aboutsummaryrefslogtreecommitdiff
path: root/src/libANGLE/renderer/vulkan/vk_helpers.h
blob: bad0c94bd22a91ae2b0c7122d431db5c06c14c75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// vk_helpers:
//   Helper utility classes that manage Vulkan resources.

#ifndef LIBANGLE_RENDERER_VULKAN_VK_HELPERS_H_
#define LIBANGLE_RENDERER_VULKAN_VK_HELPERS_H_

#include "common/MemoryBuffer.h"
#include "libANGLE/renderer/vulkan/MemoryTracking.h"
#include "libANGLE/renderer/vulkan/Suballocation.h"
#include "libANGLE/renderer/vulkan/vk_cache_utils.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"

#include <functional>

namespace gl
{
class ImageIndex;
}  // namespace gl

namespace rx
{
namespace vk
{
constexpr VkBufferUsageFlags kVertexBufferUsageFlags =
    VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
constexpr VkBufferUsageFlags kIndexBufferUsageFlags =
    VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
constexpr VkBufferUsageFlags kIndirectBufferUsageFlags =
    VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
constexpr size_t kVertexBufferAlignment   = 4;
constexpr size_t kIndexBufferAlignment    = 4;
constexpr size_t kIndirectBufferAlignment = 4;

constexpr VkBufferUsageFlags kStagingBufferFlags =
    VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
constexpr size_t kStagingBufferSize = 1024 * 16;

constexpr VkImageCreateFlags kVkImageCreateFlagsNone = 0;

constexpr VkFilter kDefaultYCbCrChromaFilter = VK_FILTER_NEAREST;

constexpr VkPipelineStageFlags kSwapchainAcquireImageWaitStageFlags =
    VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |          // First use is a blit command.
    VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT |  // First use is a draw command.
    VK_PIPELINE_STAGE_TRANSFER_BIT;                  // First use is a clear without scissor.

using StagingBufferOffsetArray = std::array<VkDeviceSize, 2>;

// A dynamic buffer is conceptually an infinitely long buffer. Each time you write to the buffer,
// you will always write to a previously unused portion. After a series of writes, you must flush
// the buffer data to the device. Buffer lifetime currently assumes that each new allocation will
// last as long or longer than each prior allocation.
//
// Dynamic buffers are used to implement a variety of data streaming operations in Vulkan, such
// as for immediate vertex array and element array data, uniform updates, and other dynamic data.
//
// Internally dynamic buffers keep a collection of VkBuffers. When we write past the end of a
// currently active VkBuffer we keep it until it is no longer in use. We then mark it available
// for future allocations in a free list.
class BufferHelper;
using BufferHelperQueue = std::deque<std::unique_ptr<BufferHelper>>;

class DynamicBuffer : angle::NonCopyable
{
  public:
    DynamicBuffer();
    DynamicBuffer(DynamicBuffer &&other);
    ~DynamicBuffer();

    void init(RendererVk *renderer,
              VkBufferUsageFlags usage,
              size_t alignment,
              size_t initialSize,
              bool hostVisible);

    // This call will allocate a new region at the end of the current buffer. If it can't find
    // enough space in the current buffer, it returns false. This gives caller a chance to deal with
    // buffer switch that may occur with allocate call.
    bool allocateFromCurrentBuffer(size_t sizeInBytes, BufferHelper **bufferHelperOut);

    // This call will allocate a new region at the end of the buffer with default alignment. It
    // internally may trigger a new buffer to be created (which is returned in the optional
    // parameter `newBufferAllocatedOut`). The new region will be in the returned buffer at given
    // offset.
    angle::Result allocate(Context *context,
                           size_t sizeInBytes,
                           BufferHelper **bufferHelperOut,
                           bool *newBufferAllocatedOut);

    // This releases resources when they might currently be in use.
    void release(RendererVk *renderer);

    // This adds in-flight buffers to the mResourceUseList in the share group and then releases
    // them.
    void updateQueueSerialAndReleaseInFlightBuffers(ContextVk *contextVk,
                                                    const QueueSerial &queueSerial);

    // This frees resources immediately.
    void destroy(RendererVk *renderer);

    BufferHelper *getCurrentBuffer() const { return mBuffer.get(); }

    // **Accumulate** an alignment requirement.  A dynamic buffer is used as the staging buffer for
    // image uploads, which can contain updates to unrelated mips, possibly with different formats.
    // The staging buffer should have an alignment that can satisfy all those formats, i.e. it's the
    // lcm of all alignments set in its lifetime.
    void requireAlignment(RendererVk *renderer, size_t alignment);
    size_t getAlignment() const { return mAlignment; }

    // For testing only!
    void setMinimumSizeForTesting(size_t minSize);

    bool isCoherent() const
    {
        return (mMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0;
    }

    bool valid() const { return mSize != 0; }

  private:
    void reset();
    angle::Result allocateNewBuffer(Context *context);

    VkBufferUsageFlags mUsage;
    bool mHostVisible;
    size_t mInitialSize;
    std::unique_ptr<BufferHelper> mBuffer;
    uint32_t mNextAllocationOffset;
    size_t mSize;
    size_t mAlignment;
    VkMemoryPropertyFlags mMemoryPropertyFlags;

    BufferHelperQueue mInFlightBuffers;
    BufferHelperQueue mBufferFreeList;
};

// Class DescriptorSetHelper. This is a wrapper of VkDescriptorSet with GPU resource use tracking.
class DescriptorSetHelper final : public Resource
{
  public:
    DescriptorSetHelper(const VkDescriptorSet &descriptorSet) { mDescriptorSet = descriptorSet; }
    DescriptorSetHelper(const ResourceUse &use, const VkDescriptorSet &descriptorSet)
    {
        mUse           = use;
        mDescriptorSet = descriptorSet;
    }
    DescriptorSetHelper(DescriptorSetHelper &&other) : Resource(std::move(other))
    {
        mDescriptorSet       = other.mDescriptorSet;
        other.mDescriptorSet = VK_NULL_HANDLE;
    }

    VkDescriptorSet getDescriptorSet() const { return mDescriptorSet; }

  private:
    VkDescriptorSet mDescriptorSet;
};
using DescriptorSetList = std::deque<DescriptorSetHelper>;

// Uses DescriptorPool to allocate descriptor sets as needed. If a descriptor pool becomes full, we
// allocate new pools internally as needed. RendererVk takes care of the lifetime of the discarded
// pools. Note that we used a fixed layout for descriptor pools in ANGLE.

// Shared handle to a descriptor pool. Each helper is allocated from the dynamic descriptor pool.
// Can be used to share descriptor pools between multiple ProgramVks and the ContextVk.
class CommandBufferHelperCommon;

class DescriptorPoolHelper final : public Resource
{
  public:
    DescriptorPoolHelper();
    ~DescriptorPoolHelper() override;

    bool valid() { return mDescriptorPool.valid(); }

    angle::Result init(Context *context,
                       const std::vector<VkDescriptorPoolSize> &poolSizesIn,
                       uint32_t maxSets);
    void destroy(RendererVk *renderer);
    void release(RendererVk *renderer);

    bool allocateDescriptorSet(Context *context,
                               const DescriptorSetLayout &descriptorSetLayout,
                               VkDescriptorSet *descriptorSetsOut);

    void addGarbage(DescriptorSetHelper &&garbage)
    {
        mValidDescriptorSets--;
        mDescriptorSetGarbageList.emplace_back(std::move(garbage));
    }

    void onNewDescriptorSetAllocated(const vk::SharedDescriptorSetCacheKey &sharedCacheKey)
    {
        mDescriptorSetCacheManager.addKey(sharedCacheKey);
    }
    bool hasValidDescriptorSet() const { return mValidDescriptorSets != 0; }

  private:
    // Track the number of descriptorSets allocated out of this pool that are valid. DescriptorSets
    // that have been allocated but in the mDescriptorSetGarbageList is considered as inactive.
    uint32_t mValidDescriptorSets;
    // Track the number of remaining descriptorSets in the pool that can be allocated.
    uint32_t mFreeDescriptorSets;
    DescriptorPool mDescriptorPool;
    // Keeps track descriptorSets that has been released. Because freeing descriptorSet require
    // DescriptorPool, we store individually released descriptor sets here instead of usual garbage
    // list in the renderer to avoid complicated threading issues and other weirdness associated
    // with pooled object destruction. This list is mutually exclusive with mDescriptorSetCache.
    DescriptorSetList mDescriptorSetGarbageList;
    // Manages the texture descriptor set cache that allocated from this pool
    vk::DescriptorSetCacheManager mDescriptorSetCacheManager;
};

using RefCountedDescriptorPoolBinding = BindingPointer<DescriptorPoolHelper>;

class DynamicDescriptorPool final : angle::NonCopyable
{
  public:
    DynamicDescriptorPool();
    ~DynamicDescriptorPool();

    DynamicDescriptorPool(DynamicDescriptorPool &&other);
    DynamicDescriptorPool &operator=(DynamicDescriptorPool &&other);

    // The DynamicDescriptorPool only handles one pool size at this time.
    // Note that setSizes[i].descriptorCount is expected to be the number of descriptors in
    // an individual set.  The pool size will be calculated accordingly.
    angle::Result init(Context *context,
                       const VkDescriptorPoolSize *setSizes,
                       size_t setSizeCount,
                       const DescriptorSetLayout &descriptorSetLayout);
    void destroy(RendererVk *renderer);

    bool valid() const { return !mDescriptorPools.empty(); }

    // We use the descriptor type to help count the number of free sets.
    // By convention, sets are indexed according to the constants in vk_cache_utils.h.
    angle::Result allocateDescriptorSet(Context *context,
                                        const DescriptorSetLayout &descriptorSetLayout,
                                        RefCountedDescriptorPoolBinding *bindingOut,
                                        VkDescriptorSet *descriptorSetOut);

    angle::Result getOrAllocateDescriptorSet(Context *context,
                                             CommandBufferHelperCommon *commandBufferHelper,
                                             const DescriptorSetDesc &desc,
                                             const DescriptorSetLayout &descriptorSetLayout,
                                             RefCountedDescriptorPoolBinding *bindingOut,
                                             VkDescriptorSet *descriptorSetOut,
                                             SharedDescriptorSetCacheKey *sharedCacheKeyOut);

    void releaseCachedDescriptorSet(RendererVk *renderer, const DescriptorSetDesc &desc);
    void destroyCachedDescriptorSet(RendererVk *renderer, const DescriptorSetDesc &desc);

    template <typename Accumulator>
    void accumulateDescriptorCacheStats(VulkanCacheType cacheType, Accumulator *accum) const
    {
        accum->accumulateCacheStats(cacheType, mCacheStats);
    }
    void resetDescriptorCacheStats() { mCacheStats.resetHitAndMissCount(); }
    size_t getTotalCacheKeySizeBytes() const
    {
        return mDescriptorSetCache.getTotalCacheKeySizeBytes();
    }

    // Release the pool if it is no longer been used and contains no valid descriptorSet.
    void checkAndReleaseUnusedPool(RendererVk *renderer, RefCountedDescriptorPoolHelper *pool);

    // For testing only!
    static uint32_t GetMaxSetsPerPoolForTesting();
    static void SetMaxSetsPerPoolForTesting(uint32_t maxSetsPerPool);
    static uint32_t GetMaxSetsPerPoolMultiplierForTesting();
    static void SetMaxSetsPerPoolMultiplierForTesting(uint32_t maxSetsPerPool);

  private:
    angle::Result allocateNewPool(Context *context);

    static constexpr uint32_t kMaxSetsPerPoolMax = 512;
    static uint32_t mMaxSetsPerPool;
    static uint32_t mMaxSetsPerPoolMultiplier;
    size_t mCurrentPoolIndex;
    std::vector<std::unique_ptr<RefCountedDescriptorPoolHelper>> mDescriptorPools;
    std::vector<VkDescriptorPoolSize> mPoolSizes;
    // This cached handle is used for verifying the layout being used to allocate descriptor sets
    // from the pool matches the layout that the pool was created for, to ensure that the free
    // descriptor count is accurate and new pools are created appropriately.
    VkDescriptorSetLayout mCachedDescriptorSetLayout;
    // Tracks cache for descriptorSet. Note that cached DescriptorSet can be reuse even if it is GPU
    // busy.
    DescriptorSetCache mDescriptorSetCache;
    // Statistics for the cache.
    CacheStats mCacheStats;
};

using RefCountedDescriptorPool = RefCounted<DynamicDescriptorPool>;
using DescriptorPoolPointer    = BindingPointer<DynamicDescriptorPool>;

// Maps from a descriptor set layout (represented by DescriptorSetLayoutDesc) to a set of
// DynamicDescriptorPools. The purpose of the class is so multiple GL Programs can share descriptor
// set caches. We need to stratify the sets by the descriptor set layout to ensure compatibility.
class MetaDescriptorPool final : angle::NonCopyable
{
  public:
    MetaDescriptorPool();
    ~MetaDescriptorPool();

    void destroy(RendererVk *rendererVk);

    angle::Result bindCachedDescriptorPool(Context *context,
                                           const DescriptorSetLayoutDesc &descriptorSetLayoutDesc,
                                           uint32_t descriptorCountMultiplier,
                                           DescriptorSetLayoutCache *descriptorSetLayoutCache,
                                           DescriptorPoolPointer *descriptorPoolOut);

    template <typename Accumulator>
    void accumulateDescriptorCacheStats(VulkanCacheType cacheType, Accumulator *accum) const
    {
        for (const auto &iter : mPayload)
        {
            const vk::RefCountedDescriptorPool &pool = iter.second;
            pool.get().accumulateDescriptorCacheStats(cacheType, accum);
        }
    }

    void resetDescriptorCacheStats()
    {
        for (auto &iter : mPayload)
        {
            vk::RefCountedDescriptorPool &pool = iter.second;
            pool.get().resetDescriptorCacheStats();
        }
    }

    size_t getTotalCacheKeySizeBytes() const
    {
        size_t totalSize = 0;

        for (const auto &iter : mPayload)
        {
            const RefCountedDescriptorPool &pool = iter.second;
            totalSize += pool.get().getTotalCacheKeySizeBytes();
        }

        return totalSize;
    }

  private:
    std::unordered_map<DescriptorSetLayoutDesc, RefCountedDescriptorPool> mPayload;
};

template <typename Pool>
class DynamicallyGrowingPool : angle::NonCopyable
{
  public:
    DynamicallyGrowingPool();
    virtual ~DynamicallyGrowingPool();

    bool isValid() { return mPoolSize > 0; }

  protected:
    angle::Result initEntryPool(Context *contextVk, uint32_t poolSize);

    virtual void destroyPoolImpl(VkDevice device, Pool &poolToDestroy) = 0;
    void destroyEntryPool(VkDevice device);

    // Checks to see if any pool is already free, in which case it sets it as current pool and
    // returns true.
    bool findFreeEntryPool(ContextVk *contextVk);

    // Allocates a new entry and initializes it with the given pool.
    angle::Result allocateNewEntryPool(ContextVk *contextVk, Pool &&pool);

    // Called by the implementation whenever an entry is freed.
    void onEntryFreed(ContextVk *contextVk, size_t poolIndex, const ResourceUse &use);

    const Pool &getPool(size_t index) const
    {
        return const_cast<DynamicallyGrowingPool *>(this)->getPool(index);
    }

    Pool &getPool(size_t index)
    {
        ASSERT(index < mPools.size());
        return mPools[index].pool;
    }

    uint32_t getPoolSize() const { return mPoolSize; }

    virtual angle::Result allocatePoolImpl(ContextVk *contextVk,
                                           Pool &poolToAllocate,
                                           uint32_t entriesToAllocate) = 0;
    angle::Result allocatePoolEntries(ContextVk *contextVk,
                                      uint32_t entryCount,
                                      uint32_t *poolIndexOut,
                                      uint32_t *currentEntryOut);

  private:
    // The pool size, to know when a pool is completely freed.
    uint32_t mPoolSize;

    struct PoolResource : public Resource
    {
        PoolResource(Pool &&poolIn, uint32_t freedCountIn);
        PoolResource(PoolResource &&other);

        Pool pool;

        // A count corresponding to each pool indicating how many of its allocated entries
        // have been freed. Once that value reaches mPoolSize for each pool, that pool is considered
        // free and reusable.  While keeping a bitset would allow allocation of each index, the
        // slight runtime overhead of finding free indices is not worth the slight memory overhead
        // of creating new pools when unnecessary.
        uint32_t freedCount;
    };
    std::vector<PoolResource> mPools;

    // Index into mPools indicating pool we are currently allocating from.
    size_t mCurrentPool;
    // Index inside mPools[mCurrentPool] indicating which index can be allocated next.
    uint32_t mCurrentFreeEntry;
};

// DynamicQueryPool allocates indices out of QueryPool as needed.  Once a QueryPool is exhausted,
// another is created.  The query pools live permanently, but are recycled as indices get freed.

