summaryrefslogtreecommitdiff
path: root/src/crypto/fipsmodule/bn/prime.c
blob: 2d2ab6937f27d5c31d4bb2a3f5a3f4b6bd7b4903 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com). */

#include <openssl/bn.h>

#include <openssl/err.h>
#include <openssl/mem.h>

#include "internal.h"
#include "../../internal.h"


// kPrimes contains the first 1024 primes.
static const uint16_t kPrimes[] = {
    2,    3,    5,    7,    11,   13,   17,   19,   23,   29,   31,   37,
    41,   43,   47,   53,   59,   61,   67,   71,   73,   79,   83,   89,
    97,   101,  103,  107,  109,  113,  127,  131,  137,  139,  149,  151,
    157,  163,  167,  173,  179,  181,  191,  193,  197,  199,  211,  223,
    227,  229,  233,  239,  241,  251,  257,  263,  269,  271,  277,  281,
    283,  293,  307,  311,  313,  317,  331,  337,  347,  349,  353,  359,
    367,  373,  379,  383,  389,  397,  401,  409,  419,  421,  431,  433,
    439,  443,  449,  457,  461,  463,  467,  479,  487,  491,  499,  503,
    509,  521,  523,  541,  547,  557,  563,  569,  571,  577,  587,  593,
    599,  601,  607,  613,  617,  619,  631,  641,  643,  647,  653,  659,
    661,  673,  677,  683,  691,  701,  709,  719,  727,  733,  739,  743,
    751,  757,  761,  769,  773,  787,  797,  809,  811,  821,  823,  827,
    829,  839,  853,  857,  859,  863,  877,  881,  883,  887,  907,  911,
    919,  929,  937,  941,  947,  953,  967,  971,  977,  983,  991,  997,
    1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069,
    1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163,
    1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249,
    1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321,
    1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439,
    1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511,
    1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601,
    1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693,
    1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783,
    1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877,
    1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987,
    1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069,
    2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143,
    2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267,
    2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347,
    2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423,
    2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543,
    2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657,
    2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713,
    2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801,
    2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,
    2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011,
    3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119,
    3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221,
    3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323,
    3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413,
    3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527,
    3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607,
    3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697,
    3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797,
    3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907,
    3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003,
    4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093,
    4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211,
    4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283,
    4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409,
    4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513,
    4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621,
    4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721,
    4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813,
    4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937,
    4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011,
    5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113,
    5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233,
    5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351,
    5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443,
    5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531,
    5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653,
    5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743,
    5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849,
    5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939,
    5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073,
    6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173,
    6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271,
    6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359,
    6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473,
    6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581,
    6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701,
    6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803,
    6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907,
    6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997,
    7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121,
    7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229,
    7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349,
    7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487,
    7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561,
    7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669,
    7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757,
    7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879,
    7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009,
    8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111,
    8117, 8123, 8147, 8161,
};

// BN_prime_checks_for_size returns the number of Miller-Rabin iterations
// necessary for generating a 'bits'-bit candidate prime.
//
//
// This table is generated using the algorithm of FIPS PUB 186-4
// Digital Signature Standard (DSS), section F.1, page 117.
// (https://doi.org/10.6028/NIST.FIPS.186-4)
// The following magma script was used to generate the output:
// securitybits:=125;
// k:=1024;
// for t:=1 to 65 do
//   for M:=3 to Floor(2*Sqrt(k-1)-1) do
//     S:=0;
//     // Sum over m
//     for m:=3 to M do
//       s:=0;
//       // Sum over j
//       for j:=2 to m do
//         s+:=(RealField(32)!2)^-(j+(k-1)/j);
//       end for;
//       S+:=2^(m-(m-1)*t)*s;
//     end for;
//     A:=2^(k-2-M*t);
//     B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
//     pkt:=2.00743*Log(2)*k*2^-k*(A+B);
//     seclevel:=Floor(-Log(2,pkt));
//     if seclevel ge securitybits then
//       printf "k: %5o, security: %o bits  (t: %o, M: %o)\n",k,seclevel,t,M;
//       break;
//     end if;
//   end for;
//   if seclevel ge securitybits then break; end if;
// end for;
//
// It can be run online at: http://magma.maths.usyd.edu.au/calc
// And will output:
// k:  1024, security: 129 bits  (t: 6, M: 23)
// k is the number of bits of the prime, securitybits is the level we want to
// reach.
// prime length | RSA key size | # MR tests | security level
// -------------+--------------|------------+---------------
//  (b) >= 6394 |     >= 12788 |          3 |        256 bit
//  (b) >= 3747 |     >=  7494 |          3 |        192 bit
//  (b) >= 1345 |     >=  2690 |          4 |        128 bit
//  (b) >= 1080 |     >=  2160 |          5 |        128 bit
//  (b) >=  852 |     >=  1704 |          5 |        112 bit
//  (b) >=  476 |     >=   952 |          5 |         80 bit
//  (b) >=  400 |     >=   800 |          6 |         80 bit
//  (b) >=  347 |     >=   694 |          7 |         80 bit
//  (b) >=  308 |     >=   616 |          8 |         80 bit
//  (b) >=   55 |     >=   110 |         27 |         64 bit
//  (b) >=    6 |     >=    12 |         34 |         64 bit
static int BN_prime_checks_for_size(int bits) {
  if (bits >= 3747) {
    return 3;
  }
  if (bits >= 1345) {
    return 4;
  }
  if (bits >= 476) {
    return 5;
  }
  if (bits >= 400) {
    return 6;
  }
  if (bits >= 347) {
    return 7;
  }
  if (bits >= 308) {
    return 8;
  }
  if (bits >= 55) {
    return 27;
  }
  return 34;
}

