths[CODE_LENGTH_CODES] = { 0 };
int space = 32;
- for (i = simple_code_or_skip;
- i < CODE_LENGTH_CODES && space > 0; ++i) {
- int code_len_idx = kCodeLengthCodeOrder[i];
- uint8_t v = (uint8_t)BrotliReadBits(br, 2);
- if (v == 1) {
- v = (uint8_t)BrotliReadBits(br, 1);
- if (v == 0) {
- v = 2;
- } else {
- v = (uint8_t)BrotliReadBits(br, 1);
- if (v == 0) {
- v = 1;
- } else {
- v = 5;
- }
- }
- } else if (v == 2) {
- v = 4;
- }
+ /* Static Huffman code for the code length code lengths */
+ static const HuffmanCode huff[16] = {
+ {2, 0}, {2, 4}, {2, 3}, {3, 2}, {2, 0}, {2, 4}, {2, 3}, {4, 1},
+ {2, 0}, {2, 4}, {2, 3}, {3, 2}, {2, 0}, {2, 4}, {2, 3}, {4, 5},
+ };
+ for (i = simple_code_or_skip; i < CODE_LENGTH_CODES && space > 0; ++i) {
+ const int code_len_idx = kCodeLengthCodeOrder[i];
+ const HuffmanCode* p = huff;
+ uint8_t v;
+ BrotliFillBitWindow(br);
+ p += (br->val_ >> br->bit_pos_) & 15;
+ br->bit_pos_ += p->bits;
+ v = (uint8_t)p->value;
code_length_code_lengths[code_len_idx] = v;
BROTLI_LOG_ARRAY_INDEX(code_length_code_lengths, code_len_idx);
if (v != 0) {
space -= (32 >> v);
}
}
- ok = ReadHuffmanCodeLengths(code_length_code_lengths, alphabet_size,
- code_lengths, br);
+ ok = ReadHuffmanCodeLengths(code_length_code_lengths,
+ alphabet_size, code_lengths, br);
}
if (ok) {
- ok = BrotliHuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
- if (!ok) {
- printf("[ReadHuffmanCode] HuffmanTreeBuildImplicit failed: ");
+ table_size = BrotliBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
+ code_lengths, alphabet_size);
+ if (table_size == 0) {
+ printf("[ReadHuffmanCode] BuildHuffmanTable failed: ");
PrintUcharVector(code_lengths, alphabet_size);
}
}
free(code_lengths);
- return ok;
-}
-
-static int ReadCopyDistance(const HuffmanTree* tree,
- int num_direct_codes,
- int postfix_bits,
- int postfix_mask,
- BrotliBitReader* br) {
- int code;
- int nbits;
- int postfix;
- int offset;
- code = ReadSymbol(tree, br);
- if (code < num_direct_codes) {
- return code;
- }
- code -= num_direct_codes;
- postfix = code & postfix_mask;
- code >>= postfix_bits;
- nbits = (code >> 1) + 1;
- offset = ((2 + (code & 1)) << nbits) - 4;
- return (num_direct_codes +
- ((offset + (int)BrotliReadBits(br, nbits)) << postfix_bits) +
- postfix);
+ return table_size;
}
-static int ReadBlockLength(const HuffmanTree* tree, BrotliBitReader* br) {
+static BROTLI_INLINE int ReadBlockLength(const HuffmanCode* table,
+ BrotliBitReader* br) {
int code;
int nbits;
- code = ReadSymbol(tree, br);
+ code = ReadSymbol(table, br);
nbits = kBlockLengthPrefixCode[code].nbits;
return kBlockLengthPrefixCode[code].offset + (int)BrotliReadBits(br, nbits);
}
-static void ReadInsertAndCopy(const HuffmanTree* tree,
- int* insert_len,
- int* copy_len,
- int* copy_dist,
- BrotliBitReader* br) {
- int code;
- int range_idx;
- int insert_code;
- int insert_extra_bits;
- int copy_code;
- int copy_extra_bits;
- code = ReadSymbol(tree, br);
- range_idx = code >> 6;
- if (range_idx >= 2) {
- range_idx -= 2;
- *copy_dist = -1;
- } else {
- *copy_dist = 0;
- }
- insert_code = kInsertRangeLut[range_idx] + ((code >> 3) & 7);
- copy_code = kCopyRangeLut[range_idx] + (code & 7);
- *insert_len = kInsertLengthPrefixCode[insert_code].offset;
- insert_extra_bits = kInsertLengthPrefixCode[insert_code].nbits;
- if (insert_extra_bits > 0) {
- *insert_len += (int)BrotliReadBits(br, insert_extra_bits);
- }
- *copy_len = kCopyLengthPrefixCode[copy_code].offset;
- copy_extra_bits = kCopyLengthPrefixCode[copy_code].nbits;
- if (copy_extra_bits > 0) {
- *copy_len += (int)BrotliReadBits(br, copy_extra_bits);
- }
-}
-
static int TranslateShortCodes(int code, int* ringbuffer, int index) {
int val;
if (code < NUM_DISTANCE_SHORT_CODES) {
@@ -429,24 +343,22 @@ static void InverseMoveToFrontTransform(uint8_t* v, int v_len) {
typedef struct {
int alphabet_size;
int num_htrees;
- HuffmanTree* htrees;
+ HuffmanCode* codes;
+ HuffmanCode** htrees;
} HuffmanTreeGroup;
static void HuffmanTreeGroupInit(HuffmanTreeGroup* group, int alphabet_size,
int ntrees) {
- int i;
group->alphabet_size = alphabet_size;
group->num_htrees = ntrees;
- group->htrees = (HuffmanTree*)malloc(sizeof(HuffmanTree) * (size_t)ntrees);
- for (i = 0; i < ntrees; ++i) {
- group->htrees[i].root_ = NULL;
- }
+ group->codes = (HuffmanCode*)malloc(
+ sizeof(HuffmanCode) * (size_t)(ntrees * HUFFMAN_MAX_TABLE_SIZE));
+ group->htrees = (HuffmanCode**)malloc(sizeof(HuffmanCode*) * (size_t)ntrees);
}
static void HuffmanTreeGroupRelease(HuffmanTreeGroup* group) {
- int i;
- for (i = 0; i < group->num_htrees; ++i) {
- BrotliHuffmanTreeRelease(&group->htrees[i]);
+ if (group->codes) {
+ free(group->codes);
}
if (group->htrees) {
free(group->htrees);
@@ -456,8 +368,13 @@ static void HuffmanTreeGroupRelease(HuffmanTreeGroup* group) {
static int HuffmanTreeGroupDecode(HuffmanTreeGroup* group,
BrotliBitReader* br) {
int i;
+ int table_size;
+ HuffmanCode* next = group->codes;
for (i = 0; i < group->num_htrees; ++i) {
- if (!ReadHuffmanCode(group->alphabet_size, &group->htrees[i], br)) {
+ group->htrees[i] = next;
+ table_size = ReadHuffmanCode(group->alphabet_size, next, br);
+ next += table_size;
+ if (table_size == 0) {
return 0;
}
}
@@ -469,6 +386,10 @@ static int DecodeContextMap(int context_map_size,
uint8_t** context_map,
BrotliBitReader* br) {
int ok = 1;
+ int use_rle_for_zeros;
+ int max_run_length_prefix = 0;
+ HuffmanCode* table;
+ int i;
if (!BrotliReadMoreInput(br)) {
printf("[DecodeContextMap] Unexpected end of input.\n");
return 0;
@@ -487,55 +408,54 @@ static int DecodeContextMap(int context_map_size,
return 1;
}
- {
- HuffmanTree tree_index_htree;
- int use_rle_for_zeros = (int)BrotliReadBits(br, 1);
- int max_run_length_prefix = 0;
- int i;
- if (use_rle_for_zeros) {
- max_run_length_prefix = (int)BrotliReadBits(br, 4) + 1;
- }
- if (!ReadHuffmanCode(*num_htrees + max_run_length_prefix,
- &tree_index_htree, br)) {
- return 0;
+ use_rle_for_zeros = (int)BrotliReadBits(br, 1);
+ if (use_rle_for_zeros) {
+ max_run_length_prefix = (int)BrotliReadBits(br, 4) + 1;
+ }
+ table = (HuffmanCode*)malloc(HUFFMAN_MAX_TABLE_SIZE * sizeof(*table));
+ if (table == NULL) {
+ return 0;
+ }
+ if (!ReadHuffmanCode(*num_htrees + max_run_length_prefix, table, br)) {
+ ok = 0;
+ goto End;
+ }
+ for (i = 0; i < context_map_size;) {
+ int code;
+ if (!BrotliReadMoreInput(br)) {
+ printf("[DecodeContextMap] Unexpected end of input.\n");
+ ok = 0;
+ goto End;
}
- for (i = 0; i < context_map_size;) {