// These are arbitrary default sizes for query pools.
constexpr uint32_t kDefaultOcclusionQueryPoolSize           = 64;
constexpr uint32_t kDefaultTimestampQueryPoolSize           = 64;
constexpr uint32_t kDefaultTransformFeedbackQueryPoolSize   = 128;
constexpr uint32_t kDefaultPrimitivesGeneratedQueryPoolSize = 128;

class QueryHelper;

class DynamicQueryPool final : public DynamicallyGrowingPool<QueryPool>
{
  public:
    DynamicQueryPool();
    ~DynamicQueryPool() override;

    angle::Result init(ContextVk *contextVk, VkQueryType type, uint32_t poolSize);
    void destroy(VkDevice device);

    angle::Result allocateQuery(ContextVk *contextVk, QueryHelper *queryOut, uint32_t queryCount);
    void freeQuery(ContextVk *contextVk, QueryHelper *query);

    const QueryPool &getQueryPool(size_t index) const { return getPool(index); }

  private:
    angle::Result allocatePoolImpl(ContextVk *contextVk,
                                   QueryPool &poolToAllocate,
                                   uint32_t entriesToAllocate) override;
    void destroyPoolImpl(VkDevice device, QueryPool &poolToDestroy) override;

    // Information required to create new query pools
    VkQueryType mQueryType;
};

// Stores the result of a Vulkan query call. XFB queries in particular store two result values.
class QueryResult final
{
  public:
    QueryResult(uint32_t intsPerResult) : mIntsPerResult(intsPerResult), mResults{} {}

    void operator+=(const QueryResult &rhs)
    {
        mResults[0] += rhs.mResults[0];
        mResults[1] += rhs.mResults[1];
    }

    size_t getDataSize() const { return mIntsPerResult * sizeof(uint64_t); }
    void setResults(uint64_t *results, uint32_t queryCount);
    uint64_t getResult(size_t index) const
    {
        ASSERT(index < mIntsPerResult);
        return mResults[index];
    }

    static constexpr size_t kDefaultResultIndex                      = 0;
    static constexpr size_t kTransformFeedbackPrimitivesWrittenIndex = 0;
    static constexpr size_t kPrimitivesGeneratedIndex                = 1;

  private:
    uint32_t mIntsPerResult;
    std::array<uint64_t, 2> mResults;
};

// Queries in Vulkan are identified by the query pool and an index for a query within that pool.
// Unlike other pools, such as descriptor pools where an allocation returns an independent object
// from the pool, the query allocations are not done through a Vulkan function and are only an
// integer index.
//
// Furthermore, to support arbitrarily large number of queries, DynamicQueryPool creates query pools
// of a fixed size as needed and allocates indices within those pools.
//
// The QueryHelper class below keeps the pool and index pair together.  For multiview, multiple
// consecutive query indices are implicitly written to by the driver, so the query count is
// additionally kept.
class QueryHelper final : public Resource
{
  public:
    QueryHelper();
    ~QueryHelper() override;
    QueryHelper(QueryHelper &&rhs);
    QueryHelper &operator=(QueryHelper &&rhs);
    void init(const DynamicQueryPool *dynamicQueryPool,
              const size_t queryPoolIndex,
              uint32_t query,
              uint32_t queryCount);
    void deinit();

    bool valid() const { return mDynamicQueryPool != nullptr; }

    // Begin/end queries.  These functions break the render pass.
    angle::Result beginQuery(ContextVk *contextVk);
    angle::Result endQuery(ContextVk *contextVk);
    // Begin/end queries within a started render pass.
    angle::Result beginRenderPassQuery(ContextVk *contextVk);
    void endRenderPassQuery(ContextVk *contextVk);

    angle::Result flushAndWriteTimestamp(ContextVk *contextVk);
    // When syncing gpu/cpu time, main thread accesses primary directly
    void writeTimestampToPrimary(ContextVk *contextVk, PrimaryCommandBuffer *primary);
    // All other timestamp accesses should be made on outsideRenderPassCommandBuffer
    void writeTimestamp(ContextVk *contextVk,
                        OutsideRenderPassCommandBuffer *outsideRenderPassCommandBuffer);

    // Whether this query helper has generated and submitted any commands.
    bool hasSubmittedCommands() const;

    angle::Result getUint64ResultNonBlocking(ContextVk *contextVk,
                                             QueryResult *resultOut,
                                             bool *availableOut);
    angle::Result getUint64Result(ContextVk *contextVk, QueryResult *resultOut);

  private:
    friend class DynamicQueryPool;
    const QueryPool &getQueryPool() const
    {
        ASSERT(valid());
        return mDynamicQueryPool->getQueryPool(mQueryPoolIndex);
    }

    // Reset needs to always be done outside a render pass, which may be different from the
    // passed-in command buffer (which could be the render pass').
    template <typename CommandBufferT>
    void beginQueryImpl(ContextVk *contextVk,
                        OutsideRenderPassCommandBuffer *resetCommandBuffer,
                        CommandBufferT *commandBuffer);
    template <typename CommandBufferT>
    void endQueryImpl(ContextVk *contextVk, CommandBufferT *commandBuffer);
    template <typename CommandBufferT>
    void resetQueryPoolImpl(ContextVk *contextVk,
                            const QueryPool &queryPool,
                            CommandBufferT *commandBuffer);
    VkResult getResultImpl(ContextVk *contextVk,
                           const VkQueryResultFlags flags,
                           QueryResult *resultOut);

    const DynamicQueryPool *mDynamicQueryPool;
    size_t mQueryPoolIndex;
    uint32_t mQuery;
    uint32_t mQueryCount;

    enum class QueryStatus
    {
        Inactive,
        Active,
        Ended
    };
    QueryStatus mStatus;
};

// Semaphores that are allocated from the semaphore pool are encapsulated in a helper object,
// keeping track of where in the pool they are allocated from.
class SemaphoreHelper final : angle::NonCopyable
{
  public:
    SemaphoreHelper();
    ~SemaphoreHelper();

    SemaphoreHelper(SemaphoreHelper &&other);
    SemaphoreHelper &operator=(SemaphoreHelper &&other);

    void init(const size_t semaphorePoolIndex, const Semaphore *semaphore);
    void deinit();

    const Semaphore *getSemaphore() const { return mSemaphore; }

    // Used only by DynamicSemaphorePool.
    size_t getSemaphorePoolIndex() const { return mSemaphorePoolIndex; }

  private:
    size_t mSemaphorePoolIndex;
    const Semaphore *mSemaphore;
};

// This defines enum for VkPipelineStageFlagBits so that we can use it to compare and index into
// array.
enum class PipelineStage : uint16_t
{
    // Bellow are ordered based on Graphics Pipeline Stages
    TopOfPipe              = 0,
    DrawIndirect           = 1,
    VertexInput            = 2,
    VertexShader           = 3,
    TessellationControl    = 4,
    TessellationEvaluation = 5,
    GeometryShader         = 6,
    TransformFeedback      = 7,
    EarlyFragmentTest      = 8,
    FragmentShader         = 9,
    LateFragmentTest       = 10,
    ColorAttachmentOutput  = 11,

    // Compute specific pipeline Stage
    ComputeShader = 12,

    // Transfer specific pipeline Stage
    Transfer     = 13,
    BottomOfPipe = 14,

    // Host specific pipeline stage
    Host = 15,

    InvalidEnum = 16,
    EnumCount   = InvalidEnum,
};
using PipelineStagesMask = angle::PackedEnumBitSet<PipelineStage, uint16_t>;

PipelineStage GetPipelineStage(gl::ShaderType stage);

// This wraps data and API for vkCmdPipelineBarrier call
class PipelineBarrier : angle::NonCopyable
{
  public:
    PipelineBarrier()
        : mSrcStageMask(0),
          mDstStageMask(0),
          mMemoryBarrierSrcAccess(0),
          mMemoryBarrierDstAccess(0),
          mImageMemoryBarriers()
    {}
    ~PipelineBarrier() = default;

    bool isEmpty() const { return mImageMemoryBarriers.empty() && mMemoryBarrierDstAccess == 0; }

    void execute(PrimaryCommandBuffer *primary)
    {
        if (isEmpty())
        {
            return;
        }

        // Issue vkCmdPipelineBarrier call
        VkMemoryBarrier memoryBarrier = {};
        uint32_t memoryBarrierCount   = 0;
        if (mMemoryBarrierDstAccess != 0)
        {
            memoryBarrier.sType         = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
            memoryBarrier.srcAccessMask = mMemoryBarrierSrcAccess;
            memoryBarrier.dstAccessMask = mMemoryBarrierDstAccess;
            memoryBarrierCount++;
        }
        primary->pipelineBarrier(
            mSrcStageMask, mDstStageMask, 0, memoryBarrierCount, &memoryBarrier, 0, nullptr,
            static_cast<uint32_t>(mImageMemoryBarriers.size()), mImageMemoryBarriers.data());

        reset();
    }

    // merge two barriers into one
    void merge(PipelineBarrier *other)
    {
        mSrcStageMask |= other->mSrcStageMask;
        mDstStageMask |= other->mDstStageMask;
        mMemoryBarrierSrcAccess |= other->mMemoryBarrierSrcAccess;
        mMemoryBarrierDstAccess |= other->mMemoryBarrierDstAccess;
        mImageMemoryBarriers.insert(mImageMemoryBarriers.end(), other->mImageMemoryBarriers.begin(),
                                    other->mImageMemoryBarriers.end());
        other->reset();
    }

    void mergeMemoryBarrier(VkPipelineStageFlags srcStageMask,
                            VkPipelineStageFlags dstStageMask,
                            VkAccessFlags srcAccess,
                            VkAccessFlags dstAccess)
    {
        mSrcStageMask |= srcStageMask;
        mDstStageMask |= dstStageMask;
        mMemoryBarrierSrcAccess |= srcAccess;
        mMemoryBarrierDstAccess |= dstAccess;
    }

    void mergeImageBarrier(VkPipelineStageFlags srcStageMask,
                           VkPipelineStageFlags dstStageMask,
                           const VkImageMemoryBarrier &imageMemoryBarrier)
    {
        ASSERT(imageMemoryBarrier.pNext == nullptr);
        mSrcStageMask |= srcStageMask;
        mDstStageMask |= dstStageMask;
        mImageMemoryBarriers.push_back(imageMemoryBarrier);
    }

    void reset()
    {
        mSrcStageMask           = 0;
        mDstStageMask           = 0;
        mMemoryBarrierSrcAccess = 0;
        mMemoryBarrierDstAccess = 0;
        mImageMemoryBarriers.clear();
    }

    void addDiagnosticsString(std::ostringstream &out) const;

  private:
    VkPipelineStageFlags mSrcStageMask;
    VkPipelineStageFlags mDstStageMask;
    VkAccessFlags mMemoryBarrierSrcAccess;
    VkAccessFlags mMemoryBarrierDstAccess;
    std::vector<VkImageMemoryBarrier> mImageMemoryBarriers;
};
using PipelineBarrierArray = angle::PackedEnumMap<PipelineStage, PipelineBarrier>;

enum class MemoryCoherency
{
    NonCoherent,
    Coherent
};

enum class MemoryHostVisibility
{
    NonVisible,
    Visible
};

class BufferHelper : public ReadWriteResource
{
  public:
    BufferHelper();
    ~BufferHelper() override;

    BufferHelper(BufferHelper &&other);
    BufferHelper &operator=(BufferHelper &&other);

    angle::Result init(vk::Context *context,
                       const VkBufferCreateInfo &createInfo,
                       VkMemoryPropertyFlags memoryPropertyFlags);
    angle::Result initExternal(ContextVk *contextVk,
                               VkMemoryPropertyFlags memoryProperties,
                               const VkBufferCreateInfo &requestedCreateInfo,
                               GLeglClientBufferEXT clientBuffer);
    VkResult initSuballocation(ContextVk *contextVk,
                               uint32_t memoryTypeIndex,
                               size_t size,
                               size_t alignment,
                               BufferUsageType usageType);

    void destroy(RendererVk *renderer);
    void release(RendererVk *renderer);
    void releaseBufferAndDescriptorSetCache(RendererVk *renderer);

    BufferSerial getBufferSerial() const { return mSerial; }
    BufferSerial getBlockSerial() const
    {
        ASSERT(mSuballocation.valid());
        return mSuballocation.getBlockSerial();
    }
    BufferBlock *getBufferBlock() const { return mSuballocation.getBufferBlock(); }
    bool valid() const { return mSuballocation.valid(); }
    const Buffer &getBuffer() const { return mSuballocation.getBuffer(); }
    VkDeviceSize getOffset() const { return mSuballocation.getOffset(); }
    VkDeviceSize getSize() const { return mSuballocation.getSize(); }
    VkMemoryMapFlags getMemoryPropertyFlags() const
    {
        return mSuballocation.getMemoryPropertyFlags();
    }
    uint8_t *getMappedMemory() const
    {
        ASSERT(isMapped());
        return mSuballocation.getMappedMemory();
    }
    // Returns the main buffer block's pointer.
    uint8_t *getBlockMemory() const { return mSuballocation.getBlockMemory(); }
    VkDeviceSize getBlockMemorySize() const { return mSuballocation.getBlockMemorySize(); }
    bool isHostVisible() const { return mSuballocation.isHostVisible(); }
    bool isCoherent() const { return mSuballocation.isCoherent(); }

    bool isMapped() const { return mSuballocation.isMapped(); }

    // Also implicitly sets up the correct barriers.
    angle::Result copyFromBuffer(ContextVk *contextVk,
                                 BufferHelper *srcBuffer,
                                 uint32_t regionCount,
                                 const VkBufferCopy *copyRegions);

    angle::Result map(Context *context, uint8_t **ptrOut);
    angle::Result mapWithOffset(ContextVk *contextVk, uint8_t **ptrOut, size_t offset);
    void unmap(RendererVk *renderer) {}
    // After a sequence of writes, call flush to ensure the data is visible to the device.
    angle::Result flush(RendererVk *renderer);
    angle::Result flush(RendererVk *renderer, VkDeviceSize offset, VkDeviceSize size);
    // After a sequence of writes, call invalidate to ensure the data is visible to the host.
    angle::Result invalidate(RendererVk *renderer);
    angle::Result invalidate(RendererVk *renderer, VkDeviceSize offset, VkDeviceSize size);

    void changeQueue(uint32_t newQueueFamilyIndex, OutsideRenderPassCommandBuffer *commandBuffer);