// num_trial_division_primes returns the number of primes to try with trial
// division before using more expensive checks. For larger numbers, the value
// of excluding a candidate with trial division is larger.
static size_t num_trial_division_primes(const BIGNUM *n) {
  if (n->width * BN_BITS2 > 1024) {
    return OPENSSL_ARRAY_SIZE(kPrimes);
  }
  return OPENSSL_ARRAY_SIZE(kPrimes) / 2;
}

// BN_PRIME_CHECKS_BLINDED is the iteration count for blinding the constant-time
// primality test. See |BN_primality_test| for details. This number is selected
// so that, for a candidate N-bit RSA prime, picking |BN_PRIME_CHECKS_BLINDED|
// random N-bit numbers will have at least |BN_prime_checks_for_size(N)| values
// in range with high probability.
//
// The following Python script computes the blinding factor needed for the
// corresponding iteration count.
/*
import math

# We choose candidate RSA primes between sqrt(2)/2 * 2^N and 2^N and select
# witnesses by generating random N-bit numbers. Thus the probability of
# selecting one in range is at least sqrt(2)/2.
p = math.sqrt(2) / 2

# Target around 2^-8 probability of the blinding being insufficient given that
# key generation is a one-time, noisy operation.
epsilon = 2**-8

def choose(a, b):
  r = 1
  for i in xrange(b):
    r *= a - i
    r /= (i + 1)
  return r

def failure_rate(min_uniform, iterations):
  """ Returns the probability that, for |iterations| candidate witnesses, fewer
      than |min_uniform| of them will be uniform. """
  prob = 0.0
  for i in xrange(min_uniform):
    prob += (choose(iterations, i) *
             p**i * (1-p)**(iterations - i))
  return prob

for min_uniform in (3, 4, 5, 6, 8, 13, 19, 28):
  # Find the smallest number of iterations under the target failure rate.
  iterations = min_uniform
  while True:
    prob = failure_rate(min_uniform, iterations)
    if prob < epsilon:
      print min_uniform, iterations, prob
      break
    iterations += 1

Output:
  3 9 0.00368894873911
  4 11 0.00363319494662
  5 13 0.00336215573898
  6 15 0.00300145783158
  8 19 0.00225214119331
  13 27 0.00385610026955
  19 38 0.0021410539126
  28 52 0.00325405801769

16 iterations suffices for 400-bit primes and larger (6 uniform samples needed),
which is already well below the minimum acceptable key size for RSA.
*/
#define BN_PRIME_CHECKS_BLINDED 16

static int probable_prime(BIGNUM *rnd, int bits);
static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
                             const BIGNUM *rem, BN_CTX *ctx);
static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add,
                                  const BIGNUM *rem, BN_CTX *ctx);