- int code;
- if (!BrotliReadMoreInput(br)) {
- printf("[DecodeContextMap] Unexpected end of input.\n");
- ok = 0;
- goto End;
- }
- code = ReadSymbol(&tree_index_htree, br);
- if (code == 0) {
- (*context_map)[i] = 0;
- ++i;
- } else if (code <= max_run_length_prefix) {
- int reps = 1 + (1 << code) + (int)BrotliReadBits(br, code);
- while (--reps) {
- if (i >= context_map_size) {
- ok = 0;
- goto End;
- }
- (*context_map)[i] = 0;
- ++i;
+ code = ReadSymbol(table, br);
+ if (code == 0) {
+ (*context_map)[i] = 0;
+ ++i;
+ } else if (code <= max_run_length_prefix) {
+ int reps = 1 + (1 << code) + (int)BrotliReadBits(br, code);
+ while (--reps) {
+ if (i >= context_map_size) {
+ ok = 0;
+ goto End;
}
- } else {
- (*context_map)[i] = (uint8_t)(code - max_run_length_prefix);
+ (*context_map)[i] = 0;
++i;
}
+ } else {
+ (*context_map)[i] = (uint8_t)(code - max_run_length_prefix);
+ ++i;
}
- End:
- BrotliHuffmanTreeRelease(&tree_index_htree);
}
if (BrotliReadBits(br, 1)) {
InverseMoveToFrontTransform(*context_map, context_map_size);
}
+End:
+ free(table);
return ok;
}
static BROTLI_INLINE void DecodeBlockType(const int max_block_type,
- const HuffmanTree* trees,
+ const HuffmanCode* trees,
int tree_type,
int* block_types,
int* ringbuffers,
@@ -543,7 +463,7 @@ static BROTLI_INLINE void DecodeBlockType(const int max_block_type,
BrotliBitReader* br) {
int* ringbuffer = ringbuffers + tree_type * 2;
int* index = indexes + tree_type;
- int type_code = ReadSymbol(trees + tree_type, br);
+ int type_code = ReadSymbol(&trees[tree_type * HUFFMAN_MAX_TABLE_SIZE], br);
int block_type;
if (type_code == 0) {
block_type = ringbuffer[*index & 1];
@@ -608,6 +528,92 @@ static BROTLI_INLINE void IncrementalCopyFastPath(
}
}
+int CopyUncompressedBlockToOutput(BrotliOutput output, int len, int pos,
+ uint8_t* ringbuffer, int ringbuffer_mask,
+ BrotliBitReader* br) {
+ const int rb_size = ringbuffer_mask + 1;
+ uint8_t* ringbuffer_end = ringbuffer + rb_size;
+ int rb_pos = pos & ringbuffer_mask;
+ int br_pos = br->pos_ & BROTLI_IBUF_MASK;
+ int nbytes;
+
+ /* For short lengths copy byte-by-byte */
+ if (len < 8 || br->bit_pos_ + (uint32_t)(len << 3) < br->bit_end_pos_) {
+ while (len-- > 0) {
+ if (!BrotliReadMoreInput(br)) {
+ return 0;
+ }
+ ringbuffer[rb_pos++]= (uint8_t)BrotliReadBits(br, 8);
+ if (rb_pos == rb_size) {
+ if (BrotliWrite(output, ringbuffer, (size_t)rb_size) < rb_size) {
+ return 0;
+ }
+ rb_pos = 0;
+ }
+ }
+ return 1;
+ }
+
+ if (br->bit_end_pos_ < 64) {
+ return 0;
+ }
+
+ /* Copy remaining 0-8 bytes from br->val_ to ringbuffer. */
+ while (br->bit_pos_ < 64) {
+ ringbuffer[rb_pos] = (uint8_t)(br->val_ >> br->bit_pos_);
+ br->bit_pos_ += 8;
+ ++rb_pos;
+ --len;
+ }
+
+ /* Copy remaining bytes from br->buf_ to ringbuffer. */
+ nbytes = (int)(br->bit_end_pos_ - br->bit_pos_) >> 3;
+ if (br_pos + nbytes > BROTLI_IBUF_MASK) {
+ int tail = BROTLI_IBUF_MASK + 1 - br_pos;
+ memcpy(&ringbuffer[rb_pos], &br->buf_[br_pos], (size_t)tail);
+ nbytes -= tail;
+ rb_pos += tail;
+ len -= tail;
+ br_pos = 0;
+ }
+ memcpy(&ringbuffer[rb_pos], &br->buf_[br_pos], (size_t)nbytes);
+ rb_pos += nbytes;
+ len -= nbytes;
+
+ /* If we wrote past the logical end of the ringbuffer, copy the tail of the
+ ringbuffer to its beginning and flush the ringbuffer to the output. */
+ if (rb_pos >= rb_size) {
+ if (BrotliWrite(output, ringbuffer, (size_t)rb_size) < rb_size) {
+ return 0;
+ }
+ rb_pos -= rb_size;
+ memcpy(ringbuffer, ringbuffer_end, (size_t)rb_pos);
+ }
+
+ /* If we have more to copy than the remaining size of the ringbuffer, then we
+ first fill the ringbuffer from the input and then flush the ringbuffer to
+ the output */
+ while (rb_pos + len >= rb_size) {
+ nbytes = rb_size - rb_pos;
+ if (BrotliRead(br->input_, &ringbuffer[rb_pos], (size_t)nbytes) < nbytes ||
+ BrotliWrite(output, ringbuffer, (size_t)rb_size) < nbytes) {
+ return 0;
+ }
+ len -= nbytes;
+ rb_pos = 0;
+ }
+
+ /* Copy straight from the input onto the ringbuffer. The ringbuffer will be
+ flushed to the output at a later time. */
+ if (BrotliRead(br->input_, &ringbuffer[rb_pos], (size_t)len) < len) {
+ return 0;
+ }
+
+ /* Restore the state of the bit reader. */
+ BrotliInitBitReader(br, br->input_);
+ return 1;
+}
+
int BrotliDecompressedSize(size_t encoded_size,
const uint8_t* encoded_buffer,
size_t* decoded_size) {
@@ -662,11 +668,15 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
uint8_t prev_byte1 = 0;
uint8_t prev_byte2 = 0;
HuffmanTreeGroup hgroup[3];
+ HuffmanCode* block_type_trees = NULL;
+ HuffmanCode* block_len_trees = NULL;
BrotliBitReader br;
- /* 16 bytes would be enough, but we add some more slack for transforms */
- /* to work at the end of the ringbuffer. */
- static const int kRingBufferWriteAheadSlack = 128;
+ /* We need the slack region for the following reasons:
+ - always doing two 8-byte copies for fast backward copying
+ - transforms
+ - flushing the input ringbuffer when decoding uncompressed blocks */
+ static const int kRingBufferWriteAheadSlack = 128 + BROTLI_READ_SIZE;
static const int kMaxDictionaryWordLength = 0;
@@ -688,6 +698,16 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
}
ringbuffer_end = ringbuffer + ringbuffer_size;
+ if (ok) {
+ block_type_trees = (HuffmanCode*)malloc(
+ 3 * HUFFMAN_MAX_TABLE_SIZE * sizeof(HuffmanCode));
+ block_len_trees = (HuffmanCode*)malloc(
+ 3 * HUFFMAN_MAX_TABLE_SIZE * sizeof(HuffmanCode));
+ if (block_type_trees == NULL || block_len_trees == NULL) {
+ ok = 0;
+ }
+ }
+
while (!input_end && ok) {
int meta_block_remaining_len = 0;
int is_uncompressed;
@@ -696,8 +716,6 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
int num_block_types[3] = { 1, 1, 1 };
int block_type_rb[6] = { 0, 1, 0, 1, 0, 1 };
int block_type_rb_index[3] = { 0 };
- HuffmanTree block_type_trees[3];
- HuffmanTree block_len_trees[3];
int distance_postfix_bits;
int num_direct_distance_codes;
int distance_postfix_mask;
@@ -716,12 +734,11 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
int context_lookup_offset1 = 0;
int context_lookup_offset2 = 0;
uint8_t context_mode;
+ HuffmanCode* htree_command;
for (i = 0; i < 3; ++i) {
- hgroup[i].num_htrees = 0;
+ hgroup[i].codes = NULL;
hgroup[i].htrees = NULL;
- block_type_trees[i].root_ = NULL;
- block_len_trees[i].root_ = NULL;
}
if (!BrotliReadMoreInput(&br)) {
@@ -738,31 +755,25 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
}
if (is_uncompressed) {
BrotliSetBitPos(&br, (br.bit_pos_ + 7) & (uint32_t)(~7UL));
- while (meta_block_remaining_len) {