    // Performs an ownership transfer from an external instance or API.
    void acquireFromExternal(ContextVk *contextVk,
                             uint32_t externalQueueFamilyIndex,
                             uint32_t rendererQueueFamilyIndex,
                             OutsideRenderPassCommandBuffer *commandBuffer);

    // Performs an ownership transfer to an external instance or API.
    void releaseToExternal(ContextVk *contextVk,
                           uint32_t rendererQueueFamilyIndex,
                           uint32_t externalQueueFamilyIndex,
                           OutsideRenderPassCommandBuffer *commandBuffer);

    // Returns true if the image is owned by an external API or instance.
    bool isReleasedToExternal() const;

    bool recordReadBarrier(VkAccessFlags readAccessType,
                           VkPipelineStageFlags readStage,
                           PipelineBarrier *barrier);

    bool recordWriteBarrier(VkAccessFlags writeAccessType,
                            VkPipelineStageFlags writeStage,
                            PipelineBarrier *barrier);
    void fillWithColor(const angle::Color<uint8_t> &color,
                       const gl::InternalFormat &internalFormat);

    // Special handling for VertexArray code so that we can create a dedicated VkBuffer for the
    // sub-range of memory of the actual buffer data size that user requested (i.e, excluding extra
    // paddings that we added for alignment, which will not get zero filled).
    const Buffer &getBufferForVertexArray(ContextVk *contextVk,
                                          VkDeviceSize actualDataSize,
                                          VkDeviceSize *offsetOut);

    void onNewDescriptorSet(const SharedDescriptorSetCacheKey &sharedCacheKey)
    {
        mDescriptorSetCacheManager.addKey(sharedCacheKey);
    }

    angle::Result initializeNonZeroMemory(Context *context,
                                          VkBufferUsageFlags usage,
                                          VkDeviceSize size);

    // Buffer's user size and allocation size may be different due to alignment requirement. In
    // normal usage we just use the actual allocation size and it is good enough. But when
    // robustResourceInit is enabled, mBufferWithUserSize is created to match the exact user
    // size. Thus when user size changes, we must clear and recreate this mBufferWithUserSize.
    // Returns true if mBufferWithUserSize is released.
    bool onBufferUserSizeChange(RendererVk *renderer);

    void initializeBarrierTracker(Context *context);

  private:
    // Only called by DynamicBuffer.
    friend class DynamicBuffer;
    void setSuballocationOffsetAndSize(VkDeviceSize offset, VkDeviceSize size)
    {
        mSuballocation.setOffsetAndSize(offset, size);
    }

    // Suballocation object.
    BufferSuballocation mSuballocation;
    // This normally is invalid. We always use the BufferBlock's buffer and offset combination. But
    // when robust resource init is enabled, we may want to create a dedicated VkBuffer for the
    // suballocation so that vulkan driver will ensure no access beyond this sub-range. In that
    // case, this VkBuffer will be created lazily as needed.
    Buffer mBufferWithUserSize;

    // For memory barriers.
    uint32_t mCurrentQueueFamilyIndex;
    VkFlags mCurrentWriteAccess;
    VkFlags mCurrentReadAccess;
    VkPipelineStageFlags mCurrentWriteStages;
    VkPipelineStageFlags mCurrentReadStages;

    BufferSerial mSerial;
    // Manages the descriptorSet cache that created with this BufferHelper object.
    DescriptorSetCacheManager mDescriptorSetCacheManager;
};

class BufferPool : angle::NonCopyable
{
  public:
    BufferPool();
    BufferPool(BufferPool &&other);
    ~BufferPool();

    // Init that gives the ability to pass in specified memory property flags for the buffer.
    void initWithFlags(RendererVk *renderer,
                       vma::VirtualBlockCreateFlags flags,
                       VkBufferUsageFlags usage,
                       VkDeviceSize initialSize,
                       uint32_t memoryTypeIndex,
                       VkMemoryPropertyFlags memoryProperty);

    VkResult allocateBuffer(Context *context,
                            VkDeviceSize sizeInBytes,
                            VkDeviceSize alignment,
                            BufferSuballocation *suballocation);

    // Frees resources immediately, or orphan the non-empty BufferBlocks if allowed. If orphan is
    // not allowed, it will assert if BufferBlock is still not empty.
    void destroy(RendererVk *renderer, bool orphanAllowed);
    // Remove and destroy empty BufferBlocks
    void pruneEmptyBuffers(RendererVk *renderer);

    bool valid() const { return mSize != 0; }

    void addStats(std::ostringstream *out) const;
    size_t getBufferCount() const { return mBufferBlocks.size() + mEmptyBufferBlocks.size(); }
    VkDeviceSize getMemorySize() const { return mTotalMemorySize; }

  private:
    VkResult allocateNewBuffer(Context *context, VkDeviceSize sizeInBytes);
    VkDeviceSize getTotalEmptyMemorySize() const;

    vma::VirtualBlockCreateFlags mVirtualBlockCreateFlags;
    VkBufferUsageFlags mUsage;
    bool mHostVisible;
    VkDeviceSize mSize;
    uint32_t mMemoryTypeIndex;
    VkDeviceSize mTotalMemorySize;
    BufferBlockPointerVector mBufferBlocks;
    BufferBlockPointerVector mEmptyBufferBlocks;
    // Tracks the number of new buffers needed for suballocation since last pruneEmptyBuffers call.
    // We will use this heuristic information to decide how many empty buffers to keep around.
    size_t mNumberOfNewBuffersNeededSinceLastPrune;
    // max size to go down the suballocation code path. Any allocation greater or equal this size
    // will call into vulkan directly to allocate a dedicated VkDeviceMemory.
    static constexpr size_t kMaxBufferSizeForSuballocation = 4 * 1024 * 1024;
};
using BufferPoolPointerArray = std::array<std::unique_ptr<BufferPool>, VK_MAX_MEMORY_TYPES>;

// Stores clear value In packed attachment index
class PackedClearValuesArray final
{
  public:
    PackedClearValuesArray();
    ~PackedClearValuesArray();

    PackedClearValuesArray(const PackedClearValuesArray &other);
    PackedClearValuesArray &operator=(const PackedClearValuesArray &rhs);
    void store(PackedAttachmentIndex index,
               VkImageAspectFlags aspectFlags,
               const VkClearValue &clearValue);
    void storeNoDepthStencil(PackedAttachmentIndex index, const VkClearValue &clearValue);
    const VkClearValue &operator[](PackedAttachmentIndex index) const
    {
        return mValues[index.get()];
    }
    const VkClearValue *data() const { return mValues.data(); }

  private:
    gl::AttachmentArray<VkClearValue> mValues;
};

class ImageHelper;

// Reference to a render pass attachment (color or depth/stencil) alongside render-pass-related
// tracking such as when the attachment is last written to or invalidated.  This is used to
// determine loadOp and storeOp of the attachment, and enables optimizations that need to know
// how the attachment has been used.
class RenderPassAttachment final
{
  public:
    RenderPassAttachment();
    ~RenderPassAttachment() = default;

    void init(ImageHelper *image,
              UniqueSerial imageSiblingSerial,
              gl::LevelIndex levelIndex,
              uint32_t layerIndex,
              uint32_t layerCount,
              VkImageAspectFlagBits aspect);
    void reset();

    void onAccess(ResourceAccess access, uint32_t currentCmdCount);
    void invalidate(const gl::Rectangle &invalidateArea,
                    bool isAttachmentEnabled,
                    uint32_t currentCmdCount);
    void onRenderAreaGrowth(ContextVk *contextVk, const gl::Rectangle &newRenderArea);
    void finalizeLoadStore(Context *context,
                           uint32_t currentCmdCount,
                           bool hasUnresolveAttachment,
                           bool hasResolveAttachment,
                           RenderPassLoadOp *loadOp,
                           RenderPassStoreOp *storeOp,
                           bool *isInvalidatedOut);
    void restoreContent();
    bool hasAnyAccess() const { return mAccess != ResourceAccess::Unused; }
    bool hasWriteAccess() const { return HasResourceWriteAccess(mAccess); }

    ImageHelper *getImage() { return mImage; }

    bool hasImage(const ImageHelper *image, UniqueSerial imageSiblingSerial) const
    {
        // Compare values because we do want that invalid serials compare equal.
        return mImage == image && mImageSiblingSerial.getValue() == imageSiblingSerial.getValue();
    }

  private:
    bool hasWriteAfterInvalidate(uint32_t currentCmdCount) const;
    bool isInvalidated(uint32_t currentCmdCount) const;
    bool onAccessImpl(ResourceAccess access, uint32_t currentCmdCount);

    // The attachment image itself
    ImageHelper *mImage;
    // Invalid or serial of EGLImage/Surface sibling target.
    UniqueSerial mImageSiblingSerial;
    // The subresource used in the render pass
    gl::LevelIndex mLevelIndex;
    uint32_t mLayerIndex;
    uint32_t mLayerCount;
    VkImageAspectFlagBits mAspect;
    // Tracks the highest access during the entire render pass (Write being the highest), excluding
    // clear through loadOp.  This allows loadOp=Clear to be optimized out when we find out that the
    // attachment is not used in the render pass at all and storeOp=DontCare, or that a
    // mid-render-pass clear could be hoisted to loadOp=Clear.
    ResourceAccess mAccess;
    // The index of the last draw command after which the attachment is invalidated
    uint32_t mInvalidatedCmdCount;
    // The index of the last draw command after which the attachment output is disabled
    uint32_t mDisabledCmdCount;
    // The area that has been invalidated
    gl::Rectangle mInvalidateArea;
};

// Stores RenderPassAttachment In packed attachment index
class PackedRenderPassAttachmentArray final
{
  public:
    PackedRenderPassAttachmentArray() : mAttachments{} {}
    ~PackedRenderPassAttachmentArray() = default;
    RenderPassAttachment &operator[](PackedAttachmentIndex index)
    {
        return mAttachments[index.get()];
    }
    void reset()
    {
        for (RenderPassAttachment &attachment : mAttachments)
        {
            attachment.reset();
        }
    }

  private:
    gl::AttachmentArray<RenderPassAttachment> mAttachments;
};

class SecondaryCommandBufferCollector final
{
  public:
    SecondaryCommandBufferCollector()                                              = default;
    SecondaryCommandBufferCollector(const SecondaryCommandBufferCollector &)       = delete;
    SecondaryCommandBufferCollector(SecondaryCommandBufferCollector &&)            = default;
    void operator=(const SecondaryCommandBufferCollector &)                        = delete;
    SecondaryCommandBufferCollector &operator=(SecondaryCommandBufferCollector &&) = default;
    ~SecondaryCommandBufferCollector() { ASSERT(empty()); }

    void collectCommandBuffer(priv::SecondaryCommandBuffer &&commandBuffer);
    void collectCommandBuffer(VulkanSecondaryCommandBuffer &&commandBuffer);
    void retireCommandBuffers();

    bool empty() const { return mCollectedCommandBuffers.empty(); }

  private:
    std::vector<VulkanSecondaryCommandBuffer> mCollectedCommandBuffers;
};

struct CommandsState
{
    std::vector<VkSemaphore> waitSemaphores;
    std::vector<VkPipelineStageFlags> waitSemaphoreStageMasks;
    PrimaryCommandBuffer primaryCommands;
    SecondaryCommandBufferCollector secondaryCommands;
};

// How the ImageHelper object is being used by the renderpass
enum class RenderPassUsage
{
    // Attached to the render taget of the current renderpass commands. It could be read/write or
    // read only access.
    RenderTargetAttachment,
    // This is special case of RenderTargetAttachment where the render target access is read only.
    // Right now it is only tracked for depth stencil attachment
    DepthReadOnlyAttachment,
    StencilReadOnlyAttachment,
    // This is special case of RenderTargetAttachment where the render target access is formed
    // feedback loop. Right now it is only tracked for depth stencil attachment
    DepthFeedbackLoop,
    StencilFeedbackLoop,
    // Attached to the texture sampler of the current renderpass commands
    ColorTextureSampler,
    DepthTextureSampler,
    StencilTextureSampler,

    InvalidEnum,
    EnumCount = InvalidEnum,
};
using RenderPassUsageFlags = angle::PackedEnumBitSet<RenderPassUsage, uint16_t>;
constexpr RenderPassUsageFlags kDepthStencilReadOnlyBits = RenderPassUsageFlags(
    {RenderPassUsage::DepthReadOnlyAttachment, RenderPassUsage::StencilReadOnlyAttachment});
constexpr RenderPassUsageFlags kDepthStencilFeedbackModeBits = RenderPassUsageFlags(
    {RenderPassUsage::DepthFeedbackLoop, RenderPassUsage::StencilFeedbackLoop});

// The following are used to help track the state of an invalidated attachment.
// This value indicates an "infinite" CmdCount that is not valid for comparing
constexpr uint32_t kInfiniteCmdCount = 0xFFFFFFFF;

// CommandBufferHelperCommon and derivatives OutsideRenderPassCommandBufferHelper and
// RenderPassCommandBufferHelper wrap the outside/inside render pass secondary command buffers,
// together with other information such as barriers to issue before the command buffer, tracking of
// resource usages, etc.  When the asyncCommandQueue feature is enabled, objects of these classes
// are handed off to the worker thread to be executed on the primary command buffer.
class CommandBufferHelperCommon : angle::NonCopyable
{
  public:
    void bufferWrite(ContextVk *contextVk,
                     VkAccessFlags writeAccessType,
                     PipelineStage writeStage,
                     BufferHelper *buffer);

    bool usesBuffer(const BufferHelper &buffer) const
    {
        return buffer.usedByCommandBuffer(mQueueSerial);
    }

    bool usesBufferForWrite(const BufferHelper &buffer) const
    {
        return buffer.writtenByCommandBuffer(mQueueSerial);
    }

    void executeBarriers(const angle::FeaturesVk &features, CommandsState *commandsState);