BN_GENCB *BN_GENCB_new(void) {
  BN_GENCB *callback = OPENSSL_malloc(sizeof(BN_GENCB));
  if (callback == NULL) {
    return NULL;
  }
  OPENSSL_memset(callback, 0, sizeof(BN_GENCB));
  return callback;
}

void BN_GENCB_free(BN_GENCB *callback) { OPENSSL_free(callback); }

void BN_GENCB_set(BN_GENCB *callback,
                  int (*f)(int event, int n, struct bn_gencb_st *),
                  void *arg) {
  callback->callback = f;
  callback->arg = arg;
}

int BN_GENCB_call(BN_GENCB *callback, int event, int n) {
  if (!callback) {
    return 1;
  }

  return callback->callback(event, n, callback);
}

void *BN_GENCB_get_arg(const BN_GENCB *callback) { return callback->arg; }

int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
                         const BIGNUM *rem, BN_GENCB *cb) {
  BIGNUM *t;
  int found = 0;
  int i, j, c1 = 0;
  BN_CTX *ctx;
  int checks = BN_prime_checks_for_size(bits);

  if (bits < 2) {
    // There are no prime numbers this small.
    OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL);
    return 0;
  } else if (bits == 2 && safe) {
    // The smallest safe prime (7) is three bits.
    OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL);
    return 0;
  }

  ctx = BN_CTX_new();
  if (ctx == NULL) {
    goto err;
  }
  BN_CTX_start(ctx);
  t = BN_CTX_get(ctx);
  if (!t) {
    goto err;
  }

loop:
  // make a random number and set the top and bottom bits
  if (add == NULL) {
    if (!probable_prime(ret, bits)) {
      goto err;
    }
  } else {
    if (safe) {
      if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) {
        goto err;
      }
    } else {
      if (!probable_prime_dh(ret, bits, add, rem, ctx)) {
        goto err;
      }
    }
  }

  if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, c1++)) {
    // aborted
    goto err;
  }

  if (!safe) {
    i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
    if (i == -1) {
      goto err;
    } else if (i == 0) {
      goto loop;
    }
  } else {
    // for "safe prime" generation, check that (p-1)/2 is prime. Since a prime
    // is odd, We just need to divide by 2
    if (!BN_rshift1(t, ret)) {
      goto err;
    }

    // Interleave |ret| and |t|'s primality tests to avoid paying the full
    // iteration count on |ret| only to quickly discover |t| is composite.
    //
    // TODO(davidben): This doesn't quite work because an iteration count of 1
    // still runs the blinding mechanism.
    for (i = 0; i < checks; i++) {
      j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, NULL);
      if (j == -1) {
        goto err;
      } else if (j == 0) {
        goto loop;
      }

      j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, NULL);
      if (j == -1) {
        goto err;
      } else if (j == 0) {
        goto loop;
      }

      if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i)) {
        goto err;
      }
      // We have a safe prime test pass
    }
  }

  // we have a prime :-)
  found = 1;

err:
  if (ctx != NULL) {
    BN_CTX_end(ctx);
    BN_CTX_free(ctx);
  }

  return found;
}

static int bn_trial_division(uint16_t *out, const BIGNUM *bn) {
  const size_t num_primes = num_trial_division_primes(bn);
  for (size_t i = 1; i < num_primes; i++) {
    if (bn_mod_u16_consttime(bn, kPrimes[i]) == 0) {
      *out = kPrimes[i];
      return 1;
    }
  }
  return 0;
}

int bn_odd_number_is_obviously_composite(const BIGNUM *bn) {
  uint16_t prime;
  return bn_trial_division(&prime, bn) && !BN_is_word(bn, prime);
}

int bn_miller_rabin_init(BN_MILLER_RABIN *miller_rabin, const BN_MONT_CTX *mont,
                         BN_CTX *ctx) {
  // This function corresponds to steps 1 through 3 of FIPS 186-4, C.3.1.
  const BIGNUM *w = &mont->N;
  // Note we do not call |BN_CTX_start| in this function. We intentionally
  // allocate values in the containing scope so they outlive this function.
  miller_rabin->w1 = BN_CTX_get(ctx);
  miller_rabin->m = BN_CTX_get(ctx);
  miller_rabin->one_mont = BN_CTX_get(ctx);
  miller_rabin->w1_mont = BN_CTX_get(ctx);
  if (miller_rabin->w1 == NULL ||
      miller_rabin->m == NULL ||
      miller_rabin->one_mont == NULL ||
      miller_rabin->w1_mont == NULL) {
    return 0;
  }