- ringbuffer[pos & ringbuffer_mask] = (uint8_t)BrotliReadBits(&br, 8);
- if ((pos & ringbuffer_mask) == ringbuffer_mask) {
- if (BrotliWrite(output, ringbuffer, (size_t)ringbuffer_size) < 0) {
- ok = 0;
- goto End;
- }
- }
- ++pos;
- --meta_block_remaining_len;
- }
+ ok = CopyUncompressedBlockToOutput(output, meta_block_remaining_len, pos,
+ ringbuffer, ringbuffer_mask, &br);
+ pos += meta_block_remaining_len;
goto End;
}
for (i = 0; i < 3; ++i) {
- block_type_trees[i].root_ = NULL;
- block_len_trees[i].root_ = NULL;
num_block_types[i] = DecodeVarLenUint8(&br) + 1;
if (num_block_types[i] >= 2) {
- if (!ReadHuffmanCode(
- num_block_types[i] + 2, &block_type_trees[i], &br) ||
- !ReadHuffmanCode(kNumBlockLengthCodes, &block_len_trees[i], &br)) {
+ if (!ReadHuffmanCode(num_block_types[i] + 2,
+ &block_type_trees[i * HUFFMAN_MAX_TABLE_SIZE],
+ &br) ||
+ !ReadHuffmanCode(kNumBlockLengthCodes,
+ &block_len_trees[i * HUFFMAN_MAX_TABLE_SIZE],
+ &br)) {
ok = 0;
goto End;
}
- block_length[i] = ReadBlockLength(&block_len_trees[i], &br);
+ block_length[i] = ReadBlockLength(
+ &block_len_trees[i * HUFFMAN_MAX_TABLE_SIZE], &br);
block_type_rb_index[i] = 1;
}
}
@@ -822,8 +833,13 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
context_mode = context_modes[block_type[0]];
context_lookup_offset1 = kContextLookupOffsets[context_mode];
context_lookup_offset2 = kContextLookupOffsets[context_mode + 1];
+ htree_command = hgroup[1].htrees[0];
while (meta_block_remaining_len > 0) {
+ int cmd_code;
+ int range_idx;
+ int insert_code;
+ int copy_code;
int insert_length;
int copy_length;
int distance_code;
@@ -841,11 +857,25 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
DecodeBlockType(num_block_types[1],
block_type_trees, 1, block_type, block_type_rb,
block_type_rb_index, &br);
- block_length[1] = ReadBlockLength(&block_len_trees[1], &br);
+ block_length[1] = ReadBlockLength(
+ &block_len_trees[HUFFMAN_MAX_TABLE_SIZE], &br);
+ htree_command = hgroup[1].htrees[block_type[1]];
}
--block_length[1];
- ReadInsertAndCopy(&hgroup[1].htrees[block_type[1]],
- &insert_length, &copy_length, &distance_code, &br);
+ cmd_code = ReadSymbol(htree_command, &br);
+ range_idx = cmd_code >> 6;
+ if (range_idx >= 2) {
+ range_idx -= 2;
+ distance_code = -1;
+ } else {
+ distance_code = 0;
+ }
+ insert_code = kInsertRangeLut[range_idx] + ((cmd_code >> 3) & 7);
+ copy_code = kCopyRangeLut[range_idx] + (cmd_code & 7);
+ insert_length = kInsertLengthPrefixCode[insert_code].offset +
+ (int)BrotliReadBits(&br, kInsertLengthPrefixCode[insert_code].nbits);
+ copy_length = kCopyLengthPrefixCode[copy_code].offset +
+ (int)BrotliReadBits(&br, kCopyLengthPrefixCode[copy_code].nbits);
BROTLI_LOG_UINT(insert_length);
BROTLI_LOG_UINT(copy_length);
BROTLI_LOG_UINT(distance_code);
@@ -859,7 +889,7 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
DecodeBlockType(num_block_types[0],
block_type_trees, 0, block_type, block_type_rb,
block_type_rb_index, &br);
- block_length[0] = ReadBlockLength(&block_len_trees[0], &br);
+ block_length[0] = ReadBlockLength(block_len_trees, &br);
context_offset = block_type[0] << kLiteralContextBits;
context_map_slice = context_map + context_offset;
context_mode = context_modes[block_type[0]];
@@ -872,7 +902,7 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
literal_htree_index = context_map_slice[context];
--block_length[0];
prev_byte2 = prev_byte1;
- prev_byte1 = (uint8_t)ReadSymbol(&hgroup[0].htrees[literal_htree_index],
+ prev_byte1 = (uint8_t)ReadSymbol(hgroup[0].htrees[literal_htree_index],
&br);
ringbuffer[pos & ringbuffer_mask] = prev_byte1;
BROTLI_LOG_UINT(literal_htree_index);
@@ -899,7 +929,8 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
DecodeBlockType(num_block_types[2],
block_type_trees, 2, block_type, block_type_rb,
block_type_rb_index, &br);
- block_length[2] = ReadBlockLength(&block_len_trees[2], &br);
+ block_length[2] = ReadBlockLength(
+ &block_len_trees[2 * HUFFMAN_MAX_TABLE_SIZE], &br);
dist_htree_index = (uint8_t)block_type[2];
dist_context_offset = block_type[2] << kDistanceContextBits;
dist_context_map_slice = dist_context_map + dist_context_offset;
@@ -907,11 +938,20 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
--block_length[2];
context = (uint8_t)(copy_length > 4 ? 3 : copy_length - 2);
dist_htree_index = dist_context_map_slice[context];
- distance_code = ReadCopyDistance(&hgroup[2].htrees[dist_htree_index],
- num_direct_distance_codes,
- distance_postfix_bits,
- distance_postfix_mask,
- &br);
+ distance_code = ReadSymbol(hgroup[2].htrees[dist_htree_index], &br);
+ if (distance_code >= num_direct_distance_codes) {
+ int nbits;
+ int postfix;
+ int offset;
+ distance_code -= num_direct_distance_codes;
+ postfix = distance_code & distance_postfix_mask;
+ distance_code >>= distance_postfix_bits;
+ nbits = (distance_code >> 1) + 1;
+ offset = ((2 + (distance_code & 1)) << nbits) - 4;
+ distance_code = num_direct_distance_codes +
+ ((offset + (int)BrotliReadBits(&br, nbits)) <<
+ distance_postfix_bits) + postfix;
+ }
}
/* Convert the distance code to the actual distance by possibly looking */
@@ -1004,8 +1044,6 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
}
for (i = 0; i < 3; ++i) {
HuffmanTreeGroupRelease(&hgroup[i]);
- BrotliHuffmanTreeRelease(&block_type_trees[i]);
- BrotliHuffmanTreeRelease(&block_len_trees[i]);
}
}
@@ -1015,6 +1053,12 @@ int BrotliDecompress(BrotliInput input, BrotliOutput output) {
}
free(ringbuffer);
}
+ if (block_type_trees != 0) {
+ free(block_type_trees);
+ }
+ if (block_len_trees != 0) {
+ free(block_len_trees);
+ }
return ok;
}
diff --git a/brotli/dec/decode.h b/brotli/dec/decode.h
index 9182438..ec6d65e 100644
--- a/brotli/dec/decode.h
+++ b/brotli/dec/decode.h
@@ -26,6 +26,8 @@ extern "C" {
#endif
/* Sets *decoded_size to the decompressed size of the given encoded stream. */
+/* This function only works if the encoded buffer has a single meta block, */
+/* and this meta block must have the "is last" bit set. */
/* Returns 1 on success, 0 on failure. */
int BrotliDecompressedSize(size_t encoded_size,
const uint8_t* encoded_buffer,
diff --git a/brotli/dec/huffman.c b/brotli/dec/huffman.c
index 20e6223..12493a9 100644
--- a/brotli/dec/huffman.c
+++ b/brotli/dec/huffman.c
@@ -12,11 +12,12 @@
See the License for the specific language governing permissions and
limitations under the License.
- Utilities for building and looking up Huffman trees.
+ Utilities for building Huffman decoding tables.