    // The markOpen and markClosed functions are to aid in proper use of the *CommandBufferHelper.
    // saw invalid use due to threading issues that can be easily caught by marking when it's safe
    // (open) to write to the command buffer.
#if !defined(ANGLE_ENABLE_ASSERTS)
    void markOpen() {}
    void markClosed() {}
#endif

    void setHasShaderStorageOutput() { mHasShaderStorageOutput = true; }
    bool hasShaderStorageOutput() const { return mHasShaderStorageOutput; }

    bool hasGLMemoryBarrierIssued() const { return mHasGLMemoryBarrierIssued; }

    void retainResource(Resource *resource) { resource->setQueueSerial(mQueueSerial); }

    void retainResourceForWrite(ReadWriteResource *writeResource)
    {
        writeResource->setWriteQueueSerial(mQueueSerial);
    }

    const QueueSerial &getQueueSerial() const { return mQueueSerial; }

    void setAcquireNextImageSemaphore(VkSemaphore semaphore)
    {
        ASSERT(semaphore != VK_NULL_HANDLE);
        ASSERT(!mAcquireNextImageSemaphore.valid());
        mAcquireNextImageSemaphore.setHandle(semaphore);
    }

    // Dumping the command stream is disabled by default.
    static constexpr bool kEnableCommandStreamDiagnostics = false;

  protected:
    CommandBufferHelperCommon();
    ~CommandBufferHelperCommon();

    void initializeImpl();

    void resetImpl();

    template <class DerivedT>
    angle::Result attachCommandPoolImpl(Context *context, SecondaryCommandPool *commandPool);
    template <class DerivedT, bool kIsRenderPassBuffer>
    angle::Result detachCommandPoolImpl(Context *context, SecondaryCommandPool **commandPoolOut);
    template <class DerivedT>
    void releaseCommandPoolImpl();

    template <class DerivedT>
    void attachAllocatorImpl(SecondaryCommandMemoryAllocator *allocator);
    template <class DerivedT>
    SecondaryCommandMemoryAllocator *detachAllocatorImpl();

    template <class DerivedT>
    void assertCanBeRecycledImpl();

    void bufferReadImpl(VkAccessFlags readAccessType,
                        PipelineStage readStage,
                        BufferHelper *buffer);
    void bufferReadImpl(VkAccessFlags readAccessType,
                        const gl::ShaderBitSet &readShaderStages,
                        BufferHelper *buffer)
    {
        for (gl::ShaderType shaderType : readShaderStages)
        {
            const vk::PipelineStage readStage = vk::GetPipelineStage(shaderType);
            bufferReadImpl(readAccessType, readStage, buffer);
        }
    }
    void imageReadImpl(ContextVk *contextVk,
                       VkImageAspectFlags aspectFlags,
                       ImageLayout imageLayout,
                       ImageHelper *image);
    void imageWriteImpl(ContextVk *contextVk,
                        gl::LevelIndex level,
                        uint32_t layerStart,
                        uint32_t layerCount,
                        VkImageAspectFlags aspectFlags,
                        ImageLayout imageLayout,
                        ImageHelper *image);

    void updateImageLayoutAndBarrier(Context *context,
                                     ImageHelper *image,
                                     VkImageAspectFlags aspectFlags,
                                     ImageLayout imageLayout);

    void addCommandDiagnosticsCommon(std::ostringstream *out);

    // Allocator used by this class.
    SecondaryCommandBlockAllocator mCommandAllocator;

    // Barriers to be executed before the command buffer.
    PipelineBarrierArray mPipelineBarriers;
    PipelineStagesMask mPipelineBarrierMask;

    // The command pool *CommandBufferHelper::mCommandBuffer is allocated from.  Only used with
    // Vulkan secondary command buffers (as opposed to ANGLE's SecondaryCommandBuffer).
    SecondaryCommandPool *mCommandPool;

    // Whether the command buffers contains any draw/dispatch calls that possibly output data
    // through storage buffers and images.  This is used to determine whether glMemoryBarrier*
    // should flush the command buffer.
    bool mHasShaderStorageOutput;
    // Whether glMemoryBarrier has been called while commands are recorded in this command buffer.
    // This is used to know when to check and potentially flush the command buffer if storage
    // buffers and images are used in it.
    bool mHasGLMemoryBarrierIssued;

    // Tracks resources used in the command buffer.
    QueueSerial mQueueSerial;

    // Only used for swapChain images
    Semaphore mAcquireNextImageSemaphore;
};

class SecondaryCommandBufferCollector;

class OutsideRenderPassCommandBufferHelper final : public CommandBufferHelperCommon
{
  public:
    OutsideRenderPassCommandBufferHelper();
    ~OutsideRenderPassCommandBufferHelper();

    angle::Result initialize(Context *context);

    angle::Result reset(Context *context, SecondaryCommandBufferCollector *commandBufferCollector);

    static constexpr bool ExecutesInline()
    {
        return OutsideRenderPassCommandBuffer::ExecutesInline();
    }

    OutsideRenderPassCommandBuffer &getCommandBuffer() { return mCommandBuffer; }

    bool empty() const { return mCommandBuffer.empty(); }

    angle::Result attachCommandPool(Context *context, SecondaryCommandPool *commandPool);
    angle::Result detachCommandPool(Context *context, SecondaryCommandPool **commandPoolOut);
    void releaseCommandPool();

    void attachAllocator(SecondaryCommandMemoryAllocator *allocator);
    SecondaryCommandMemoryAllocator *detachAllocator();

    void assertCanBeRecycled();

#if defined(ANGLE_ENABLE_ASSERTS)
    void markOpen() { mCommandBuffer.open(); }
    void markClosed() { mCommandBuffer.close(); }
#endif

    void bufferRead(ContextVk *contextVk,
                    VkAccessFlags readAccessType,
                    PipelineStage readStage,
                    BufferHelper *buffer)
    {
        bufferReadImpl(readAccessType, readStage, buffer);
        setBufferReadQueueSerial(contextVk, buffer);
    }

    void bufferRead(ContextVk *contextVk,
                    VkAccessFlags readAccessType,
                    const gl::ShaderBitSet &readShaderStages,
                    BufferHelper *buffer)
    {
        bufferReadImpl(readAccessType, readShaderStages, buffer);
        setBufferReadQueueSerial(contextVk, buffer);
    }

    void imageRead(ContextVk *contextVk,
                   VkImageAspectFlags aspectFlags,
                   ImageLayout imageLayout,
                   ImageHelper *image);
    void imageWrite(ContextVk *contextVk,
                    gl::LevelIndex level,
                    uint32_t layerStart,
                    uint32_t layerCount,
                    VkImageAspectFlags aspectFlags,
                    ImageLayout imageLayout,
                    ImageHelper *image);

    angle::Result flushToPrimary(Context *context, CommandsState *commandsState);

    void setGLMemoryBarrierIssued()
    {
        if (!mCommandBuffer.empty())
        {
            mHasGLMemoryBarrierIssued = true;
        }
    }

    void addCommandDiagnostics(ContextVk *contextVk);

    void setQueueSerial(SerialIndex index, Serial serial)
    {
        mQueueSerial = QueueSerial(index, serial);
    }

  private:
    angle::Result initializeCommandBuffer(Context *context);
    angle::Result endCommandBuffer(Context *context);
    void setBufferReadQueueSerial(ContextVk *contextVk, BufferHelper *buffer);

    OutsideRenderPassCommandBuffer mCommandBuffer;
    bool mIsCommandBufferEnded = false;

    friend class CommandBufferHelperCommon;
};

enum class ImagelessStatus
{
    NotImageless,
    Imageless,
};

class MaybeImagelessFramebuffer : angle::NonCopyable
{
  public:
    MaybeImagelessFramebuffer() : mImageViews({}), mImageless(ImagelessStatus::NotImageless) {}
    ~MaybeImagelessFramebuffer() { mFramebuffer.release(); }

    MaybeImagelessFramebuffer &operator=(MaybeImagelessFramebuffer &&rhs)
    {
        updateFramebuffer(rhs.mFramebuffer.getHandle(), &rhs.mImageViews, rhs.mImageless);
        return *this;
    }

    void updateFramebuffer(VkFramebuffer newFramebufferHandle,
                           FramebufferAttachmentsVector<VkImageView> *newImageViews,
                           ImagelessStatus imagelessStatus)
    {
        mFramebuffer.setHandle(newFramebufferHandle);
        std::swap(mImageViews, *newImageViews);
        mImageless = imagelessStatus;
    }

    Framebuffer &getFramebuffer() { return mFramebuffer; }
    [[nodiscard]] VkFramebuffer getHandle() const { return mFramebuffer.getHandle(); }
    void setHandle(VkFramebuffer handle) { mFramebuffer.setHandle(handle); }

    FramebufferAttachmentsVector<VkImageView> &getImageViews() { return mImageViews; }

    bool isImageless() { return mImageless == ImagelessStatus::Imageless; }

  private:
    Framebuffer mFramebuffer;
    FramebufferAttachmentsVector<VkImageView> mImageViews;
    ImagelessStatus mImageless;
};

class RenderPassCommandBufferHelper final : public CommandBufferHelperCommon
{
  public:
    RenderPassCommandBufferHelper();
    ~RenderPassCommandBufferHelper();

    angle::Result initialize(Context *context);

    angle::Result reset(Context *context, SecondaryCommandBufferCollector *commandBufferCollector);

    static constexpr bool ExecutesInline() { return RenderPassCommandBuffer::ExecutesInline(); }

    RenderPassCommandBuffer &getCommandBuffer()
    {
        return mCommandBuffers[mCurrentSubpassCommandBufferIndex];
    }

    bool empty() const { return mCommandBuffers[0].empty(); }

    angle::Result attachCommandPool(Context *context, SecondaryCommandPool *commandPool);
    void detachCommandPool(SecondaryCommandPool **commandPoolOut);
    void releaseCommandPool();

    void attachAllocator(SecondaryCommandMemoryAllocator *allocator);
    SecondaryCommandMemoryAllocator *detachAllocator();

    void assertCanBeRecycled();

#if defined(ANGLE_ENABLE_ASSERTS)
    void markOpen() { getCommandBuffer().open(); }
    void markClosed() { getCommandBuffer().close(); }
#endif

    void imageRead(ContextVk *contextVk,
                   VkImageAspectFlags aspectFlags,
                   ImageLayout imageLayout,
                   ImageHelper *image);
    void imageWrite(ContextVk *contextVk,
                    gl::LevelIndex level,
                    uint32_t layerStart,
                    uint32_t layerCount,
                    VkImageAspectFlags aspectFlags,
                    ImageLayout imageLayout,
                    ImageHelper *image);

    void bufferRead(ContextVk *contextVk,
                    VkAccessFlags readAccessType,
                    PipelineStage readStage,
                    BufferHelper *buffer)
    {
        bufferReadImpl(readAccessType, readStage, buffer);
        buffer->setQueueSerial(mQueueSerial);
    }
    void bufferRead(ContextVk *contextVk,
                    VkAccessFlags readAccessType,
                    const gl::ShaderBitSet &readShaderStages,
                    BufferHelper *buffer)
    {
        bufferReadImpl(readAccessType, readShaderStages, buffer);
        buffer->setQueueSerial(mQueueSerial);
    }

    void colorImagesDraw(gl::LevelIndex level,
                         uint32_t layerStart,
                         uint32_t layerCount,
                         ImageHelper *image,
                         ImageHelper *resolveImage,
                         UniqueSerial imageSiblingSerial,
                         PackedAttachmentIndex packedAttachmentIndex);
    void depthStencilImagesDraw(gl::LevelIndex level,
                                uint32_t layerStart,
                                uint32_t layerCount,
                                ImageHelper *image,
                                ImageHelper *resolveImage,
                                UniqueSerial imageSiblingSerial);

    bool usesImage(const ImageHelper &image) const;
    bool startedAndUsesImageWithBarrier(const ImageHelper &image) const;

    angle::Result flushToPrimary(Context *context,
                                 CommandsState *commandsState,
                                 const RenderPass *renderPass);

    bool started() const { return mRenderPassStarted; }

    // Finalize the layout if image has any deferred layout transition.
    void finalizeImageLayout(Context *context,
                             const ImageHelper *image,
                             UniqueSerial imageSiblingSerial);

    angle::Result beginRenderPass(ContextVk *contextVk,
                                  MaybeImagelessFramebuffer &framebuffer,
                                  const gl::Rectangle &renderArea,
                                  const RenderPassDesc &renderPassDesc,
                                  const AttachmentOpsArray &renderPassAttachmentOps,
                                  const PackedAttachmentCount colorAttachmentCount,
                                  const PackedAttachmentIndex depthStencilAttachmentIndex,
                                  const PackedClearValuesArray &clearValues,
                                  const QueueSerial &queueSerial,
                                  RenderPassCommandBuffer **commandBufferOut);

    angle::Result endRenderPass(ContextVk *contextVk);

    angle::Result nextSubpass(ContextVk *contextVk, RenderPassCommandBuffer **commandBufferOut);

    void beginTransformFeedback(size_t validBufferCount,
                                const VkBuffer *counterBuffers,
                                const VkDeviceSize *counterBufferOffsets,
                                bool rebindBuffers);

    void endTransformFeedback();

    void invalidateRenderPassColorAttachment(const gl::State &state,
                                             size_t colorIndexGL,
                                             PackedAttachmentIndex attachmentIndex,
                                             const gl::Rectangle &invalidateArea);
    void invalidateRenderPassDepthAttachment(const gl::DepthStencilState &dsState,
                                             const gl::Rectangle &invalidateArea);
    void invalidateRenderPassStencilAttachment(const gl::DepthStencilState &dsState,
                                               const gl::Rectangle &invalidateArea);

    void updateRenderPassColorClear(PackedAttachmentIndex colorIndexVk,
                                    const VkClearValue &colorClearValue);
    void updateRenderPassDepthStencilClear(VkImageAspectFlags aspectFlags,
                                           const VkClearValue &clearValue);

    const gl::Rectangle &getRenderArea() const { return mRenderArea; }

    // If render pass is started with a small render area due to a small scissor, and if a new
    // larger scissor is specified, grow the render area to accomodate it.
    void growRenderArea(ContextVk *contextVk, const gl::Rectangle &newRenderArea);

    void resumeTransformFeedback();
    void pauseTransformFeedback();
    bool isTransformFeedbackStarted() const { return mValidTransformFeedbackBufferCount > 0; }
    bool isTransformFeedbackActiveUnpaused() const { return mIsTransformFeedbackActiveUnpaused; }

    bool usesImagelessFramebuffer() { return mFramebuffer.isImageless(); }

    uint32_t getAndResetCounter()
    {
        uint32_t count = mCounter;
        mCounter       = 0;
        return count;
    }