  // See FIPS 186-4, C.3.1, steps 1 through 3.
  if (!bn_usub_consttime(miller_rabin->w1, w, BN_value_one())) {
    return 0;
  }
  miller_rabin->a = BN_count_low_zero_bits(miller_rabin->w1);
  if (!bn_rshift_secret_shift(miller_rabin->m, miller_rabin->w1,
                              miller_rabin->a, ctx)) {
    return 0;
  }
  miller_rabin->w_bits = BN_num_bits(w);

  // Precompute some values in Montgomery form.
  if (!bn_one_to_montgomery(miller_rabin->one_mont, mont, ctx) ||
      // w - 1 is -1 mod w, so we can compute it in the Montgomery domain, -R,
      // with a subtraction. (|one_mont| cannot be zero.)
      !bn_usub_consttime(miller_rabin->w1_mont, w, miller_rabin->one_mont)) {
    return 0;
  }

  return 1;
}

int bn_miller_rabin_iteration(const BN_MILLER_RABIN *miller_rabin,
                              int *out_is_possibly_prime, const BIGNUM *b,
                              const BN_MONT_CTX *mont, BN_CTX *ctx) {
  // This function corresponds to steps 4.3 through 4.5 of FIPS 186-4, C.3.1.
  int ret = 0;
  BN_CTX_start(ctx);

  // Step 4.3. We use Montgomery-encoding for better performance and to avoid
  // timing leaks.
  const BIGNUM *w = &mont->N;
  BIGNUM *z = BN_CTX_get(ctx);
  if (z == NULL ||
      !BN_mod_exp_mont_consttime(z, b, miller_rabin->m, w, ctx, mont) ||
      !BN_to_montgomery(z, z, mont, ctx)) {
    goto err;
  }

  // is_possibly_prime is all ones if we have determined |b| is not a composite
  // witness for |w|. This is equivalent to going to step 4.7 in the original
  // algorithm. To avoid timing leaks, we run the algorithm to the end for prime
  // inputs.
  crypto_word_t is_possibly_prime = 0;

  // Step 4.4. If z = 1 or z = w-1, b is not a composite witness and w is still
  // possibly prime.
  is_possibly_prime = BN_equal_consttime(z, miller_rabin->one_mont) |
                      BN_equal_consttime(z, miller_rabin->w1_mont);
  is_possibly_prime = 0 - is_possibly_prime;  // Make it all zeros or all ones.

  // Step 4.5.
  //
  // To avoid leaking |a|, we run the loop to |w_bits| and mask off all
  // iterations once |j| = |a|.
  for (int j = 1; j < miller_rabin->w_bits; j++) {
    if (constant_time_eq_int(j, miller_rabin->a) & ~is_possibly_prime) {
      // If the loop is done and we haven't seen z = 1 or z = w-1 yet, the
      // value is composite and we can break in variable time.
      break;
    }

    // Step 4.5.1.
    if (!BN_mod_mul_montgomery(z, z, z, mont, ctx)) {
      goto err;
    }

    // Step 4.5.2. If z = w-1 and the loop is not done, this is not a composite
    // witness.
    crypto_word_t z_is_w1_mont = BN_equal_consttime(z, miller_rabin->w1_mont);
    z_is_w1_mont = 0 - z_is_w1_mont;    // Make it all zeros or all ones.
    is_possibly_prime |= z_is_w1_mont;  // Go to step 4.7 if |z_is_w1_mont|.

    // Step 4.5.3. If z = 1 and the loop is not done, the previous value of z
    // was not -1. There are no non-trivial square roots of 1 modulo a prime, so
    // w is composite and we may exit in variable time.
    if (BN_equal_consttime(z, miller_rabin->one_mont) & ~is_possibly_prime) {
      break;
    }
  }

  *out_is_possibly_prime = is_possibly_prime & 1;
  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}