*/
#include <assert.h>
#include <stdlib.h>
+#include <stdio.h>
#include <string.h>
#include "./huffman.h"
#include "./safe_malloc.h"
@@ -25,231 +26,137 @@
extern "C" {
#endif
-#define NON_EXISTENT_SYMBOL (-1)
-#define MAX_ALLOWED_CODE_LENGTH 15
+#define MAX_LENGTH 15
-static void TreeNodeInit(HuffmanTreeNode* const node) {
- node->children_ = -1; /* means: 'unassigned so far' */
-}
-
-static int NodeIsEmpty(const HuffmanTreeNode* const node) {
- return (node->children_ < 0);
-}
-
-static int IsFull(const HuffmanTree* const tree) {
- return (tree->num_nodes_ == tree->max_nodes_);
-}
-
-static void AssignChildren(HuffmanTree* const tree,
- HuffmanTreeNode* const node) {
- HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
- node->children_ = (int)(children - node);
- assert(children - node == (int)(children - node));
- tree->num_nodes_ += 2;
- TreeNodeInit(children + 0);
- TreeNodeInit(children + 1);
+/* Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
+ bit-wise reversal of the len least significant bits of key. */
+static BROTLI_INLINE int GetNextKey(int key, int len) {
+ int step = 1 << (len - 1);
+ while (key & step) {
+ step >>= 1;
+ }
+ return (key & (step - 1)) + step;
}
-static int TreeInit(HuffmanTree* const tree, int num_leaves) {
- assert(tree != NULL);
- tree->root_ = NULL;
- if (num_leaves == 0) return 0;
- /* We allocate maximum possible nodes in the tree at once. */
- /* Note that a Huffman tree is a full binary tree; and in a full binary */
- /* tree with L leaves, the total number of nodes N = 2 * L - 1. */
- tree->max_nodes_ = 2 * num_leaves - 1;
- assert(tree->max_nodes_ < (1 << 16)); /* limit for the lut_jump_ table */
- tree->root_ = (HuffmanTreeNode*)BrotliSafeMalloc((uint64_t)tree->max_nodes_,
- sizeof(*tree->root_));
- if (tree->root_ == NULL) return 0;
- TreeNodeInit(tree->root_); /* Initialize root. */
- tree->num_nodes_ = 1;
- memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
- memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
- return 1;
+/* Stores code in table[0], table[step], table[2*step], ..., table[end] */
+/* Assumes that end is an integer multiple of step */
+static BROTLI_INLINE void ReplicateValue(HuffmanCode* table,
+ int step, int end,
+ HuffmanCode code) {
+ do {
+ end -= step;
+ table[end] = code;
+ } while (end > 0);
}
-void BrotliHuffmanTreeRelease(HuffmanTree* const tree) {
- if (tree != NULL) {
- if (tree->root_ != NULL) {
- free(tree->root_);
- }
- tree->root_ = NULL;
- tree->max_nodes_ = 0;
- tree->num_nodes_ = 0;
+/* Returns the table width of the next 2nd level table. count is the histogram
+ of bit lengths for the remaining symbols, len is the code length of the next
+ processed symbol */
+static BROTLI_INLINE int NextTableBitSize(const int* const count,
+ int len, int root_bits) {
+ int left = 1 << (len - root_bits);
+ while (len < MAX_LENGTH) {
+ left -= count[len];
+ if (left <= 0) break;
+ ++len;
+ left <<= 1;
}
+ return len - root_bits;
}
-/* Utility: converts Huffman code lengths to corresponding Huffman codes. */
-/* 'huff_codes' should be pre-allocated. */
-/* Returns false in case of error (memory allocation, invalid codes). */
-static int HuffmanCodeLengthsToCodes(const uint8_t* const code_lengths,
- int code_lengths_size,
- int* const huff_codes) {
- int symbol;
- int code_len;
- int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
- int curr_code;
- int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
- int max_code_length = 0;
-
- assert(code_lengths != NULL);
- assert(code_lengths_size > 0);
- assert(huff_codes != NULL);
-
- /* Calculate max code length. */
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > max_code_length) {
- max_code_length = code_lengths[symbol];
- }
+int BrotliBuildHuffmanTable(HuffmanCode* root_table,
+ int root_bits,
+ const uint8_t* const code_lengths,
+ int code_lengths_size) {
+ HuffmanCode code; /* current table entry */
+ HuffmanCode* table; /* next available space in table */
+ int len; /* current code length */
+ int symbol; /* symbol index in original or sorted table */
+ int key; /* reversed prefix code */
+ int step; /* step size to replicate values in current table */
+ int low; /* low bits for current root entry */
+ int mask; /* mask for low bits */
+ int table_bits; /* key length of current table */
+ int table_size; /* size of current table */
+ int total_size; /* sum of root table size and 2nd level table sizes */
+ int* sorted; /* symbols sorted by code length */
+ int count[MAX_LENGTH + 1] = { 0 }; /* number of codes of each length */
+ int offset[MAX_LENGTH + 1]; /* offsets in sorted table for each length */
+
+ sorted = (int*)malloc((size_t)code_lengths_size * sizeof(*sorted));
+ if (sorted == NULL) {
+ return 0;
}
- if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
- /* Calculate code length histogram. */
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- ++code_length_hist[code_lengths[symbol]];
+ /* build histogram of code lengths */
+ for (symbol = 0; symbol < code_lengths_size; symbol++) {
+ count[code_lengths[symbol]]++;
}
- code_length_hist[0] = 0;
- /* Calculate the initial values of 'next_codes' for each code length. */
- /* next_codes[code_len] denotes the code to be assigned to the next symbol */
- /* of code length 'code_len'. */
- curr_code = 0;
- next_codes[0] = -1; /* Unused, as code length = 0 implies */
- /* code doesn't exist. */
- for (code_len = 1; code_len <= max_code_length; ++code_len) {
- curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
- next_codes[code_len] = curr_code;
+ /* generate offsets into sorted symbol table by code length */
+ offset[1] = 0;
+ for (len = 1; len < MAX_LENGTH; len++) {
+ offset[len + 1] = offset[len] + count[len];
}
- /* Get symbols. */
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > 0) {
- huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
- } else {
- huff_codes[symbol] = NON_EXISTENT_SYMBOL;
+ /* sort symbols by length, by symbol order within each length */
+ for (symbol = 0; symbol < code_lengths_size; symbol++) {
+ if (code_lengths[symbol] != 0) {
+ sorted[offset[code_lengths[symbol]]++] = symbol;
}
}
- return 1;
-}
-
-static const uint8_t kReverse7[128] = {
- 0, 64, 32, 96, 16, 80, 48, 112, 8, 72, 40, 104, 24, 88, 56, 120,
- 4, 68, 36, 100, 20, 84, 52, 116, 12, 76, 44, 108, 28, 92, 60, 124,
- 2, 66, 34, 98, 18, 82, 50, 114, 10, 74, 42, 106, 26, 90, 58, 122,
- 6, 70, 38, 102, 22, 86, 54, 118, 14, 78, 46, 110, 30, 94, 62, 126,
- 1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89, 57, 121,
- 5, 69, 37, 101, 21, 85, 53, 117, 13, 77, 45, 109, 29, 93, 61, 125,
- 3, 67, 35, 99, 19, 83, 51, 115, 11, 75, 43, 107, 27, 91, 59, 123,
- 7, 71, 39, 103, 23, 87, 55, 119, 15, 79, 47, 111, 31, 95, 63, 127
-};
-
-static int ReverseBitsShort(int bits, int num_bits) {
- return kReverse7[bits] >> (7 - num_bits);
-}
-static int TreeAddSymbol(HuffmanTree* const tree,
- int symbol, int code, int code_length) {
- int step = HUFF_LUT_BITS;
- int base_code;
- HuffmanTreeNode* node = tree->root_;
- const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
- assert(symbol == (int16_t)symbol);
- if (code_length <= HUFF_LUT_BITS) {
- int i = 1 << (HUFF_LUT_BITS - code_length);
- base_code = ReverseBitsShort(code, code_length);
- do {
- int idx;
- --i;
- idx = base_code | (i << code_length);
- tree->lut_symbol_[idx] = (int16_t)symbol;
- tree->lut_bits_[idx] = (uint8_t)code_length;
- } while (i > 0);
- } else {
- base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
- HUFF_LUT_BITS);
- }
- while (code_length-- > 0) {
- if (node >= max_node) {
- return 0;
- }
- if (NodeIsEmpty(node)) {
- if (IsFull(tree)) return 0; /* error: too many symbols. */
- AssignChildren(tree, node);
- } else if (!HuffmanTreeNodeIsNotLeaf(node)) {
- return 0; /* leaf is already occupied. */
+ table = root_table;
+ table_bits = root_bits;
+ table_size = 1 << table_bits;
+ total_size = table_size;
+
+ /* special case code with only one value */
+ if (offset[MAX_LENGTH] == 1) {
+ code.bits = 0;
+ code.value = (uint16_t)sorted[0];
+ for (key = 0; key < total_size; ++key) {
+ table[key] = code;
}
- node += node->children_ + ((code >> code_length) & 1);
- if (--step == 0) {
- tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
- }
- }
- if (NodeIsEmpty(node)) {
- node->children_ = 0; /* turn newly created node into a leaf. */
- } else if (HuffmanTreeNodeIsNotLeaf(node)) {
- return 0; /* trying to assign a symbol to already used code. */
+ free(sorted);
+ return total_size;
}
- node->symbol_ = symbol; /* Add symbol in this node. */
- return 1;
-}
-
-int BrotliHuffmanTreeBuildImplicit(HuffmanTree* const tree,
- const uint8_t* const code_lengths,
- int code_lengths_size) {
- int symbol;
- int num_symbols = 0;
- int root_symbol = 0;
-
- assert(tree != NULL);
- assert(code_lengths != NULL);
- /* Find out number of symbols and the root symbol. */
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > 0) {
- /* Note: code length = 0 indicates non-existent symbol. */
- ++num_symbols;
- root_symbol = symbol;
+ /* fill in root table */
+ key = 0;
+ symbol = 0;
+ for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
+ for (; count[len] > 0; --count[len]) {
+ code.bits = (uint8_t)(len);
+ code.value = (uint16_t)sorted[symbol++];
+ ReplicateValue(&table[key], step, table_size, code);
+ key = GetNextKey(key, len);
}
}
- /* Initialize the tree. Will fail for num_symbols = 0 */
- if (!TreeInit(tree, num_symbols)) return 0;
-
- /* Build tree. */
- if (num_symbols == 1) { /* Trivial case. */
- const int max_symbol = code_lengths_size;
- if (root_symbol < 0 || root_symbol >= max_symbol) {
- BrotliHuffmanTreeRelease(tree);
- return 0;
- }
- return TreeAddSymbol(tree, root_symbol, 0, 0);
- } else { /* Normal case. */
- int ok = 0;
-
- /* Get Huffman codes from the code lengths. */
- int* const codes =
- (int*)BrotliSafeMalloc((uint64_t)code_lengths_size, sizeof(*codes));
- if (codes == NULL) goto End;
-
- if (!HuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) {
- goto End;
- }
-
- /* Add symbols one-by-one. */
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > 0) {
- if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) {
- goto End;
- }
+ /* fill in 2nd level tables and add pointers to root table */
+ mask = total_size - 1;
+ low = -1;
+ for (len = root_bits + 1, step = 2; len <= MAX_LENGTH; ++len, step <<= 1) {
+ for (; count[len] > 0; --count[len]) {
+ if ((key & mask) != low) {
+ table += table_size;
+ table_bits = NextTableBitSize(count, len, root_bits);
+ table_size = 1 << table_bits;
+ total_size += table_size;
+ low = key & mask;
+ root_table[low].bits = (uint8_t)(table_bits + root_bits);
+ root_table[low].value = (uint16_t)((table - root_table) - low);
}
+ code.bits = (uint8_t)(len - root_bits);
+ code.value = (uint16_t)sorted[symbol++];
+ ReplicateValue(&table[key >> root_bits], step, table_size, code);
+ key = GetNextKey(key, len);
}
- ok = 1;
- End:
- free(codes);
- ok = ok && IsFull(tree);
- if (!ok) BrotliHuffmanTreeRelease(tree);
- return ok;
}
+
+ free(sorted);
+ return total_size;
}
#if defined(__cplusplus) || defined(c_plusplus)
diff --git a/brotli/dec/huffman.h b/brotli/dec/huffman.h
index fbd0744..834b316 100644
--- a/brotli/dec/huffman.h
+++ b/brotli/dec/huffman.h
@@ -12,7 +12,7 @@
See the License for the specific language governing permissions and
limitations under the License.