    VkFramebuffer getFramebufferHandle() const { return mFramebuffer.getHandle(); }

    void onColorAccess(PackedAttachmentIndex packedAttachmentIndex, ResourceAccess access);
    void onDepthAccess(ResourceAccess access);
    void onStencilAccess(ResourceAccess access);

    bool hasAnyColorAccess(PackedAttachmentIndex packedAttachmentIndex)
    {
        ASSERT(packedAttachmentIndex < mColorAttachmentsCount);
        return mColorAttachments[packedAttachmentIndex].hasAnyAccess();
    }
    bool hasAnyDepthAccess() { return mDepthAttachment.hasAnyAccess(); }
    bool hasAnyStencilAccess() { return mStencilAttachment.hasAnyAccess(); }

    void updateRenderPassForResolve(ContextVk *contextVk,
                                    MaybeImagelessFramebuffer &newFramebuffer,
                                    const RenderPassDesc &renderPassDesc);

    bool hasDepthWriteOrClear() const
    {
        return mDepthAttachment.hasWriteAccess() ||
               mAttachmentOps[mDepthStencilAttachmentIndex].loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR;
    }

    bool hasStencilWriteOrClear() const
    {
        return mStencilAttachment.hasWriteAccess() ||
               mAttachmentOps[mDepthStencilAttachmentIndex].stencilLoadOp ==
                   VK_ATTACHMENT_LOAD_OP_CLEAR;
    }

    bool hasDepthStencilWriteOrClear() const
    {
        return hasDepthWriteOrClear() || hasStencilWriteOrClear();
    }

    const RenderPassDesc &getRenderPassDesc() const { return mRenderPassDesc; }
    const AttachmentOpsArray &getAttachmentOps() const { return mAttachmentOps; }

    void setImageOptimizeForPresent(ImageHelper *image) { mImageOptimizeForPresent = image; }

    void setGLMemoryBarrierIssued()
    {
        if (mRenderPassStarted)
        {
            mHasGLMemoryBarrierIssued = true;
        }
    }
    void addCommandDiagnostics(ContextVk *contextVk);

    // Readonly depth stencil mode and feedback loop mode
    void updateDepthReadOnlyMode(RenderPassUsageFlags dsUsageFlags);
    void updateStencilReadOnlyMode(RenderPassUsageFlags dsUsageFlags);
    void updateDepthStencilReadOnlyMode(RenderPassUsageFlags dsUsageFlags,
                                        VkImageAspectFlags dsAspectFlags);

  private:
    uint32_t getSubpassCommandBufferCount() const { return mCurrentSubpassCommandBufferIndex + 1; }

    angle::Result initializeCommandBuffer(Context *context);
    angle::Result beginRenderPassCommandBuffer(ContextVk *contextVk);
    angle::Result endRenderPassCommandBuffer(ContextVk *contextVk);

    uint32_t getRenderPassWriteCommandCount()
    {
        // All subpasses are chained (no subpasses running in parallel), so the cmd count can be
        // considered continuous among subpasses.
        return mPreviousSubpassesCmdCount + getCommandBuffer().getRenderPassWriteCommandCount();
    }

    void updateStartedRenderPassWithDepthStencilMode(RenderPassAttachment *resolveAttachment,
                                                     bool renderPassHasWriteOrClear,
                                                     RenderPassUsageFlags dsUsageFlags,
                                                     RenderPassUsage readOnlyAttachmentUsage);

    // We can't determine the image layout at the renderpass start time since their full usage
    // aren't known until later time. We finalize the layout when either ImageHelper object is
    // released or when renderpass ends.
    void finalizeColorImageLayout(Context *context,
                                  ImageHelper *image,
                                  PackedAttachmentIndex packedAttachmentIndex,
                                  bool isResolveImage);
    void finalizeColorImageLoadStore(Context *context, PackedAttachmentIndex packedAttachmentIndex);
    void finalizeDepthStencilImageLayout(Context *context);
    void finalizeDepthStencilResolveImageLayout(Context *context);
    void finalizeDepthStencilLoadStore(Context *context);

    void finalizeColorImageLayoutAndLoadStore(Context *context,
                                              PackedAttachmentIndex packedAttachmentIndex);
    void finalizeDepthStencilImageLayoutAndLoadStore(Context *context);

    // When using Vulkan secondary command buffers, each subpass must be recorded in a separate
    // command buffer.  Currently ANGLE produces render passes with at most 2 subpasses.  Once
    // framebuffer-fetch is appropriately implemented to use subpasses, this array must be made
    // dynamic.
    static constexpr size_t kMaxSubpassCount = 2;
    std::array<RenderPassCommandBuffer, kMaxSubpassCount> mCommandBuffers;
    uint32_t mCurrentSubpassCommandBufferIndex;

    // RenderPass state
    uint32_t mCounter;
    RenderPassDesc mRenderPassDesc;
    AttachmentOpsArray mAttachmentOps;
    MaybeImagelessFramebuffer mFramebuffer;
    gl::Rectangle mRenderArea;
    PackedClearValuesArray mClearValues;
    bool mRenderPassStarted;

    // Transform feedback state
    gl::TransformFeedbackBuffersArray<VkBuffer> mTransformFeedbackCounterBuffers;
    gl::TransformFeedbackBuffersArray<VkDeviceSize> mTransformFeedbackCounterBufferOffsets;
    uint32_t mValidTransformFeedbackBufferCount;
    bool mRebindTransformFeedbackBuffers;
    bool mIsTransformFeedbackActiveUnpaused;

    // State tracking for whether to optimize the storeOp to DONT_CARE
    uint32_t mPreviousSubpassesCmdCount;

    // Keep track of the depth/stencil attachment index
    PackedAttachmentIndex mDepthStencilAttachmentIndex;

    // Array size of mColorAttachments
    PackedAttachmentCount mColorAttachmentsCount;
    // Attached render target images. Color and depth resolve images always come last.
    PackedRenderPassAttachmentArray mColorAttachments;
    PackedRenderPassAttachmentArray mColorResolveAttachments;

    RenderPassAttachment mDepthAttachment;
    RenderPassAttachment mDepthResolveAttachment;

    RenderPassAttachment mStencilAttachment;
    RenderPassAttachment mStencilResolveAttachment;

    FramebufferAttachmentArray<VkImageView> mImageViews;

    // This is last renderpass before present and this is the image will be presented. We can use
    // final layout of the renderpass to transition it to the presentable layout
    ImageHelper *mImageOptimizeForPresent;

    friend class CommandBufferHelperCommon;
};

// The following class helps support both Vulkan and ANGLE secondary command buffers by
// encapsulating their differences.
template <typename CommandBufferHelperT>
class CommandBufferRecycler
{
  public:
    CommandBufferRecycler()  = default;
    ~CommandBufferRecycler() = default;

    void onDestroy();

    angle::Result getCommandBufferHelper(Context *context,
                                         SecondaryCommandPool *commandPool,
                                         SecondaryCommandMemoryAllocator *commandsAllocator,
                                         CommandBufferHelperT **commandBufferHelperOut);

    void recycleCommandBufferHelper(CommandBufferHelperT **commandBuffer);

  private:
    std::mutex mMutex;
    std::vector<CommandBufferHelperT *> mCommandBufferHelperFreeList;
};

// Imagine an image going through a few layout transitions:
//
//           srcStage 1    dstStage 2          srcStage 2     dstStage 3
//  Layout 1 ------Transition 1-----> Layout 2 ------Transition 2------> Layout 3
//           srcAccess 1  dstAccess 2          srcAccess 2   dstAccess 3
//   \_________________  ___________________/
//                     \/
//               A transition
//
// Every transition requires 6 pieces of information: from/to layouts, src/dst stage masks and
// src/dst access masks.  At the moment we decide to transition the image to Layout 2 (i.e.
// Transition 1), we need to have Layout 1, srcStage 1 and srcAccess 1 stored as history of the
// image.  To perform the transition, we need to know Layout 2, dstStage 2 and dstAccess 2.
// Additionally, we need to know srcStage 2 and srcAccess 2 to retain them for the next transition.
//
// That is, with the history kept, on every new transition we need 5 pieces of new information:
// layout/dstStage/dstAccess to transition into the layout, and srcStage/srcAccess for the future
// transition out from it.  Given the small number of possible combinations of these values, an
// enum is used were each value encapsulates these 5 pieces of information:
//
//                       +--------------------------------+
//           srcStage 1  | dstStage 2          srcStage 2 |   dstStage 3
//  Layout 1 ------Transition 1-----> Layout 2 ------Transition 2------> Layout 3
//           srcAccess 1 |dstAccess 2          srcAccess 2|  dstAccess 3
//                       +---------------  ---------------+
//                                       \/
//                                 One enum value
//
// Note that, while generally dstStage for the to-transition and srcStage for the from-transition
// are the same, they may occasionally be BOTTOM_OF_PIPE and TOP_OF_PIPE respectively.
enum class ImageLayout
{
    Undefined = 0,
    // Framebuffer attachment layouts are placed first, so they can fit in fewer bits in
    // PackedAttachmentOpsDesc.

    // Color (Write):
    ColorWrite,

    // Depth (Write), Stencil (Write)
    DepthWriteStencilWrite,

    // Depth (Write), Stencil (Read)
    DepthWriteStencilRead,
    DepthWriteStencilReadFragmentShaderStencilRead,
    DepthWriteStencilReadAllShadersStencilRead,

    // Depth (Read), Stencil (Write)
    DepthReadStencilWrite,
    DepthReadStencilWriteFragmentShaderDepthRead,
    DepthReadStencilWriteAllShadersDepthRead,

    // Depth (Read), Stencil (Read)
    DepthReadStencilRead,
    DepthReadStencilReadFragmentShaderRead,
    DepthReadStencilReadAllShadersRead,

    // The GENERAL layout is used when there's a feedback loop.  For depth/stencil it does't matter
    // which aspect is participating in feedback and whether the other aspect is read-only.
    ColorWriteFragmentShaderFeedback,
    ColorWriteAllShadersFeedback,
    DepthStencilFragmentShaderFeedback,
    DepthStencilAllShadersFeedback,

    // Depth/stencil resolve is special because it uses the _color_ output stage and mask
    DepthStencilResolve,

    Present,
    SharedPresent,
    // The rest of the layouts.
    ExternalPreInitialized,
    ExternalShadersReadOnly,
    ExternalShadersWrite,
    TransferSrc,
    TransferDst,
    TransferSrcDst,
    // Used when the image is transitioned on the host for use by host image copy
    HostCopy,
    VertexShaderReadOnly,
    VertexShaderWrite,
    // PreFragment == Vertex, Tessellation and Geometry stages
    PreFragmentShadersReadOnly,
    PreFragmentShadersWrite,
    FragmentShaderReadOnly,
    FragmentShaderWrite,
    ComputeShaderReadOnly,
    ComputeShaderWrite,
    AllGraphicsShadersReadOnly,
    AllGraphicsShadersWrite,
    TransferDstAndComputeWrite,

    InvalidEnum,
    EnumCount = InvalidEnum,
};

VkImageCreateFlags GetImageCreateFlags(gl::TextureType textureType);

ImageLayout GetImageLayoutFromGLImageLayout(Context *context, GLenum layout);

GLenum ConvertImageLayoutToGLImageLayout(ImageLayout imageLayout);

VkImageLayout ConvertImageLayoutToVkImageLayout(Context *context, ImageLayout imageLayout);

// The source of update to an ImageHelper
enum class UpdateSource
{
    // Clear an image subresource.
    Clear,
    // Clear only the emulated channels of the subresource.  This operation is more expensive than
    // Clear, and so is only used for emulated color formats and only for external images.  Color
    // only because depth or stencil clear is already per channel, so Clear works for them.
    // External only because they may contain data that needs to be preserved.  Additionally, this
    // is a one-time only clear.  Once the emulated channels are cleared, ANGLE ensures that they
    // remain untouched.
    ClearEmulatedChannelsOnly,
    // When an image with emulated channels is invalidated, a clear may be restaged to keep the
    // contents of the emulated channels defined.  This is given a dedicated enum value, so it can
    // be removed if the invalidate is undone at the end of the render pass.
    ClearAfterInvalidate,
    // The source of the copy is a buffer.
    Buffer,
    // The source of the copy is an image.
    Image,
};

enum class ApplyImageUpdate
{
    ImmediatelyInUnlockedTailCall,
    Immediately,
    Defer,
};

constexpr VkImageAspectFlagBits IMAGE_ASPECT_DEPTH_STENCIL =
    static_cast<VkImageAspectFlagBits>(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);

bool FormatHasNecessaryFeature(RendererVk *renderer,
                               angle::FormatID formatID,
                               VkImageTiling tilingMode,
                               VkFormatFeatureFlags featureBits);

bool CanCopyWithTransfer(RendererVk *renderer,
                         angle::FormatID srcFormatID,
                         VkImageTiling srcTilingMode,
                         angle::FormatID dstFormatID,
                         VkImageTiling dstTilingMode);

class ImageViewHelper;
class ImageHelper final : public Resource, public angle::Subject
{
  public:
    ImageHelper();
    ~ImageHelper() override;

    angle::Result init(Context *context,
                       gl::TextureType textureType,
                       const VkExtent3D &extents,
                       const Format &format,
                       GLint samples,
                       VkImageUsageFlags usage,
                       gl::LevelIndex firstLevel,
                       uint32_t mipLevels,
                       uint32_t layerCount,
                       bool isRobustResourceInitEnabled,
                       bool hasProtectedContent);
    angle::Result initMSAASwapchain(Context *context,
                                    gl::TextureType textureType,
                                    const VkExtent3D &extents,
                                    bool rotatedAspectRatio,
                                    const Format &format,
                                    GLint samples,
                                    VkImageUsageFlags usage,
                                    gl::LevelIndex firstLevel,
                                    uint32_t mipLevels,
                                    uint32_t layerCount,
                                    bool isRobustResourceInitEnabled,
                                    bool hasProtectedContent);
    angle::Result initExternal(Context *context,
                               gl::TextureType textureType,
                               const VkExtent3D &extents,
                               angle::FormatID intendedFormatID,
                               angle::FormatID actualFormatID,
                               GLint samples,
                               VkImageUsageFlags usage,
                               VkImageCreateFlags additionalCreateFlags,
                               ImageLayout initialLayout,
                               const void *externalImageCreateInfo,
                               gl::LevelIndex firstLevel,
                               uint32_t mipLevels,
                               uint32_t layerCount,
                               bool isRobustResourceInitEnabled,
                               bool hasProtectedContent);
    VkResult initMemory(Context *context,
                        const MemoryProperties &memoryProperties,
                        VkMemoryPropertyFlags flags,
                        VkMemoryPropertyFlags excludedFlags,
                        const VkMemoryRequirements *memoryRequirements,
                        const bool allocateDedicatedMemory,
                        MemoryAllocationType allocationType,
                        VkMemoryPropertyFlags *flagsOut,
                        VkDeviceSize *sizeOut);
    angle::Result initMemoryAndNonZeroFillIfNeeded(Context *context,
                                                   bool hasProtectedContent,
                                                   const MemoryProperties &memoryProperties,
                                                   VkMemoryPropertyFlags flags,
                                                   MemoryAllocationType allocationType);
    angle::Result initExternalMemory(Context *context,
                                     const MemoryProperties &memoryProperties,
                                     const VkMemoryRequirements &memoryRequirements,
                                     uint32_t extraAllocationInfoCount,
                                     const void **extraAllocationInfo,
                                     uint32_t currentQueueFamilyIndex,
                                     VkMemoryPropertyFlags flags);