int BN_primality_test(int *out_is_probably_prime, const BIGNUM *w, int checks,
                      BN_CTX *ctx, int do_trial_division, BN_GENCB *cb) {
  // This function's secrecy and performance requirements come from RSA key
  // generation. We generate RSA keys by selecting two large, secret primes with
  // rejection sampling.
  //
  // We thus treat |w| as secret if turns out to be a large prime. However, if
  // |w| is composite, we treat this and |w| itself as public. (Conversely, if
  // |w| is prime, that it is prime is public. Only the value is secret.) This
  // is fine for RSA key generation, but note it is important that we use
  // rejection sampling, with each candidate prime chosen independently. This
  // would not work for, e.g., an algorithm which looked for primes in
  // consecutive integers. These assumptions allow us to discard composites
  // quickly. We additionally treat |w| as public when it is a small prime to
  // simplify trial decryption and some edge cases.
  //
  // One RSA key generation will call this function on exactly two primes and
  // many more composites. The overall cost is a combination of several factors:
  //
  // 1. Checking if |w| is divisible by a small prime is much faster than
  //    learning it is composite by Miller-Rabin (see below for details on that
  //    cost). Trial division by p saves 1/p of Miller-Rabin calls, so this is
  //    worthwhile until p exceeds the ratio of the two costs.
  //
  // 2. For a random (i.e. non-adversarial) candidate large prime and candidate
  //    witness, the probability of false witness is very low. (This is why FIPS
  //    186-4 only requires a few iterations.) Thus composites not discarded by
  //    trial decryption, in practice, cost one Miller-Rabin iteration. Only the
  //    two actual primes cost the full iteration count.
  //
  // 3. A Miller-Rabin iteration is a modular exponentiation plus |a| additional
  //    modular squares, where |a| is the number of factors of two in |w-1|. |a|
  //    is likely small (the distribution falls exponentially), but it is also
  //    potentially secret, so we loop up to its log(w) upper bound when |w| is
  //    prime. When |w| is composite, we break early, so only two calls pay this
  //    cost. (Note that all calls pay the modular exponentiation which is,
  //    itself, log(w) modular multiplications and squares.)
  //
  // 4. While there are only two prime calls, they multiplicatively pay the full
  //    costs of (2) and (3).
  //
  // 5. After the primes are chosen, RSA keys derive some values from the
  //    primes, but this cost is negligible in comparison.

  *out_is_probably_prime = 0;

  if (BN_cmp(w, BN_value_one()) <= 0) {
    return 1;
  }

  if (!BN_is_odd(w)) {
    // The only even prime is two.
    *out_is_probably_prime = BN_is_word(w, 2);
    return 1;
  }

  // Miller-Rabin does not work for three.
  if (BN_is_word(w, 3)) {
    *out_is_probably_prime = 1;
    return 1;
  }

  if (do_trial_division) {
    // Perform additional trial division checks to discard small primes.
    uint16_t prime;
    if (bn_trial_division(&prime, w)) {
      *out_is_probably_prime = BN_is_word(w, prime);
      return 1;
    }
    if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, -1)) {
      return 0;
    }
  }

  if (checks == BN_prime_checks_for_generation) {
    checks = BN_prime_checks_for_size(BN_num_bits(w));
  }

  BN_CTX *new_ctx = NULL;
  if (ctx == NULL) {
    new_ctx = BN_CTX_new();
    if (new_ctx == NULL) {
      return 0;
    }
    ctx = new_ctx;
  }

  // See C.3.1 from FIPS 186-4.
  int ret = 0;
  BN_CTX_start(ctx);
  BIGNUM *b = BN_CTX_get(ctx);
  BN_MONT_CTX *mont = BN_MONT_CTX_new_consttime(w, ctx);
  BN_MILLER_RABIN miller_rabin;
  if (b == NULL || mont == NULL ||
      // Steps 1-3.
      !bn_miller_rabin_init(&miller_rabin, mont, ctx)) {
    goto err;
  }

  // The following loop performs in inner iteration of the Miller-Rabin
  // Primality test (Step 4).
  //
  // The algorithm as specified in FIPS 186-4 leaks information on |w|, the RSA
  // private key. Instead, we run through each iteration unconditionally,
  // performing modular multiplications, masking off any effects to behave
  // equivalently to the specified algorithm.
  //
  // We also blind the number of values of |b| we try. Steps 4.1–4.2 say to
  // discard out-of-range values. To avoid leaking information on |w|, we use
  // |bn_rand_secret_range| which, rather than discarding bad values, adjusts
  // them to be in range. Though not uniformly selected, these adjusted values
  // are still usable as Miller-Rabin checks.
  //
  // Miller-Rabin is already probabilistic, so we could reach the desired
  // confidence levels by just suitably increasing the iteration count. However,
  // to align with FIPS 186-4, we use a more pessimal analysis: we do not count
  // the non-uniform values towards the iteration count. As a result, this
  // function is more complex and has more timing risk than necessary.
  //
  // We count both total iterations and uniform ones and iterate until we've
  // reached at least |BN_PRIME_CHECKS_BLINDED| and |iterations|, respectively.
  // If the latter is large enough, it will be the limiting factor with high
  // probability and we won't leak information.
  //
  // Note this blinding does not impact most calls when picking primes because
  // composites are rejected early. Only the two secret primes see extra work.