- Utilities for building and looking up Huffman trees.
+ Utilities for building Huffman decoding tables.
*/
#ifndef BROTLI_DEC_HUFFMAN_H_
@@ -25,48 +25,17 @@
extern "C" {
#endif
-/* A node of a Huffman tree. */
typedef struct {
- int symbol_;
- int children_; /* delta offset to both children (contiguous) or 0 if leaf. */
-} HuffmanTreeNode;
+ uint8_t bits; /* number of bits used for this symbol */
+ uint16_t value; /* symbol value or table offset */
+} HuffmanCode;
-/* Huffman Tree. */
-#define HUFF_LUT_BITS 7
-#define HUFF_LUT (1U << HUFF_LUT_BITS)
-typedef struct HuffmanTree HuffmanTree;
-struct HuffmanTree {
- /* Fast lookup for short bit lengths. */
- uint8_t lut_bits_[HUFF_LUT];
- int16_t lut_symbol_[HUFF_LUT];
- int16_t lut_jump_[HUFF_LUT];
- /* Complete tree for lookups. */
- HuffmanTreeNode* root_; /* all the nodes, starting at root. */
- int max_nodes_; /* max number of nodes */
- int num_nodes_; /* number of currently occupied nodes */
-};
-
-/* Returns true if the given node is not a leaf of the Huffman tree. */
-static BROTLI_INLINE int HuffmanTreeNodeIsNotLeaf(
- const HuffmanTreeNode* const node) {
- return node->children_;
-}
-
-/* Go down one level. Most critical function. 'right_child' must be 0 or 1. */
-static BROTLI_INLINE const HuffmanTreeNode* HuffmanTreeNextNode(
- const HuffmanTreeNode* node, int right_child) {
- return node + node->children_ + right_child;
-}
-
-/* Releases the nodes of the Huffman tree. */
-/* Note: It does NOT free 'tree' itself. */
-void BrotliHuffmanTreeRelease(HuffmanTree* const tree);
-
-/* Builds Huffman tree assuming code lengths are implicitly in symbol order. */
+/* Builds Huffman lookup table assuming code lengths are in symbol order. */
/* Returns false in case of error (invalid tree or memory error). */
-int BrotliHuffmanTreeBuildImplicit(HuffmanTree* const tree,
- const uint8_t* const code_lengths,
- int code_lengths_size);
+int BrotliBuildHuffmanTable(HuffmanCode* root_table,
+ int root_bits,
+ const uint8_t* const code_lengths,
+ int code_lengths_size);
#if defined(__cplusplus) || defined(c_plusplus)
} /* extern "C" */
diff --git a/brotli/enc/backward_references.cc b/brotli/enc/backward_references.cc
index 0e7f89b..f76d7d4 100644
--- a/brotli/enc/backward_references.cc
+++ b/brotli/enc/backward_references.cc
@@ -45,66 +45,97 @@ void CreateBackwardReferences(size_t num_bytes,
average_cost /= num_bytes;
hasher->set_average_cost(average_cost);
+ // M1 match is for considering for two repeated copies, if moving
+ // one literal form the previous copy to the current one allows the
+ // current copy to be more efficient (because the way static dictionary
+ // codes words). M1 matching improves text compression density by ~0.15 %.
+ bool match_found_M1 = false;
+ size_t best_len_M1 = 0;
+ size_t best_len_code_M1 = 0;
+ size_t best_dist_M1 = 0;
+ double best_score_M1 = 0;
while (i + 2 < i_end) {
size_t best_len = 0;
size_t best_len_code = 0;
size_t best_dist = 0;
double best_score = 0;
size_t max_distance = std::min(i + i_diff, max_backward_limit);
+ bool in_dictionary;
hasher->set_insert_length(insert_length);
bool match_found = hasher->FindLongestMatch(
ringbuffer, literal_cost, ringbuffer_mask,
i + i_diff, i_end - i, max_distance,
- &best_len, &best_len_code, &best_dist, &best_score);
+ &best_len, &best_len_code, &best_dist, &best_score, &in_dictionary);
+ bool best_in_dictionary = in_dictionary;
if (match_found) {
- // Found a match. Let's look for something even better ahead.
- int delayed_backward_references_in_row = 0;
- while (i + 4 < i_end &&
- delayed_backward_references_in_row < 4) {
- size_t best_len_2 = 0;
- size_t best_len_code_2 = 0;
- size_t best_dist_2 = 0;
- double best_score_2 = 0;
- max_distance = std::min(i + i_diff + 1, max_backward_limit);
+ if (match_found_M1 && best_score_M1 > best_score) {
+ // Two copies after each other. Take the last literal from the
+ // last copy, and use it as the first of this one.
+ (commands->rbegin())->copy_length_ -= 1;
+ (commands->rbegin())->copy_length_code_ -= 1;
hasher->Store(ringbuffer + i, i + i_diff);
- match_found = hasher->FindLongestMatch(
- ringbuffer, literal_cost, ringbuffer_mask,
- i + i_diff + 1, i_end - i - 1, max_distance,
- &best_len_2, &best_len_code_2, &best_dist_2, &best_score_2);
- double cost_diff_lazy = 0;
- if (best_len >= 4) {
- cost_diff_lazy +=
- literal_cost[(i + 4) & ringbuffer_mask] - average_cost;
- }
- {
- const int tail_length = best_len_2 - best_len + 1;
- for (int k = 0; k < tail_length; ++k) {
- cost_diff_lazy -=
- literal_cost[(i + best_len + k) & ringbuffer_mask] -
- average_cost;
+ --i;
+ best_len = best_len_M1;
+ best_len_code = best_len_code_M1;
+ best_dist = best_dist_M1;
+ best_score = best_score_M1;
+ // in_dictionary doesn't need to be correct, but it is the only
+ // reason why M1 matching should be beneficial here. Setting it here
+ // will only disable further M1 matching against this copy.
+ best_in_dictionary = true;
+ in_dictionary = true;
+ } else {
+ // Found a match. Let's look for something even better ahead.
+ int delayed_backward_references_in_row = 0;
+ while (i + 4 < i_end &&
+ delayed_backward_references_in_row < 4) {
+ size_t best_len_2 = 0;
+ size_t best_len_code_2 = 0;
+ size_t best_dist_2 = 0;
+ double best_score_2 = 0;
+ max_distance = std::min(i + i_diff + 1, max_backward_limit);
+ hasher->Store(ringbuffer + i, i + i_diff);
+ match_found = hasher->FindLongestMatch(
+ ringbuffer, literal_cost, ringbuffer_mask,
+ i + i_diff + 1, i_end - i - 1, max_distance,
+ &best_len_2, &best_len_code_2, &best_dist_2, &best_score_2,
+ &in_dictionary);
+ double cost_diff_lazy = 0;
+ if (best_len >= 4) {
+ cost_diff_lazy +=
+ literal_cost[(i + 4) & ringbuffer_mask] - average_cost;
}
- }
- // If we are not inserting any symbols, inserting one is more
- // expensive than if we were inserting symbols anyways.
- if (insert_length < 1) {
- cost_diff_lazy += 0.97;
- }
- // Add bias to slightly avoid lazy matching.
- cost_diff_lazy += 2.0 + delayed_backward_references_in_row * 0.2;
- cost_diff_lazy += 0.04 * literal_cost[i & ringbuffer_mask];
+ {
+ const int tail_length = best_len_2 - best_len + 1;
+ for (int k = 0; k < tail_length; ++k) {
+ cost_diff_lazy -=
+ literal_cost[(i + best_len + k) & ringbuffer_mask] -
+ average_cost;
+ }
+ }
+ // If we are not inserting any symbols, inserting one is more
+ // expensive than if we were inserting symbols anyways.
+ if (insert_length < 1) {
+ cost_diff_lazy += 0.97;
+ }
+ // Add bias to slightly avoid lazy matching.
+ cost_diff_lazy += 2.0 + delayed_backward_references_in_row * 0.2;
+ cost_diff_lazy += 0.04 * literal_cost[i & ringbuffer_mask];
- if (match_found && best_score_2 >= best_score + cost_diff_lazy) {
- // Ok, let's just write one byte for now and start a match from the
- // next byte.
- ++insert_length;
- ++delayed_backward_references_in_row;
- best_len = best_len_2;
- best_len_code = best_len_code_2;
- best_dist = best_dist_2;
- best_score = best_score_2;
- i++;
- } else {
- break;
+ if (match_found && best_score_2 >= best_score + cost_diff_lazy) {
+ // Ok, let's just write one byte for now and start a match from the
+ // next byte.