    static constexpr VkImageUsageFlags kDefaultImageViewUsageFlags = 0;
    angle::Result initLayerImageView(Context *context,
                                     gl::TextureType textureType,
                                     VkImageAspectFlags aspectMask,
                                     const gl::SwizzleState &swizzleMap,
                                     ImageView *imageViewOut,
                                     LevelIndex baseMipLevelVk,
                                     uint32_t levelCount,
                                     uint32_t baseArrayLayer,
                                     uint32_t layerCount,
                                     gl::SrgbWriteControlMode srgbWriteControlMode,
                                     gl::YuvSamplingMode yuvSamplingMode,
                                     VkImageUsageFlags imageUsageFlags) const;
    angle::Result initReinterpretedLayerImageView(Context *context,
                                                  gl::TextureType textureType,
                                                  VkImageAspectFlags aspectMask,
                                                  const gl::SwizzleState &swizzleMap,
                                                  ImageView *imageViewOut,
                                                  LevelIndex baseMipLevelVk,
                                                  uint32_t levelCount,
                                                  uint32_t baseArrayLayer,
                                                  uint32_t layerCount,
                                                  VkImageUsageFlags imageUsageFlags,
                                                  angle::FormatID imageViewFormat) const;
    angle::Result initImageView(Context *context,
                                gl::TextureType textureType,
                                VkImageAspectFlags aspectMask,
                                const gl::SwizzleState &swizzleMap,
                                ImageView *imageViewOut,
                                LevelIndex baseMipLevelVk,
                                uint32_t levelCount,
                                VkImageUsageFlags imageUsageFlags);
    // Create a 2D[Array] for staging purposes.  Used by:
    //
    // - TextureVk::copySubImageImplWithDraw
    // - FramebufferVk::readPixelsImpl
    //
    angle::Result init2DStaging(Context *context,
                                bool hasProtectedContent,
                                const MemoryProperties &memoryProperties,
                                const gl::Extents &glExtents,
                                angle::FormatID intendedFormatID,
                                angle::FormatID actualFormatID,
                                VkImageUsageFlags usage,
                                uint32_t layerCount);
    // Create an image for staging purposes.  Used by:
    //
    // - TextureVk::copyAndStageImageData
    //
    angle::Result initStaging(Context *context,
                              bool hasProtectedContent,
                              const MemoryProperties &memoryProperties,
                              VkImageType imageType,
                              const VkExtent3D &extents,
                              angle::FormatID intendedFormatID,
                              angle::FormatID actualFormatID,
                              GLint samples,
                              VkImageUsageFlags usage,
                              uint32_t mipLevels,
                              uint32_t layerCount);
    // Create a multisampled image for use as the implicit image in multisampled render to texture
    // rendering.  If LAZILY_ALLOCATED memory is available, it will prefer that.
    angle::Result initImplicitMultisampledRenderToTexture(Context *context,
                                                          bool hasProtectedContent,
                                                          const MemoryProperties &memoryProperties,
                                                          gl::TextureType textureType,
                                                          GLint samples,
                                                          const ImageHelper &resolveImage,
                                                          bool isRobustResourceInitEnabled);

    // Helper for initExternal and users to automatically derive the appropriate VkImageCreateInfo
    // pNext chain based on the given parameters, and adjust create flags.  In some cases, these
    // shouldn't be automatically derived, for example when importing images through
    // EXT_external_objects and ANGLE_external_objects_flags.
    static constexpr uint32_t kImageListFormatCount = 2;
    using ImageListFormats                          = std::array<VkFormat, kImageListFormatCount>;
    static const void *DeriveCreateInfoPNext(
        Context *context,
        angle::FormatID actualFormatID,
        const void *pNext,
        VkImageFormatListCreateInfoKHR *imageFormatListInfoStorage,
        ImageListFormats *imageListFormatsStorage,
        VkImageCreateFlags *createFlagsOut);

    // Check whether the given format supports the provided flags.
    static bool FormatSupportsUsage(RendererVk *renderer,
                                    VkFormat format,
                                    VkImageType imageType,
                                    VkImageTiling tilingMode,
                                    VkImageUsageFlags usageFlags,
                                    VkImageCreateFlags createFlags,
                                    void *propertiesPNext);

    // Image formats used for the creation of imageless framebuffers.
    using ImageFormats = angle::FixedVector<VkFormat, kImageListFormatCount>;
    ImageFormats &getViewFormats() { return mViewFormats; }

    // Helper for initExternal and users to extract the view formats of the image from the pNext
    // chain in VkImageCreateInfo.
    void deriveImageViewFormatFromCreateInfoPNext(VkImageCreateInfo &imageInfo,
                                                  ImageFormats &formatOut);

    // Release the underlining VkImage object for garbage collection.
    void releaseImage(RendererVk *renderer);
    // Similar to releaseImage, but also notify all contexts in the same share group to stop
    // accessing to it.
    void releaseImageFromShareContexts(RendererVk *renderer,
                                       ContextVk *contextVk,
                                       UniqueSerial imageSiblingSerial);
    void finalizeImageLayoutInShareContexts(RendererVk *renderer,
                                            ContextVk *contextVk,
                                            UniqueSerial imageSiblingSerial);
    void releaseStagedUpdates(RendererVk *renderer);

    bool valid() const { return mImage.valid(); }

    VkImageAspectFlags getAspectFlags() const;
    // True if image contains both depth & stencil aspects
    bool isCombinedDepthStencilFormat() const;
    void destroy(RendererVk *renderer);
    void release(RendererVk *renderer) { destroy(renderer); }

    void init2DWeakReference(Context *context,
                             VkImage handle,
                             const gl::Extents &glExtents,
                             bool rotatedAspectRatio,
                             angle::FormatID intendedFormatID,
                             angle::FormatID actualFormatID,
                             VkImageUsageFlags usage,
                             GLint samples,
                             bool isRobustResourceInitEnabled);
    void resetImageWeakReference();

    const Image &getImage() const { return mImage; }
    const DeviceMemory &getDeviceMemory() const { return mDeviceMemory; }
    const Allocation &getAllocation() const { return mVmaAllocation; }

    const VkImageCreateInfo &getVkImageCreateInfo() const { return mVkImageCreateInfo; }
    void setTilingMode(VkImageTiling tilingMode) { mTilingMode = tilingMode; }
    VkImageTiling getTilingMode() const { return mTilingMode; }
    VkImageCreateFlags getCreateFlags() const { return mCreateFlags; }
    VkImageUsageFlags getUsage() const { return mUsage; }
    VkImageType getType() const { return mImageType; }
    const VkExtent3D &getExtents() const { return mExtents; }
    const VkExtent3D getRotatedExtents() const;
    uint32_t getLayerCount() const
    {
        ASSERT(valid());
        return mLayerCount;
    }
    uint32_t getLevelCount() const
    {
        ASSERT(valid());
        return mLevelCount;
    }
    angle::FormatID getIntendedFormatID() const
    {
        ASSERT(valid());
        return mIntendedFormatID;
    }
    const angle::Format &getIntendedFormat() const
    {
        ASSERT(valid());
        return angle::Format::Get(mIntendedFormatID);
    }
    angle::FormatID getActualFormatID() const
    {
        ASSERT(valid());
        return mActualFormatID;
    }
    VkFormat getActualVkFormat() const
    {
        ASSERT(valid());
        return GetVkFormatFromFormatID(mActualFormatID);
    }
    const angle::Format &getActualFormat() const
    {
        ASSERT(valid());
        return angle::Format::Get(mActualFormatID);
    }
    bool hasEmulatedImageChannels() const;
    bool hasEmulatedDepthChannel() const;
    bool hasEmulatedStencilChannel() const;
    bool hasEmulatedImageFormat() const { return mActualFormatID != mIntendedFormatID; }
    GLint getSamples() const { return mSamples; }

    ImageSerial getImageSerial() const
    {
        ASSERT(valid() && mImageSerial.valid());
        return mImageSerial;
    }

    void setCurrentImageLayout(ImageLayout newLayout)
    {
        // Once you transition to ImageLayout::SharedPresent, you never transition out of it.
        if (mCurrentLayout == ImageLayout::SharedPresent)
        {
            return;
        }
        mCurrentLayout = newLayout;
    }
    ImageLayout getCurrentImageLayout() const { return mCurrentLayout; }
    VkImageLayout getCurrentLayout(Context *context) const;
    const QueueSerial &getBarrierQueueSerial() const { return mBarrierQueueSerial; }

    gl::Extents getLevelExtents(LevelIndex levelVk) const;
    // Helper function to calculate the extents of a render target created for a certain mip of the
    // image.
    gl::Extents getLevelExtents2D(LevelIndex levelVk) const;
    gl::Extents getRotatedLevelExtents2D(LevelIndex levelVk) const;

    bool isDepthOrStencil() const;

    void setRenderPassUsageFlag(RenderPassUsage flag);
    void clearRenderPassUsageFlag(RenderPassUsage flag);
    void resetRenderPassUsageFlags();
    bool hasRenderPassUsageFlag(RenderPassUsage flag) const;
    bool usedByCurrentRenderPassAsAttachmentAndSampler(RenderPassUsage textureSamplerUsage) const;

    static void Copy(Context *context,
                     ImageHelper *srcImage,
                     ImageHelper *dstImage,
                     const gl::Offset &srcOffset,
                     const gl::Offset &dstOffset,
                     const gl::Extents &copySize,
                     const VkImageSubresourceLayers &srcSubresources,
                     const VkImageSubresourceLayers &dstSubresources,
                     OutsideRenderPassCommandBuffer *commandBuffer);

    static angle::Result CopyImageSubData(const gl::Context *context,
                                          ImageHelper *srcImage,
                                          GLint srcLevel,
                                          GLint srcX,
                                          GLint srcY,
                                          GLint srcZ,
                                          ImageHelper *dstImage,
                                          GLint dstLevel,
                                          GLint dstX,
                                          GLint dstY,
                                          GLint dstZ,
                                          GLsizei srcWidth,
                                          GLsizei srcHeight,
                                          GLsizei srcDepth);

    // Generate mipmap from level 0 into the rest of the levels with blit.
    angle::Result generateMipmapsWithBlit(ContextVk *contextVk,
                                          LevelIndex baseLevel,
                                          LevelIndex maxLevel);

    // Resolve this image into a destination image.  This image should be in the TransferSrc layout.
    // The destination image is automatically transitioned into TransferDst.
    void resolve(ImageHelper *dst,
                 const VkImageResolve &region,
                 OutsideRenderPassCommandBuffer *commandBuffer);

    // Data staging
    void removeSingleSubresourceStagedUpdates(ContextVk *contextVk,
                                              gl::LevelIndex levelIndexGL,
                                              uint32_t layerIndex,
                                              uint32_t layerCount);
    void removeSingleStagedClearAfterInvalidate(gl::LevelIndex levelIndexGL,
                                                uint32_t layerIndex,
                                                uint32_t layerCount);
    void removeStagedUpdates(Context *context,
                             gl::LevelIndex levelGLStart,
                             gl::LevelIndex levelGLEnd);

    angle::Result stageSubresourceUpdateImpl(ContextVk *contextVk,
                                             const gl::ImageIndex &index,
                                             const gl::Extents &glExtents,
                                             const gl::Offset &offset,
                                             const gl::InternalFormat &formatInfo,
                                             const gl::PixelUnpackState &unpack,
                                             GLenum type,
                                             const uint8_t *pixels,
                                             const Format &vkFormat,
                                             ImageAccess access,
                                             const GLuint inputRowPitch,
                                             const GLuint inputDepthPitch,
                                             const GLuint inputSkipBytes,
                                             ApplyImageUpdate applyUpdate,
                                             bool *updateAppliedImmediatelyOut);

    angle::Result stageSubresourceUpdate(ContextVk *contextVk,
                                         const gl::ImageIndex &index,
                                         const gl::Extents &glExtents,
                                         const gl::Offset &offset,
                                         const gl::InternalFormat &formatInfo,
                                         const gl::PixelUnpackState &unpack,
                                         GLenum type,
                                         const uint8_t *pixels,
                                         const Format &vkFormat,
                                         ImageAccess access,
                                         ApplyImageUpdate applyUpdate,
                                         bool *updateAppliedImmediatelyOut);

    angle::Result stageSubresourceUpdateAndGetData(ContextVk *contextVk,
                                                   size_t allocationSize,
                                                   const gl::ImageIndex &imageIndex,
                                                   const gl::Extents &glExtents,
                                                   const gl::Offset &offset,
                                                   uint8_t **destData,
                                                   angle::FormatID formatID);

    angle::Result stageSubresourceUpdateFromFramebuffer(const gl::Context *context,
                                                        const gl::ImageIndex &index,
                                                        const gl::Rectangle &sourceArea,
                                                        const gl::Offset &dstOffset,
                                                        const gl::Extents &dstExtent,
                                                        const gl::InternalFormat &formatInfo,
                                                        ImageAccess access,
                                                        FramebufferVk *framebufferVk);

    void stageSubresourceUpdateFromImage(RefCounted<ImageHelper> *image,
                                         const gl::ImageIndex &index,
                                         LevelIndex srcMipLevel,
                                         const gl::Offset &destOffset,
                                         const gl::Extents &glExtents,
                                         const VkImageType imageType);

    // Takes an image and stages a subresource update for each level of it, including its full
    // extent and all its layers, at the specified GL level.
    void stageSubresourceUpdatesFromAllImageLevels(RefCounted<ImageHelper> *image,
                                                   gl::LevelIndex baseLevel);

    // Stage a clear to an arbitrary value.
    void stageClear(const gl::ImageIndex &index,
                    VkImageAspectFlags aspectFlags,
                    const VkClearValue &clearValue);

    // Stage a clear based on robust resource init.
    angle::Result stageRobustResourceClearWithFormat(ContextVk *contextVk,
                                                     const gl::ImageIndex &index,
                                                     const gl::Extents &glExtents,
                                                     const angle::Format &intendedFormat,
                                                     const angle::Format &imageFormat);
    void stageRobustResourceClear(const gl::ImageIndex &index);

    angle::Result stageResourceClearWithFormat(ContextVk *contextVk,
                                               const gl::ImageIndex &index,
                                               const gl::Extents &glExtents,
                                               const angle::Format &intendedFormat,
                                               const angle::Format &imageFormat,
                                               const VkClearValue &clearValue);

    // Stage the currently allocated image as updates to base level and on, making this !valid().
    // This is used for:
    //
    // - Mipmap generation, where levelCount is 1 so only the base level is retained
    // - Image respecification, where every level (other than those explicitly skipped) is staged
    void stageSelfAsSubresourceUpdates(ContextVk *contextVk,
                                       uint32_t levelCount,
                                       gl::TextureType textureType,
                                       const gl::CubeFaceArray<gl::TexLevelMask> &skipLevels);

    // Flush staged updates for a single subresource. Can optionally take a parameter to defer
    // clears to a subsequent RenderPass load op.
    angle::Result flushSingleSubresourceStagedUpdates(ContextVk *contextVk,
                                                      gl::LevelIndex levelGL,
                                                      uint32_t layer,
                                                      uint32_t layerCount,
                                                      ClearValuesArray *deferredClears,
                                                      uint32_t deferredClearIndex);

    // Flushes staged updates to a range of levels and layers from start to (but not including) end.
    // Due to the nature of updates (done wholly to a VkImageSubresourceLayers), some unsolicited
    // layers may also be updated.
    angle::Result flushStagedUpdates(ContextVk *contextVk,
                                     gl::LevelIndex levelGLStart,
                                     gl::LevelIndex levelGLEnd,
                                     uint32_t layerStart,
                                     uint32_t layerEnd,
                                     const gl::CubeFaceArray<gl::TexLevelMask> &skipLevels);