  crypto_word_t uniform_iterations = 0;
  // Using |constant_time_lt_w| seems to prevent the compiler from optimizing
  // this into two jumps.
  for (int i = 1; (i <= BN_PRIME_CHECKS_BLINDED) |
                  constant_time_lt_w(uniform_iterations, checks);
       i++) {
    // Step 4.1-4.2
    int is_uniform;
    if (!bn_rand_secret_range(b, &is_uniform, 2, miller_rabin.w1)) {
        goto err;
    }
    uniform_iterations += is_uniform;

    // Steps 4.3-4.5
    int is_possibly_prime = 0;
    if (!bn_miller_rabin_iteration(&miller_rabin, &is_possibly_prime, b, mont,
                                   ctx)) {
      goto err;
    }

    if (!is_possibly_prime) {
      // Step 4.6. We did not see z = w-1 before z = 1, so w must be composite.
      *out_is_probably_prime = 0;
      ret = 1;
      goto err;
    }

    // Step 4.7
    if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i - 1)) {
      goto err;
    }
  }

  assert(uniform_iterations >= (crypto_word_t)checks);
  *out_is_probably_prime = 1;
  ret = 1;

err:
  BN_MONT_CTX_free(mont);
  BN_CTX_end(ctx);
  BN_CTX_free(new_ctx);
  return ret;
}

int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx,
                   BN_GENCB *cb) {
  return BN_is_prime_fasttest_ex(candidate, checks, ctx, 0, cb);
}

int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx,
                            int do_trial_division, BN_GENCB *cb) {
  int is_probably_prime;
  if (!BN_primality_test(&is_probably_prime, a, checks, ctx, do_trial_division,
                         cb)) {
    return -1;
  }
  return is_probably_prime;
}

int BN_enhanced_miller_rabin_primality_test(
    enum bn_primality_result_t *out_result, const BIGNUM *w, int checks,
    BN_CTX *ctx, BN_GENCB *cb) {
  // Enhanced Miller-Rabin is only valid on odd integers greater than 3.
  if (!BN_is_odd(w) || BN_cmp_word(w, 3) <= 0) {
    OPENSSL_PUT_ERROR(BN, BN_R_INVALID_INPUT);
    return 0;
  }

  if (checks == BN_prime_checks_for_generation) {
    checks = BN_prime_checks_for_size(BN_num_bits(w));
  }

  int ret = 0;
  BN_MONT_CTX *mont = NULL;

  BN_CTX_start(ctx);

  BIGNUM *w1 = BN_CTX_get(ctx);
  if (w1 == NULL ||
      !BN_copy(w1, w) ||
      !BN_sub_word(w1, 1)) {
    goto err;
  }

  // Write w1 as m*2^a (Steps 1 and 2).
  int a = 0;
  while (!BN_is_bit_set(w1, a)) {
    a++;
  }
  BIGNUM *m = BN_CTX_get(ctx);
  if (m == NULL ||
      !BN_rshift(m, w1, a)) {
    goto err;
  }

  BIGNUM *b = BN_CTX_get(ctx);
  BIGNUM *g = BN_CTX_get(ctx);
  BIGNUM *z = BN_CTX_get(ctx);
  BIGNUM *x = BN_CTX_get(ctx);
  BIGNUM *x1 = BN_CTX_get(ctx);
  if (b == NULL ||
      g == NULL ||
      z == NULL ||
      x == NULL ||
      x1 == NULL) {
    goto err;
  }

  // Montgomery setup for computations mod w
  mont = BN_MONT_CTX_new_for_modulus(w, ctx);
  if (mont == NULL) {
    goto err;
  }

  // The following loop performs in inner iteration of the Enhanced Miller-Rabin
  // Primality test (Step 4).
  for (int i = 1; i <= checks; i++) {
    // Step 4.1-4.2
    if (!BN_rand_range_ex(b, 2, w1)) {
      goto err;
    }

    // Step 4.3-4.4
    if (!BN_gcd(g, b, w, ctx)) {
      goto err;
    }
    if (BN_cmp_word(g, 1) > 0) {
      *out_result = bn_composite;
      ret = 1;
      goto err;
    }