+ ++insert_length;
+ ++delayed_backward_references_in_row;
+ best_len = best_len_2;
+ best_len_code = best_len_code_2;
+ best_dist = best_dist_2;
+ best_score = best_score_2;
+ best_in_dictionary = in_dictionary;
+ i++;
+ } else {
+ break;
+ }
}
}
Command cmd;
@@ -117,13 +148,40 @@ void CreateBackwardReferences(size_t num_bytes,
insert_length = 0;
++i;
- for (int j = 1; j < best_len; ++j) {
+ // Copy all copied literals to the hasher, except the last one.
+ // We cannot store the last one yet, otherwise we couldn't find
+ // the possible M1 match.
+ for (int j = 1; j < best_len - 1; ++j) {
if (i + 2 < i_end) {
hasher->Store(ringbuffer + i, i + i_diff);
}
++i;
}
+ // Prepare M1 match.
+ if (best_len >= 4 && i + 20 < i_end && !best_in_dictionary) {
+ max_distance = std::min(i + i_diff, max_backward_limit);
+ match_found_M1 = hasher->FindLongestMatch(
+ ringbuffer, literal_cost, ringbuffer_mask,
+ i + i_diff, i_end - i, max_distance,
+ &best_len_M1, &best_len_code_M1, &best_dist_M1, &best_score_M1,
+ &in_dictionary);
+ } else {
+ match_found_M1 = false;
+ in_dictionary = false;
+ }
+ // This byte is just moved from the previous copy to the current,
+ // that is no gain.
+ best_score_M1 -= literal_cost[i & ringbuffer_mask];
+ // Adjust for losing the opportunity for lazy matching.
+ best_score_M1 -= 3.75;
+
+ // Store the last one of the match.
+ if (i + 2 < i_end) {
+ hasher->Store(ringbuffer + i, i + i_diff);
+ }
+ ++i;
} else {
+ match_found_M1 = false;
++insert_length;
hasher->Store(ringbuffer + i, i + i_diff);
++i;
diff --git a/brotli/enc/bit_cost.h b/brotli/enc/bit_cost.h
index c769455..c2fd3e4 100644
--- a/brotli/enc/bit_cost.h
+++ b/brotli/enc/bit_cost.h
@@ -93,7 +93,7 @@ static inline int HuffmanBitCost(const uint8_t* depth, int length) {
cost[17] += 3;
int tree_size = 0;
- int bits = 6 + 3 * max_depth; // huffman tree of huffman tree cost
+ int bits = 6 + 2 * max_depth; // huffman tree of huffman tree cost
for (int i = 0; i < kCodeLengthCodes; ++i) {
bits += histogram[i] * cost[i]; // huffman tree bit cost
tree_size += histogram[i];
diff --git a/brotli/enc/block_splitter.cc b/brotli/enc/block_splitter.cc
index 34363c4..57c1e90 100644
--- a/brotli/enc/block_splitter.cc
+++ b/brotli/enc/block_splitter.cc
@@ -31,16 +31,16 @@
namespace brotli {
-static const int kMaxLiteralHistograms = 48;
+static const int kMaxLiteralHistograms = 100;
static const int kMaxCommandHistograms = 50;
static const double kLiteralBlockSwitchCost = 26;
static const double kCommandBlockSwitchCost = 13.5;
static const double kDistanceBlockSwitchCost = 14.6;
static const int kLiteralStrideLength = 70;
static const int kCommandStrideLength = 40;
-static const int kSymbolsPerLiteralHistogram = 550;
+static const int kSymbolsPerLiteralHistogram = 544;
static const int kSymbolsPerCommandHistogram = 530;
-static const int kSymbolsPerDistanceHistogram = 550;
+static const int kSymbolsPerDistanceHistogram = 544;
static const int kMinLengthForBlockSplitting = 128;
static const int kIterMulForRefining = 2;
static const int kMinItersForRefining = 100;
diff --git a/brotli/enc/encode.cc b/brotli/enc/encode.cc
index b492421..6603eec 100644
--- a/brotli/enc/encode.cc
+++ b/brotli/enc/encode.cc
@@ -77,6 +77,68 @@ void EncodeVarLenUint8(int n, int* storage_ix, uint8_t* storage) {
}
}
+int ParseAsUTF8(int* symbol, const uint8_t* input, int size) {
+ // ASCII
+ if ((input[0] & 0x80) == 0) {
+ *symbol = input[0];
+ if (*symbol > 0) {
+ return 1;
+ }
+ }
+ // 2-byte UTF8
+ if (size > 1 &&
+ (input[0] & 0xe0) == 0xc0 &&
+ (input[1] & 0xc0) == 0x80) {
+ *symbol = (((input[0] & 0x1f) << 6) |
+ (input[1] & 0x3f));
+ if (*symbol > 0x7f) {
+ return 2;
+ }
+ }
+ // 3-byte UFT8
+ if (size > 2 &&
+ (input[0] & 0xf0) == 0xe0 &&
+ (input[1] & 0xc0) == 0x80 &&
+ (input[2] & 0xc0) == 0x80) {
+ *symbol = (((input[0] & 0x0f) << 12) |
+ ((input[1] & 0x3f) << 6) |
+ (input[2] & 0x3f));
+ if (*symbol > 0x7ff) {
+ return 3;
+ }
+ }
+ // 4-byte UFT8
+ if (size > 3 &&
+ (input[0] & 0xf8) == 0xf0 &&
+ (input[1] & 0xc0) == 0x80 &&
+ (input[2] & 0xc0) == 0x80 &&
+ (input[3] & 0xc0) == 0x80) {
+ *symbol = (((input[0] & 0x07) << 18) |
+ ((input[1] & 0x3f) << 12) |
+ ((input[2] & 0x3f) << 6) |
+ (input[3] & 0x3f));
+ if (*symbol > 0xffff && *symbol <= 0x10ffff) {
+ return 4;
+ }
+ }
+ // Not UTF8, emit a special symbol above the UTF8-code space
+ *symbol = 0x110000 | input[0];
+ return 1;
+}
+
+// Returns true if at least min_fraction of the data is UTF8-encoded.
+bool IsMostlyUTF8(const uint8_t* data, size_t length, double min_fraction) {
+ size_t size_utf8 = 0;
+ size_t pos = 0;
+ while (pos < length) {
+ int symbol;
+ int bytes_read = ParseAsUTF8(&symbol, data + pos, length - pos);
+ pos += bytes_read;
+ if (symbol < 0x110000) size_utf8 += bytes_read;
+ }
+ return size_utf8 > min_fraction * length;
+}
+
void EncodeMetaBlockLength(size_t meta_block_size,
bool is_last,
bool is_uncompressed,
@@ -118,7 +180,7 @@ void StoreHuffmanTreeOfHuffmanTreeToBitMask(
const uint8_t* code_length_bitdepth,
int* storage_ix, uint8_t* storage) {
static const uint8_t kStorageOrder[kCodeLengthCodes] = {
- 1, 2, 3, 4, 0, 17, 5, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15,
};
// Throw away trailing zeros:
int codes_to_store = kCodeLengthCodes;
@@ -147,7 +209,7 @@ void StoreHuffmanTreeOfHuffmanTreeToBitMask(
WriteBits(2, skip_some, storage_ix, storage);
for (int i = skip_some; i < codes_to_store; ++i) {
uint8_t len[] = { 2, 4, 3, 2, 2, 4 };
- uint8_t bits[] = { 0, 5, 1, 3, 2, 13 };
+ uint8_t bits[] = { 0, 7, 3, 2, 1, 15 };
int v = code_length_bitdepth[kStorageOrder[i]];
WriteBits(len[v], bits[v], storage_ix, storage);
}
@@ -175,54 +237,49 @@ void StoreHuffmanTreeToBitMask(
}
template<int kSize>
-void StoreHuffmanCode(const EntropyCode<kSize>& code, int alphabet_size,
- int* storage_ix, uint8_t* storage) {
+void StoreHuffmanCodeSimple(
+ const EntropyCode<kSize>& code, int alphabet_size,
+ int max_bits,
+ int* storage_ix, uint8_t* storage) {
const uint8_t *depth = &code.depth_[0];
- int max_bits_counter = alphabet_size - 1;
- int max_bits = 0;
- while (max_bits_counter) {
- max_bits_counter >>= 1;
- ++max_bits;
- }
- if (code.count_ == 0) { // emit minimal tree for empty cases
- // bits: small tree marker: 1, count-1: 0, max_bits-sized encoding for 0
- WriteBits(4 + max_bits, 0x1, storage_ix, storage);
- return;
- }
- if (code.count_ <= 4) {
- int symbols[4];
- // Quadratic sort.
- int k, j;
- for (k = 0; k < code.count_; ++k) {
- symbols[k] = code.symbols_[k];
- }
- for (k = 0; k < code.count_; ++k) {
- for (j = k + 1; j < code.count_; ++j) {
- if (depth[symbols[j]] < depth[symbols[k]]) {
- int t = symbols[k];
- symbols[k] = symbols[j];
- symbols[j] = t;
- }
+ int symbols[4];
+ // Quadratic sort.
+ int k, j;
+ for (k = 0; k < code.count_; ++k) {
+ symbols[k] = code.symbols_[k];
+ }
+ for (k = 0; k < code.count_; ++k) {
+ for (j = k + 1; j < code.count_; ++j) {
+ if (depth[symbols[j]] < depth[symbols[k]]) {
+ int t = symbols[k];
+ symbols[k] = symbols[j];
+ symbols[j] = t;
}
}
- // Small tree marker to encode 1-4 symbols.