    // Creates a command buffer and flushes all staged updates.  This is used for one-time
    // initialization of resources that we don't expect to accumulate further staged updates, such
    // as with renderbuffers or surface images.
    angle::Result flushAllStagedUpdates(ContextVk *contextVk);

    bool hasStagedUpdatesForSubresource(gl::LevelIndex levelGL,
                                        uint32_t layer,
                                        uint32_t layerCount) const;
    bool hasStagedUpdatesInAllocatedLevels() const;

    bool removeStagedClearUpdatesAndReturnColor(gl::LevelIndex levelGL,
                                                const VkClearColorValue **color);

    void recordWriteBarrier(Context *context,
                            VkImageAspectFlags aspectMask,
                            ImageLayout newLayout,
                            OutsideRenderPassCommandBufferHelper *commands);

    void recordWriteBarrierOneOff(Context *context,
                                  ImageLayout newLayout,
                                  PrimaryCommandBuffer *commandBuffer,
                                  VkSemaphore *acquireNextImageSemaphoreOut)
    {
        barrierImpl(context, getAspectFlags(), newLayout, mCurrentQueueFamilyIndex, commandBuffer,
                    acquireNextImageSemaphoreOut);
    }

    // This function can be used to prevent issuing redundant layout transition commands.
    bool isReadBarrierNecessary(ImageLayout newLayout) const;

    void recordReadBarrier(Context *context,
                           VkImageAspectFlags aspectMask,
                           ImageLayout newLayout,
                           OutsideRenderPassCommandBufferHelper *commands);

    bool isQueueChangeNeccesary(uint32_t newQueueFamilyIndex) const
    {
        return mCurrentQueueFamilyIndex != newQueueFamilyIndex;
    }

    void changeLayoutAndQueue(Context *context,
                              VkImageAspectFlags aspectMask,
                              ImageLayout newLayout,
                              uint32_t newQueueFamilyIndex,
                              OutsideRenderPassCommandBuffer *commandBuffer);

    // Returns true if barrier has been generated
    bool updateLayoutAndBarrier(Context *context,
                                VkImageAspectFlags aspectMask,
                                ImageLayout newLayout,
                                const QueueSerial &queueSerial,
                                PipelineBarrier *barrier,
                                VkSemaphore *semaphoreOut);

    // Performs an ownership transfer from an external instance or API.
    void acquireFromExternal(ContextVk *contextVk,
                             uint32_t externalQueueFamilyIndex,
                             uint32_t rendererQueueFamilyIndex,
                             ImageLayout currentLayout,
                             OutsideRenderPassCommandBuffer *commandBuffer);

    // Performs an ownership transfer to an external instance or API.
    void releaseToExternal(ContextVk *contextVk,
                           uint32_t rendererQueueFamilyIndex,
                           uint32_t externalQueueFamilyIndex,
                           ImageLayout desiredLayout,
                           OutsideRenderPassCommandBuffer *commandBuffer);

    // Returns true if the image is owned by an external API or instance.
    bool isReleasedToExternal() const;

    gl::LevelIndex getFirstAllocatedLevel() const
    {
        ASSERT(valid());
        return mFirstAllocatedLevel;
    }
    gl::LevelIndex getLastAllocatedLevel() const;
    LevelIndex toVkLevel(gl::LevelIndex levelIndexGL) const;
    gl::LevelIndex toGLLevel(LevelIndex levelIndexVk) const;

    angle::Result copyImageDataToBuffer(ContextVk *contextVk,
                                        gl::LevelIndex sourceLevelGL,
                                        uint32_t layerCount,
                                        uint32_t baseLayer,
                                        const gl::Box &sourceArea,
                                        BufferHelper *dstBuffer,
                                        uint8_t **outDataPtr);

    angle::Result copySurfaceImageToBuffer(DisplayVk *displayVk,
                                           gl::LevelIndex sourceLevelGL,
                                           uint32_t layerCount,
                                           uint32_t baseLayer,
                                           const gl::Box &sourceArea,
                                           vk::BufferHelper *bufferHelperOut);

    angle::Result copyBufferToSurfaceImage(DisplayVk *displayVk,
                                           gl::LevelIndex destLevelGL,
                                           uint32_t layerCount,
                                           uint32_t baseLayer,
                                           const gl::Box &destArea,
                                           vk::BufferHelper *bufferHelper);

    static angle::Result GetReadPixelsParams(ContextVk *contextVk,
                                             const gl::PixelPackState &packState,
                                             gl::Buffer *packBuffer,
                                             GLenum format,
                                             GLenum type,
                                             const gl::Rectangle &area,
                                             const gl::Rectangle &clippedArea,
                                             PackPixelsParams *paramsOut,
                                             GLuint *skipBytesOut);

    angle::Result readPixelsForGetImage(ContextVk *contextVk,
                                        const gl::PixelPackState &packState,
                                        gl::Buffer *packBuffer,
                                        gl::LevelIndex levelGL,
                                        uint32_t layer,
                                        uint32_t layerCount,
                                        GLenum format,
                                        GLenum type,
                                        void *pixels);

    angle::Result readPixelsForCompressedGetImage(ContextVk *contextVk,
                                                  const gl::PixelPackState &packState,
                                                  gl::Buffer *packBuffer,
                                                  gl::LevelIndex levelGL,
                                                  uint32_t layer,
                                                  uint32_t layerCount,
                                                  void *pixels);

    angle::Result readPixelsWithCompute(ContextVk *contextVk,
                                        ImageHelper *src,
                                        const PackPixelsParams &packPixelsParams,
                                        const VkOffset3D &srcOffset,
                                        const VkExtent3D &srcExtent,
                                        ptrdiff_t pixelsOffset,
                                        const VkImageSubresourceLayers &srcSubresource);

    angle::Result readPixels(ContextVk *contextVk,
                             const gl::Rectangle &area,
                             const PackPixelsParams &packPixelsParams,
                             VkImageAspectFlagBits copyAspectFlags,
                             gl::LevelIndex levelGL,
                             uint32_t layer,
                             void *pixels);

    angle::Result CalculateBufferInfo(ContextVk *contextVk,
                                      const gl::Extents &glExtents,
                                      const gl::InternalFormat &formatInfo,
                                      const gl::PixelUnpackState &unpack,
                                      GLenum type,
                                      bool is3D,
                                      GLuint *inputRowPitch,
                                      GLuint *inputDepthPitch,
                                      GLuint *inputSkipBytes);

    // Mark a given subresource as written to.  The subresource is identified by [levelStart,
    // levelStart + levelCount) and [layerStart, layerStart + layerCount).
    void onWrite(gl::LevelIndex levelStart,
                 uint32_t levelCount,
                 uint32_t layerStart,
                 uint32_t layerCount,
                 VkImageAspectFlags aspectFlags);
    bool hasImmutableSampler() const { return mYcbcrConversionDesc.valid(); }
    uint64_t getExternalFormat() const { return mYcbcrConversionDesc.getExternalFormat(); }
    bool isYuvResolve() const { return mYcbcrConversionDesc.getExternalFormat() != 0; }
    bool updateChromaFilter(RendererVk *rendererVk, VkFilter filter)
    {
        return mYcbcrConversionDesc.updateChromaFilter(rendererVk, filter);
    }
    const YcbcrConversionDesc &getYcbcrConversionDesc() const { return mYcbcrConversionDesc; }
    const YcbcrConversionDesc getY2YConversionDesc() const
    {
        YcbcrConversionDesc y2yDesc = mYcbcrConversionDesc;
        y2yDesc.updateConversionModel(VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY);
        return y2yDesc;
    }
    void updateYcbcrConversionDesc(RendererVk *rendererVk,
                                   uint64_t externalFormat,
                                   VkSamplerYcbcrModelConversion conversionModel,
                                   VkSamplerYcbcrRange colorRange,
                                   VkChromaLocation xChromaOffset,
                                   VkChromaLocation yChromaOffset,
                                   VkFilter chromaFilter,
                                   VkComponentMapping components,
                                   angle::FormatID intendedFormatID)
    {
        mYcbcrConversionDesc.update(rendererVk, externalFormat, conversionModel, colorRange,
                                    xChromaOffset, yChromaOffset, chromaFilter, components,
                                    intendedFormatID);
    }

    // Used by framebuffer and render pass functions to decide loadOps and invalidate/un-invalidate
    // render target contents.
    bool hasSubresourceDefinedContent(gl::LevelIndex level,
                                      uint32_t layerIndex,
                                      uint32_t layerCount) const;
    bool hasSubresourceDefinedStencilContent(gl::LevelIndex level,
                                             uint32_t layerIndex,
                                             uint32_t layerCount) const;
    void invalidateSubresourceContent(ContextVk *contextVk,
                                      gl::LevelIndex level,
                                      uint32_t layerIndex,
                                      uint32_t layerCount,
                                      bool *preferToKeepContentsDefinedOut);
    void invalidateSubresourceStencilContent(ContextVk *contextVk,
                                             gl::LevelIndex level,
                                             uint32_t layerIndex,
                                             uint32_t layerCount,
                                             bool *preferToKeepContentsDefinedOut);
    void restoreSubresourceContent(gl::LevelIndex level, uint32_t layerIndex, uint32_t layerCount);
    void restoreSubresourceStencilContent(gl::LevelIndex level,
                                          uint32_t layerIndex,
                                          uint32_t layerCount);
    angle::Result reformatStagedBufferUpdates(ContextVk *contextVk,
                                              angle::FormatID srcFormatID,
                                              angle::FormatID dstFormatID);
    bool hasStagedImageUpdatesWithMismatchedFormat(gl::LevelIndex levelStart,
                                                   gl::LevelIndex levelEnd,
                                                   angle::FormatID formatID) const;

    void setAcquireNextImageSemaphore(VkSemaphore semaphore)
    {
        ASSERT(semaphore != VK_NULL_HANDLE);
        ASSERT(!mAcquireNextImageSemaphore.valid());
        mAcquireNextImageSemaphore.setHandle(semaphore);
    }
    const Semaphore &getAcquireNextImageSemaphore() const { return mAcquireNextImageSemaphore; }
    void resetAcquireNextImageSemaphore() { mAcquireNextImageSemaphore.release(); }
    bool isBackedByExternalMemory() const
    {
        return mMemoryAllocationType == MemoryAllocationType::ImageExternal;
    }

    angle::Result initializeNonZeroMemory(Context *context,
                                          bool hasProtectedContent,
                                          VkMemoryPropertyFlags flags,
                                          VkDeviceSize size);

    size_t getLevelUpdateCount(gl::LevelIndex level) const;

  private:
    ANGLE_ENABLE_STRUCT_PADDING_WARNINGS
    struct ClearUpdate
    {
        bool operator==(const ClearUpdate &rhs) const
        {
            return memcmp(this, &rhs, sizeof(ClearUpdate)) == 0;
        }
        VkImageAspectFlags aspectFlags;
        VkClearValue value;
        uint32_t levelIndex;
        uint32_t layerIndex;
        uint32_t layerCount;
        // For ClearEmulatedChannelsOnly, mask of which channels to clear.
        VkColorComponentFlags colorMaskFlags;
    };
    ANGLE_DISABLE_STRUCT_PADDING_WARNINGS
    struct BufferUpdate
    {
        BufferHelper *bufferHelper;
        VkBufferImageCopy copyRegion;
        angle::FormatID formatID;
    };
    struct ImageUpdate
    {
        VkImageCopy copyRegion;
        angle::FormatID formatID;
    };

    struct SubresourceUpdate : angle::NonCopyable
    {
        SubresourceUpdate();
        ~SubresourceUpdate();
        SubresourceUpdate(RefCounted<BufferHelper> *bufferIn,
                          BufferHelper *bufferHelperIn,
                          const VkBufferImageCopy &copyRegion,
                          angle::FormatID formatID);
        SubresourceUpdate(RefCounted<ImageHelper> *imageIn,
                          const VkImageCopy &copyRegion,
                          angle::FormatID formatID);
        SubresourceUpdate(VkImageAspectFlags aspectFlags,
                          const VkClearValue &clearValue,
                          const gl::ImageIndex &imageIndex);
        SubresourceUpdate(VkImageAspectFlags aspectFlags,
                          const VkClearValue &clearValue,
                          gl::LevelIndex level,
                          uint32_t layerIndex,
                          uint32_t layerCount);
        SubresourceUpdate(VkColorComponentFlags colorMaskFlags,
                          const VkClearColorValue &clearValue,
                          const gl::ImageIndex &imageIndex);
        SubresourceUpdate(SubresourceUpdate &&other);

        SubresourceUpdate &operator=(SubresourceUpdate &&other);

        void release(RendererVk *renderer);

        bool isUpdateToLayers(uint32_t layerIndex, uint32_t layerCount) const;
        void getDestSubresource(uint32_t imageLayerCount,
                                uint32_t *baseLayerOut,
                                uint32_t *layerCountOut) const;
        VkImageAspectFlags getDestAspectFlags() const;

        UpdateSource updateSource;
        union
        {
            ClearUpdate clear;
            BufferUpdate buffer;
            ImageUpdate image;
        } data;
        union
        {
            RefCounted<ImageHelper> *image;
            RefCounted<BufferHelper> *buffer;
        } refCounted;
    };

    // Up to 8 layers are tracked per level for whether contents are defined, above which the
    // contents are considered unconditionally defined.  This handles the more likely scenarios of:
    //
    // - Single layer framebuffer attachments,
    // - Cube map framebuffer attachments,
    // - Multi-view rendering.
    //
    // If there arises a need to optimize an application that invalidates layer >= 8, this can
    // easily be raised to 32 to 64 bits.  Beyond that, an additional hash map can be used to track
    // such subresources.
    static constexpr uint32_t kMaxContentDefinedLayerCount = 8;
    using LevelContentDefinedMask = angle::BitSet8<kMaxContentDefinedLayerCount>;

    void deriveExternalImageTiling(const void *createInfoChain);

    // Used to initialize ImageFormats from actual format, with no pNext from a VkImageCreateInfo
    // object.
    void setImageFormatsFromActualFormat(VkFormat actualFormat, ImageFormats &imageFormatsOut);

    // Called from flushStagedUpdates, removes updates that are later superseded by another.  This
    // cannot be done at the time the updates were staged, as the image is not created (and thus the
    // extents are not known).
    void removeSupersededUpdates(ContextVk *contextVk, const gl::TexLevelMask skipLevelsAllFaces);

    void initImageMemoryBarrierStruct(Context *context,
                                      VkImageAspectFlags aspectMask,
                                      ImageLayout newLayout,
                                      uint32_t newQueueFamilyIndex,
                                      VkImageMemoryBarrier *imageMemoryBarrier) const;

    // Generalized to accept both "primary" and "secondary" command buffers.
    template <typename CommandBufferT>
    void barrierImpl(Context *context,
                     VkImageAspectFlags aspectMask,
                     ImageLayout newLayout,
                     uint32_t newQueueFamilyIndex,
                     CommandBufferT *commandBuffer,
                     VkSemaphore *acquireNextImageSemaphoreOut);

    // If the image has emulated channels, we clear them once so as not to leave garbage on those
    // channels.
    VkColorComponentFlags getEmulatedChannelsMask() const;
    void stageClearIfEmulatedFormat(bool isRobustResourceInitEnabled, bool isExternalImage);
    bool verifyEmulatedClearsAreBeforeOtherUpdates(const std::vector<SubresourceUpdate> &updates);