    // Step 4.5
    if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) {
      goto err;
    }

    // Step 4.6
    if (BN_is_one(z) || BN_cmp(z, w1) == 0) {
      goto loop;
    }

    // Step 4.7
    for (int j = 1; j < a; j++) {
      if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
        goto err;
      }
      if (BN_cmp(z, w1) == 0) {
        goto loop;
      }
      if (BN_is_one(z)) {
        goto composite;
      }
    }

    // Step 4.8-4.9
    if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
      goto err;
    }

    // Step 4.10-4.11
    if (!BN_is_one(z) && !BN_copy(x, z)) {
      goto err;
    }

 composite:
    // Step 4.12-4.14
    if (!BN_copy(x1, x) ||
        !BN_sub_word(x1, 1) ||
        !BN_gcd(g, x1, w, ctx)) {
      goto err;
    }
    if (BN_cmp_word(g, 1) > 0) {
      *out_result = bn_composite;
    } else {
      *out_result = bn_non_prime_power_composite;
    }

    ret = 1;
    goto err;

 loop:
    // Step 4.15
    if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i - 1)) {
      goto err;
    }
  }

  *out_result = bn_probably_prime;
  ret = 1;

err:
  BN_MONT_CTX_free(mont);
  BN_CTX_end(ctx);

  return ret;
}

static int probable_prime(BIGNUM *rnd, int bits) {
  do {
    if (!BN_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) {
      return 0;
    }
  } while (bn_odd_number_is_obviously_composite(rnd));
  return 1;
}

static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
                             const BIGNUM *rem, BN_CTX *ctx) {
  int ret = 0;
  BIGNUM *t1;

  BN_CTX_start(ctx);
  if ((t1 = BN_CTX_get(ctx)) == NULL) {
    goto err;
  }

  if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) {
    goto err;
  }

  // we need ((rnd-rem) % add) == 0

  if (!BN_mod(t1, rnd, add, ctx)) {
    goto err;
  }
  if (!BN_sub(rnd, rnd, t1)) {
    goto err;
  }
  if (rem == NULL) {
    if (!BN_add_word(rnd, 1)) {
      goto err;
    }
  } else {
    if (!BN_add(rnd, rnd, rem)) {
      goto err;
    }
  }
  // we now have a random number 'rand' to test.

  const size_t num_primes = num_trial_division_primes(rnd);
loop:
  for (size_t i = 1; i < num_primes; i++) {
    // check that rnd is a prime
    if (bn_mod_u16_consttime(rnd, kPrimes[i]) <= 1) {
      if (!BN_add(rnd, rnd, add)) {
        goto err;
      }
      goto loop;
    }
  }

  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}

static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
                                  const BIGNUM *rem, BN_CTX *ctx) {
  int ret = 0;
  BIGNUM *t1, *qadd, *q;

  bits--;
  BN_CTX_start(ctx);
  t1 = BN_CTX_get(ctx);
  q = BN_CTX_get(ctx);
  qadd = BN_CTX_get(ctx);
  if (qadd == NULL) {
    goto err;
  }

  if (!BN_rshift1(qadd, padd)) {
    goto err;
  }

  if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) {
    goto err;
  }

  // we need ((rnd-rem) % add) == 0
  if (!BN_mod(t1, q, qadd, ctx)) {
    goto err;
  }

  if (!BN_sub(q, q, t1)) {
    goto err;
  }

  if (rem == NULL) {
    if (!BN_add_word(q, 1)) {
      goto err;
    }
  } else {
    if (!BN_rshift1(t1, rem)) {
      goto err;
    }
    if (!BN_add(q, q, t1)) {
      goto err;
    }
  }

  // we now have a random number 'rand' to test.
  if (!BN_lshift1(p, q)) {
    goto err;
  }
  if (!BN_add_word(p, 1)) {
    goto err;
  }

  const size_t num_primes = num_trial_division_primes(p);
loop:
  for (size_t i = 1; i < num_primes; i++) {
    // check that p and q are prime
    // check that for p and q
    // gcd(p-1,primes) == 1 (except for 2)
    if (bn_mod_u16_consttime(p, kPrimes[i]) == 0 ||
        bn_mod_u16_consttime(q, kPrimes[i]) == 0) {
      if (!BN_add(p, p, padd)) {
        goto err;
      }
      if (!BN_add(q, q, qadd)) {
        goto err;
      }
      goto loop;
    }
  }

  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}