- WriteBits(2, 1, storage_ix, storage);
- WriteBits(2, code.count_ - 1, storage_ix, storage);
- for (int i = 0; i < code.count_; ++i) {
- WriteBits(max_bits, symbols[i], storage_ix, storage);
- }
- if (code.count_ == 4) {
- if (depth[symbols[0]] == 2 &&
- depth[symbols[1]] == 2 &&
- depth[symbols[2]] == 2 &&
- depth[symbols[3]] == 2) {
- WriteBits(1, 0, storage_ix, storage);
- } else {
- WriteBits(1, 1, storage_ix, storage);
- }
+ }
+ // Small tree marker to encode 1-4 symbols.
+ WriteBits(2, 1, storage_ix, storage);
+ WriteBits(2, code.count_ - 1, storage_ix, storage);
+ for (int i = 0; i < code.count_; ++i) {
+ WriteBits(max_bits, symbols[i], storage_ix, storage);
+ }
+ if (code.count_ == 4) {
+ if (depth[symbols[0]] == 2 &&
+ depth[symbols[1]] == 2 &&
+ depth[symbols[2]] == 2 &&
+ depth[symbols[3]] == 2) {
+ WriteBits(1, 0, storage_ix, storage);
+ } else {
+ WriteBits(1, 1, storage_ix, storage);
}
- return;
}
+}
+
+template<int kSize>
+void StoreHuffmanCodeComplex(
+ const EntropyCode<kSize>& code, int alphabet_size,
+ int* storage_ix, uint8_t* storage) {
+ const uint8_t *depth = &code.depth_[0];
uint8_t huffman_tree[kSize];
uint8_t huffman_tree_extra_bits[kSize];
int huffman_tree_size = 0;
@@ -246,6 +303,31 @@ void StoreHuffmanCode(const EntropyCode<kSize>& code, int alphabet_size,
storage_ix, storage);
}
+
+template<int kSize>
+void StoreHuffmanCode(const EntropyCode<kSize>& code, int alphabet_size,
+ int* storage_ix, uint8_t* storage) {
+ int max_bits_counter = alphabet_size - 1;
+ int max_bits = 0;
+ while (max_bits_counter) {
+ max_bits_counter >>= 1;
+ ++max_bits;
+ }
+ if (code.count_ == 0) {
+ // Emit a minimal tree for empty cases.
+ // bits: small tree marker: 1, count-1: 0, max_bits-sized encoding for 0
+ WriteBits(4 + max_bits, 0x1, storage_ix, storage);
+ } else if (code.count_ <= 4) {
+ StoreHuffmanCodeSimple(
+ code, alphabet_size, max_bits,
+ storage_ix, storage);
+ } else {
+ StoreHuffmanCodeComplex(
+ code, alphabet_size,
+ storage_ix, storage);
+ }
+}
+
template<int kSize>
void StoreHuffmanCodes(const std::vector<EntropyCode<kSize> >& codes,
int alphabet_size,
@@ -798,12 +880,23 @@ void BrotliCompressor::WriteMetaBlock(const size_t input_size,
const bool is_last,
size_t* encoded_size,
uint8_t* encoded_buffer) {
+ static const double kMinUTF8Ratio = 0.75;
+ bool utf8_mode = false;
std::vector<Command> commands;
if (input_size > 0) {
ringbuffer_.Write(input_buffer, input_size);
- EstimateBitCostsForLiterals(input_pos_, input_size,
- kRingBufferMask, ringbuffer_.start(),
- &literal_cost_[0]);
+ utf8_mode = IsMostlyUTF8(
+ &ringbuffer_.start()[input_pos_ & kRingBufferMask],
+ input_size, kMinUTF8Ratio);
+ if (utf8_mode) {
+ EstimateBitCostsForLiteralsUTF8(input_pos_, input_size,
+ kRingBufferMask, ringbuffer_.start(),
+ &literal_cost_[0]);
+ } else {
+ EstimateBitCostsForLiterals(input_pos_, input_size,
+ kRingBufferMask, ringbuffer_.start(),
+ &literal_cost_[0]);
+ }
CreateBackwardReferences(input_size, input_pos_,
ringbuffer_.start(),
&literal_cost_[0],
diff --git a/brotli/enc/entropy_encode.cc b/brotli/enc/entropy_encode.cc
index e4c6b20..1ec50f1 100644
--- a/brotli/enc/entropy_encode.cc
+++ b/brotli/enc/entropy_encode.cc
@@ -182,6 +182,12 @@ void WriteHuffmanTreeRepetitions(
++(*tree_size);
--repetitions;
}
+ if (repetitions == 7) {
+ tree[*tree_size] = value;
+ extra_bits[*tree_size] = 0;
+ ++(*tree_size);
+ --repetitions;
+ }
if (repetitions < 3) {
for (int i = 0; i < repetitions; ++i) {
tree[*tree_size] = value;
@@ -208,6 +214,12 @@ void WriteHuffmanTreeRepetitionsZeros(
uint8_t* tree,
uint8_t* extra_bits,
int* tree_size) {
+ if (repetitions == 11) {
+ tree[*tree_size] = 0;
+ extra_bits[*tree_size] = 0;
+ ++(*tree_size);
+ --repetitions;
+ }
if (repetitions < 3) {
for (int i = 0; i < repetitions; ++i) {
tree[*tree_size] = 0;
@@ -230,11 +242,6 @@ void WriteHuffmanTreeRepetitionsZeros(
}
-// Heuristics for selecting the stride ranges to collapse.
-int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
- return abs(a - b) < 4;
-}
-
int OptimizeHuffmanCountsForRle(int length, int* counts) {
int stride;
int limit;
@@ -251,6 +258,35 @@ int OptimizeHuffmanCountsForRle(int length, int* counts) {
break;
}
}
+ {
+ int nonzeros = 0;
+ int smallest_nonzero = 1 << 30;
+ for (i = 0; i < length; ++i) {
+ if (counts[i] != 0) {
+ ++nonzeros;
+ if (smallest_nonzero > counts[i]) {
+ smallest_nonzero = counts[i];
+ }
+ }
+ }
+ if (nonzeros < 5) {
+ // Small histogram will model it well.
+ return 1;
+ }
+ int zeros = length - nonzeros;
+ if (smallest_nonzero < 4) {
+ if (zeros < 6) {
+ for (i = 1; i < length - 1; ++i) {
+ if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
+ counts[i] = 1;
+ }
+ }
+ }
+ }
+ if (nonzeros < 28) {
+ return 1;
+ }
+ }
// 2) Let's mark all population counts that already can be encoded
// with an rle code.
good_for_rle = (uint8_t*)calloc(length, 1);
@@ -282,13 +318,15 @@ int OptimizeHuffmanCountsForRle(int length, int* counts) {
}
}
// 3) Let's replace those population counts that lead to more rle codes.
+ // Math here is in 24.8 fixed point representation.
+ const int streak_limit = 1240;
stride = 0;
- limit = (counts[0] + counts[1] + counts[2]) / 3 + 1;
+ limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
sum = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || good_for_rle[i] ||
(i != 0 && good_for_rle[i - 1]) ||
- !ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
+ abs(256 * counts[i] - limit) >= streak_limit) {
if (stride >= 4 || (stride >= 3 && sum == 0)) {
int k;
// The stride must end, collapse what we have, if we have enough (4).
@@ -311,9 +349,9 @@ int OptimizeHuffmanCountsForRle(int length, int* counts) {
if (i < length - 2) {
// All interesting strides have a count of at least 4,
// at least when non-zeros.
- limit = (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 1;
+ limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
} else if (i < length) {
- limit = counts[i];
+ limit = 256 * counts[i];
} else {
limit = 0;
}
@@ -322,7 +360,10 @@ int OptimizeHuffmanCountsForRle(int length, int* counts) {
if (i != length) {
sum += counts[i];
if (stride >= 4) {
- limit = (sum + stride / 2) / stride;
+ limit = (256 * sum + stride / 2) / stride;
+ }
+ if (stride == 4) {
+ limit += 120;
}
}
}
@@ -331,16 +372,70 @@ int OptimizeHuffmanCountsForRle(int length, int* counts) {
}
+static void DecideOverRleUse(const uint8_t* depth, const int length,
+ bool *use_rle_for_non_zero,
+ bool *use_rle_for_zero) {
+ int total_reps_zero = 0;
+ int total_reps_non_zero = 0;
+ int count_reps_zero = 0;
+ int count_reps_non_zero = 0;
+ int new_length = length;
+ for (int i = 0; i < length; ++i) {
+ if (depth[length - i - 1] == 0) {
+ --new_length;
+ } else {
+ break;
+ }
+ }
+ for (uint32_t i = 0; i < new_length;) {
+ const int value = depth[i];
+ int reps = 1;
+ // Find rle coding for longer codes.
+ // Shorter codes seem not to benefit from rle.
+ for (uint32_t k = i + 1; k < new_length && depth[k] == value; ++k) {
+ ++reps;
+ }
+ if (reps >= 3 && value == 0) {
+ total_reps_zero += reps;
+ ++count_reps_zero;
+ }
+ if (reps >= 4 && value != 0) {
+ total_reps_non_zero += reps;
+ ++count_reps_non_zero;
+ }
+ i += reps;
+ }
+ total_reps_non_zero -= count_reps_non_zero * 2;
+ total_reps_zero -= count_reps_zero * 2;
+ *use_rle_for_non_zero = total_reps_non_zero > 2;
+ *use_rle_for_zero = total_reps_zero > 2;
+}
+
+
void WriteHuffmanTree(const uint8_t* depth, const int length,
uint8_t* tree,
uint8_t* extra_bits_data,
int* huffman_tree_size) {
int previous_value = 8;
+
+ // First gather statistics on if it is a good idea to do rle.
+ bool use_rle_for_non_zero;
+ bool use_rle_for_zero;
+ DecideOverRleUse(depth, length, &use_rle_for_non_zero, &use_rle_for_zero);
+
+ // Actual rle coding.
for (uint32_t i = 0; i < length;) {
const int value = depth[i];
int reps = 1;
- for (uint32_t k = i + 1; k < length && depth[k] == value; ++k) {
- ++reps;
+ if (length > 50) {
+ // Find rle coding for longer codes.
+ // Shorter codes seem not to benefit from rle.
+ if ((value != 0 && use_rle_for_non_zero) ||
+ (value == 0 && use_rle_for_zero)) {
+ for (uint32_t k = i + 1; k < length && depth[k] == value; ++k) {
+ ++reps;
+ }
+ }
}
if (value == 0) {
WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data,
diff --git a/brotli/enc/entropy_encode.h b/brotli/enc/entropy_encode.h
index 89c3e1a..aabb9a5 100644
--- a/brotli/enc/entropy_encode.h
+++ b/brotli/enc/entropy_encode.h
@@ -86,7 +86,7 @@ void BuildEntropyCode(const Histogram<kSize>& histogram,
++code->count_;
}
}
- if (code->count_ >= 64) {
+ if (alphabet_size >= 50 && code->count_ >= 16) {
int counts[kSize];
memcpy(counts, &histogram.data_[0], sizeof(counts[0]) * kSize);
OptimizeHuffmanCountsForRle(alphabet_size, counts);
diff --git a/brotli/enc/hash.h b/brotli/enc/hash.h
index cb38e8f..920c88b 100644
--- a/brotli/enc/hash.h
+++ b/brotli/enc/hash.h
@@ -150,7 +150,10 @@ class HashLongestMatch {
size_t * __restrict best_len_out,
size_t * __restrict best_len_code_out,
size_t * __restrict best_distance_out,
- double * __restrict best_score_out) {
+ double * __restrict best_score_out,
+ bool * __restrict in_dictionary) {
+ *in_dictionary = true;
+ *best_len_code_out = 0;
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
const double start_cost4 = literal_cost == NULL ? 20 :
literal_cost[cur_ix_masked] +
@@ -166,9 +169,9 @@ class HashLongestMatch {
literal_cost[(cur_ix + 1) & ring_buffer_mask] + 1.2;
bool match_found = false;
// Don't accept a short copy from far away.
- double best_score = 8.25;
+ double best_score = 8.11;
if (insert_length_ < 4) {
- double cost_diff[4] = { 0.20, 0.09, 0.05, 0.03 };
+ double cost_diff[4] = { 0.10, 0.04, 0.02, 0.01 };
best_score += cost_diff[insert_length_];
}
size_t best_len = *best_len_out;
@@ -235,6 +238,7 @@ class HashLongestMatch {
*best_distance_out = best_ix;
*best_score_out = best_score;
match_found = true;
+ *in_dictionary = backward > max_backward;
}
}
}
@@ -257,7 +261,7 @@ class HashLongestMatch {
continue;
}
int len = 2;
- const double score = start_cost2 - 1.70 * Log2Floor(backward);
+ const double score = start_cost2 - 2.3 * Log2Floor(backward);
if (best_score < score) {
best_score = score;
@@ -309,6 +313,7 @@ class HashLongestMatch {
*best_distance_out = best_ix;
*best_score_out = best_score;
match_found = true;
+ *in_dictionary = false;
}
}
}
diff --git a/brotli/enc/literal_cost.cc b/brotli/enc/literal_cost.cc
index bf05a98..a944599 100644
--- a/brotli/enc/literal_cost.cc
+++ b/brotli/enc/literal_cost.cc
@@ -22,6 +22,104 @@
namespace brotli {
+static int UTF8Position(int last, int c, int clamp) {
+ if (c < 128) {
+ return 0; // Next one is the 'Byte 1' again.
+ } else if (c >= 192) {
+ return std::min(1, clamp); // Next one is the 'Byte 2' of utf-8 encoding.
+ } else {
+ // Let's decide over the last byte if this ends the sequence.
+ if (last < 0xe0) {
+ return 0; // Completed two or three byte coding.
+ } else {
+ return std::min(2, clamp); // Next one is the 'Byte 3' of utf-8 encoding.
+ }
+ }
+}
+
+static int DecideMultiByteStatsLevel(size_t pos, size_t len, size_t mask,
+ const uint8_t *data) {
+ int counts[3] = { 0 };
+ int max_utf8 = 1; // should be 2, but 1 compresses better.
+ int last_c = 0;
+ int utf8_pos = 0;
+ for (int i = 0; i < len; ++i) {
+ int c = data[(pos + i) & mask];
+ utf8_pos = UTF8Position(last_c, c, 2);
+ ++counts[utf8_pos];
+ last_c = c;
+ }
+ if (counts[2] < 500) {
+ max_utf8 = 1;
+ }
+ if (counts[1] + counts[2] < 25) {
+ max_utf8 = 0;
+ }
+ return max_utf8;
+}
+
+void EstimateBitCostsForLiteralsUTF8(size_t pos, size_t len, size_t mask,
+ const uint8_t *data, float *cost) {
+
+ // max_utf8 is 0 (normal ascii single byte modeling),
+ // 1 (for 2-byte utf-8 modeling), or 2 (for 3-byte utf-8 modeling).
+ const int max_utf8 = DecideMultiByteStatsLevel(pos, len, mask, data);
+ int histogram[3][256] = { { 0 } };
+ int window_half = 495;
+ int in_window = std::min(static_cast<size_t>(window_half), len);
+ int in_window_utf8[3] = { 0 };
+
+ // Bootstrap histograms.
+ int last_c = 0;
+ int utf8_pos = 0;
+ for (int i = 0; i < in_window; ++i) {
+ int c = data[(pos + i) & mask];
+ ++histogram[utf8_pos][c];
+ ++in_window_utf8[utf8_pos];
+ utf8_pos = UTF8Position(last_c, c, max_utf8);
+ last_c = c;
+ }
+
+ // Compute bit costs with sliding window.
+ for (int i = 0; i < len; ++i) {
+ if (i - window_half >= 0) {
+ // Remove a byte in the past.
+ int c = (i - window_half - 1) < 0 ?
+ 0 : data[(pos + i - window_half - 1) & mask];
+ int last_c = (i - window_half - 2) < 0 ?
+ 0 : data[(pos + i - window_half - 2) & mask];
+ int utf8_pos2 = UTF8Position(last_c, c, max_utf8);
+ --histogram[utf8_pos2][data[(pos + i - window_half) & mask]];
+ --in_window_utf8[utf8_pos2];
+ }
+ if (i + window_half < len) {
+ // Add a byte in the future.
+ int c = (i + window_half - 1) < 0 ?
+ 0 : data[(pos + i + window_half - 1) & mask];
+ int last_c = (i + window_half - 2) < 0 ?
+ 0 : data[(pos + i + window_half - 2) & mask];
+ int utf8_pos2 = UTF8Position(last_c, c, max_utf8);
+ ++histogram[utf8_pos2][data[(pos + i + window_half) & mask]];
+ ++in_window_utf8[utf8_pos2];
+ }
+ int c = i < 1 ? 0 : data[(pos + i - 1) & mask];
+ int last_c = i < 2 ? 0 : data[(pos + i - 2) & mask];
+ int utf8_pos = UTF8Position(last_c, c, max_utf8);
+ int masked_pos = (pos + i) & mask;
+ int histo = histogram[utf8_pos][data[masked_pos]];
+ if (histo == 0) {
+ histo = 1;
+ }
+ cost[masked_pos] = log2(static_cast<double>(in_window_utf8[utf8_pos])
+ / histo);
+ cost[masked_pos] += 0.02905;
+ if (cost[masked_pos] < 1.0) {
+ cost[masked_pos] *= 0.5;
+ cost[masked_pos] += 0.5;
+ }
+ }
+}
+
void EstimateBitCostsForLiterals(size_t pos, size_t len, size_t mask,
const uint8_t *data, float *cost) {
int histogram[256] = { 0 };
@@ -59,4 +157,5 @@ void EstimateBitCostsForLiterals(size_t pos, size_t len, size_t mask,
}
}
+
} // namespace brotli
diff --git a/brotli/enc/literal_cost.h b/brotli/enc/literal_cost.h
index fd7f325..ca39a4e 100644
--- a/brotli/enc/literal_cost.h
+++ b/brotli/enc/literal_cost.h
@@ -26,7 +26,12 @@ namespace brotli {
// ringbuffer (data, mask) will take entropy coded and writes these estimates
// to the ringbuffer (cost, mask).
void EstimateBitCostsForLiterals(size_t pos, size_t len, size_t mask,
- const uint8_t *data, float *cost);
+ const uint8_t *data,
+ float *cost);
+
+void EstimateBitCostsForLiteralsUTF8(size_t pos, size_t len, size_t mask,
+ const uint8_t *data,
+ float *cost);
} // namespace brotli