    // Clear either color or depth/stencil based on image format.
    void clear(Context *context,
               VkImageAspectFlags aspectFlags,
               const VkClearValue &value,
               LevelIndex mipLevel,
               uint32_t baseArrayLayer,
               uint32_t layerCount,
               OutsideRenderPassCommandBuffer *commandBuffer);

    void clearColor(Context *context,
                    const VkClearColorValue &color,
                    LevelIndex baseMipLevelVk,
                    uint32_t levelCount,
                    uint32_t baseArrayLayer,
                    uint32_t layerCount,
                    OutsideRenderPassCommandBuffer *commandBuffer);

    void clearDepthStencil(Context *context,
                           VkImageAspectFlags clearAspectFlags,
                           const VkClearDepthStencilValue &depthStencil,
                           LevelIndex baseMipLevelVk,
                           uint32_t levelCount,
                           uint32_t baseArrayLayer,
                           uint32_t layerCount,
                           OutsideRenderPassCommandBuffer *commandBuffer);

    angle::Result clearEmulatedChannels(ContextVk *contextVk,
                                        VkColorComponentFlags colorMaskFlags,
                                        const VkClearValue &value,
                                        LevelIndex mipLevel,
                                        uint32_t baseArrayLayer,
                                        uint32_t layerCount);

    angle::Result updateSubresourceOnHost(Context *context,
                                          ApplyImageUpdate applyUpdate,
                                          const gl::ImageIndex &index,
                                          const gl::Extents &glExtents,
                                          const gl::Offset &offset,
                                          const uint8_t *source,
                                          const GLuint rowPitch,
                                          const GLuint depthPitch,
                                          bool *copiedOut);

    std::vector<SubresourceUpdate> *getLevelUpdates(gl::LevelIndex level);
    const std::vector<SubresourceUpdate> *getLevelUpdates(gl::LevelIndex level) const;

    void appendSubresourceUpdate(gl::LevelIndex level, SubresourceUpdate &&update);
    void prependSubresourceUpdate(gl::LevelIndex level, SubresourceUpdate &&update);

    enum class PruneReason
    {
        MemoryOptimization,
        MinimizeWorkBeforeFlush
    };
    void pruneSupersededUpdatesForLevel(ContextVk *contextVk,
                                        const gl::LevelIndex level,
                                        const PruneReason reason);

    // Whether there are any updates in [start, end).
    bool hasStagedUpdatesInLevels(gl::LevelIndex levelStart, gl::LevelIndex levelEnd) const;

    // Used only for assertions, these functions verify that
    // SubresourceUpdate::refcountedObject::image or buffer references have the correct ref count.
    // This is to prevent accidental leaks.
    bool validateSubresourceUpdateImageRefConsistent(RefCounted<ImageHelper> *image) const;
    bool validateSubresourceUpdateBufferRefConsistent(RefCounted<BufferHelper> *buffer) const;
    bool validateSubresourceUpdateRefCountsConsistent() const;

    void resetCachedProperties();
    void setEntireContentDefined();
    void setEntireContentUndefined();
    void setContentDefined(LevelIndex levelStart,
                           uint32_t levelCount,
                           uint32_t layerStart,
                           uint32_t layerCount,
                           VkImageAspectFlags aspectFlags);
    void invalidateSubresourceContentImpl(ContextVk *contextVk,
                                          gl::LevelIndex level,
                                          uint32_t layerIndex,
                                          uint32_t layerCount,
                                          VkImageAspectFlagBits aspect,
                                          LevelContentDefinedMask *contentDefinedMask,
                                          bool *preferToKeepContentsDefinedOut);
    void restoreSubresourceContentImpl(gl::LevelIndex level,
                                       uint32_t layerIndex,
                                       uint32_t layerCount,
                                       VkImageAspectFlagBits aspect,
                                       LevelContentDefinedMask *contentDefinedMask);

    // Use the following functions to access m*ContentDefined to make sure the correct level index
    // is used (i.e. vk::LevelIndex and not gl::LevelIndex).
    LevelContentDefinedMask &getLevelContentDefined(LevelIndex level);
    LevelContentDefinedMask &getLevelStencilContentDefined(LevelIndex level);
    const LevelContentDefinedMask &getLevelContentDefined(LevelIndex level) const;
    const LevelContentDefinedMask &getLevelStencilContentDefined(LevelIndex level) const;

    angle::Result initLayerImageViewImpl(Context *context,
                                         gl::TextureType textureType,
                                         VkImageAspectFlags aspectMask,
                                         const gl::SwizzleState &swizzleMap,
                                         ImageView *imageViewOut,
                                         LevelIndex baseMipLevelVk,
                                         uint32_t levelCount,
                                         uint32_t baseArrayLayer,
                                         uint32_t layerCount,
                                         VkFormat imageFormat,
                                         VkImageUsageFlags usageFlags,
                                         gl::YuvSamplingMode yuvSamplingMode) const;

    angle::Result readPixelsImpl(ContextVk *contextVk,
                                 const gl::Rectangle &area,
                                 const PackPixelsParams &packPixelsParams,
                                 VkImageAspectFlagBits copyAspectFlags,
                                 gl::LevelIndex levelGL,
                                 uint32_t layer,
                                 void *pixels);

    angle::Result packReadPixelBuffer(ContextVk *contextVk,
                                      const gl::Rectangle &area,
                                      const PackPixelsParams &packPixelsParams,
                                      const angle::Format &readFormat,
                                      const angle::Format &aspectFormat,
                                      const uint8_t *readPixelBuffer,
                                      gl::LevelIndex levelGL,
                                      void *pixels);

    bool canCopyWithTransformForReadPixels(const PackPixelsParams &packPixelsParams,
                                           const angle::Format *readFormat,
                                           ptrdiff_t pixelsOffset);
    bool canCopyWithComputeForReadPixels(const PackPixelsParams &packPixelsParams,
                                         const angle::Format *readFormat,
                                         ptrdiff_t pixelsOffset);

    // Returns true if source data and actual image format matches except color space differences.
    bool isDataFormatMatchForCopy(angle::FormatID srcDataFormatID) const
    {
        if (mActualFormatID == srcDataFormatID)
        {
            return true;
        }
        angle::FormatID actualFormatLinear =
            getActualFormat().isSRGB ? ConvertToLinear(mActualFormatID) : mActualFormatID;
        angle::FormatID srcDataFormatIDLinear = angle::Format::Get(srcDataFormatID).isSRGB
                                                    ? ConvertToLinear(srcDataFormatID)
                                                    : srcDataFormatID;
        return actualFormatLinear == srcDataFormatIDLinear;
    }

    static constexpr int kThreadholdForComputeTransCoding = 4096;
    bool shouldUseComputeForTransCoding(LevelIndex level)
    {
        // Using texture size instead of extent size to simplify the problem.
        gl::Extents ext = getLevelExtents2D(level);
        return ext.width * ext.height > kThreadholdForComputeTransCoding;
    }

    // Vulkan objects.
    Image mImage;
    DeviceMemory mDeviceMemory;
    Allocation mVmaAllocation;

    // Image properties.
    VkImageCreateInfo mVkImageCreateInfo;
    VkImageType mImageType;
    VkImageTiling mTilingMode;
    VkImageCreateFlags mCreateFlags;
    VkImageUsageFlags mUsage;
    // For Android swapchain images, the Vulkan VkImage must be "rotated".  However, most of ANGLE
    // uses non-rotated extents (i.e. the way the application views the extents--see "Introduction
    // to Android rotation and pre-rotation" in "SurfaceVk.cpp").  Thus, mExtents are non-rotated.
    // The rotated extents are also stored along with a bool that indicates if the aspect ratio is
    // different between the rotated and non-rotated extents.
    VkExtent3D mExtents;
    bool mRotatedAspectRatio;
    angle::FormatID mIntendedFormatID;
    angle::FormatID mActualFormatID;
    GLint mSamples;
    ImageSerial mImageSerial;

    // Current state.
    ImageLayout mCurrentLayout;
    uint32_t mCurrentQueueFamilyIndex;
    // For optimizing transition between different shader readonly layouts
    ImageLayout mLastNonShaderReadOnlyLayout;
    VkPipelineStageFlags mCurrentShaderReadStageMask;
    // Track how it is being used by current open renderpass.
    RenderPassUsageFlags mRenderPassUsageFlags;
    // The QueueSerial that associated with the last barrier.
    QueueSerial mBarrierQueueSerial;

    // For imported images
    YcbcrConversionDesc mYcbcrConversionDesc;

    // The first level that has been allocated. For mutable textures, this should be same as
    // mBaseLevel since we always reallocate VkImage based on mBaseLevel change. But for immutable
    // textures, we always allocate from level 0 regardless of mBaseLevel change.
    gl::LevelIndex mFirstAllocatedLevel;

    // Cached properties.
    uint32_t mLayerCount;
    uint32_t mLevelCount;

    // Image formats used for imageless framebuffers.
    ImageFormats mViewFormats;

    std::vector<std::vector<SubresourceUpdate>> mSubresourceUpdates;
    VkDeviceSize mTotalStagedBufferUpdateSize;

    // Optimization for repeated clear with the same value. If this pointer is not null, the entire
    // image it has been cleared to the specified clear value. If another clear call is made with
    // the exact same clear value, we will detect and skip the clear call.
    Optional<ClearUpdate> mCurrentSingleClearValue;

    // Track whether each subresource has defined contents.  Up to 8 layers are tracked per level,
    // above which the contents are considered unconditionally defined.
    gl::TexLevelArray<LevelContentDefinedMask> mContentDefined;
    gl::TexLevelArray<LevelContentDefinedMask> mStencilContentDefined;

    // Used for memory allocation tracking.
    // Memory size allocated for the image in the memory during the initialization.
    VkDeviceSize mAllocationSize;
    // Type of the memory allocation for the image (Image or ImageExternal).
    MemoryAllocationType mMemoryAllocationType;
    // Memory type index used for the allocation. It can be used to determine the heap index.
    uint32_t mMemoryTypeIndex;

    // Only used for swapChain images. This is set when an image is acquired and is waited on
    // by the next submission (which uses this image), at which point it is released.
    Semaphore mAcquireNextImageSemaphore;
};

ANGLE_INLINE bool RenderPassCommandBufferHelper::usesImage(const ImageHelper &image) const
{
    return image.usedByCommandBuffer(mQueueSerial);
}

ANGLE_INLINE bool RenderPassCommandBufferHelper::startedAndUsesImageWithBarrier(
    const ImageHelper &image) const
{
    return mRenderPassStarted && image.getBarrierQueueSerial() == mQueueSerial;
}

// A vector of image views, such as one per level or one per layer.
using ImageViewVector = std::vector<ImageView>;

// A vector of vector of image views.  Primary index is layer, secondary index is level.
using LayerLevelImageViewVector = std::vector<ImageViewVector>;

// Address mode for layers: only possible to access either all layers, or up to
// IMPLEMENTATION_ANGLE_MULTIVIEW_MAX_VIEWS layers.  This enum uses 0 for all layers and the rest of
// the values conveniently alias the number of layers.
enum LayerMode
{
    All,
    _1,
    _2,
    _3,
    _4,
};
static_assert(gl::IMPLEMENTATION_ANGLE_MULTIVIEW_MAX_VIEWS == 4, "Update LayerMode");

LayerMode GetLayerMode(const vk::ImageHelper &image, uint32_t layerCount);

// Sampler decode mode indicating if an attachment needs to be decoded in linear colorspace or sRGB
enum class SrgbDecodeMode
{
    SkipDecode,
    SrgbDecode
};

class ImageViewHelper final : angle::NonCopyable
{
  public:
    ImageViewHelper();
    ImageViewHelper(ImageViewHelper &&other);
    ~ImageViewHelper();

    void init(RendererVk *renderer);
    void destroy(VkDevice device);

    const ImageView &getLinearReadImageView() const
    {
        return getValidReadViewImpl(mPerLevelRangeLinearReadImageViews);
    }
    const ImageView &getSRGBReadImageView() const
    {
        return getValidReadViewImpl(mPerLevelRangeSRGBReadImageViews);
    }
    const ImageView &getLinearFetchImageView() const
    {
        return getValidReadViewImpl(mPerLevelRangeLinearFetchImageViews);
    }
    const ImageView &getSRGBFetchImageView() const
    {
        return getValidReadViewImpl(mPerLevelRangeSRGBFetchImageViews);
    }
    const ImageView &getLinearCopyImageView() const
    {
        return getValidReadViewImpl(mPerLevelRangeLinearCopyImageViews);
    }
    const ImageView &getSRGBCopyImageView() const
    {
        return getValidReadViewImpl(mPerLevelRangeSRGBCopyImageViews);
    }
    const ImageView &getStencilReadImageView() const
    {
        return getValidReadViewImpl(mPerLevelRangeStencilReadImageViews);
    }

    const ImageView &getReadImageView() const
    {
        return mLinearColorspace ? getReadViewImpl(mPerLevelRangeLinearReadImageViews)
                                 : getReadViewImpl(mPerLevelRangeSRGBReadImageViews);
    }

    const ImageView &getFetchImageView() const
    {
        return mLinearColorspace ? getReadViewImpl(mPerLevelRangeLinearFetchImageViews)
                                 : getReadViewImpl(mPerLevelRangeSRGBFetchImageViews);
    }

    const ImageView &getCopyImageView() const
    {
        return mLinearColorspace ? getReadViewImpl(mPerLevelRangeLinearCopyImageViews)
                                 : getReadViewImpl(mPerLevelRangeSRGBCopyImageViews);
    }

    ImageView &getSamplerExternal2DY2YEXTImageView()
    {
        return getReadViewImpl(mPerLevelRangeSamplerExternal2DY2YEXTImageViews);
    }

    const ImageView &getSamplerExternal2DY2YEXTImageView() const
    {
        return getValidReadViewImpl(mPerLevelRangeSamplerExternal2DY2YEXTImageViews);
    }

    // Used when initialized RenderTargets.
    bool hasStencilReadImageView() const
    {
        return mCurrentBaseMaxLevelHash < mPerLevelRangeStencilReadImageViews.size()
                   ? mPerLevelRangeStencilReadImageViews[mCurrentBaseMaxLevelHash].valid()
                   : false;
    }

    bool hasFetchImageView() const
    {
        if ((mLinearColorspace &&
             mCurrentBaseMaxLevelHash < mPerLevelRangeLinearFetchImageViews.size()) ||
            (!mLinearColorspace &&
             mCurrentBaseMaxLevelHash < mPerLevelRangeSRGBFetchImageViews.size()))
        {
            return getFetchImageView().valid();
        }
        else
        {
            return false;
        }
    }

    bool hasCopyImageView() const
    {
        if ((mLinearColorspace &&
             mCurrentBaseMaxLevelHash < mPerLevelRangeLinearCopyImageViews.size()) ||
            (!mLinearColorspace &&
             mCurrentBaseMaxLevelHash < mPerLevelRangeSRGBCopyImageViews.size()))
        {
            return getCopyImageView().valid();
        }
        else
        {
            return false;
        }
    }

    // For applications that frequently switch a texture's max level, and make no other changes to
    // the texture, change the currently-used max level, and potentially create new "read views"
    // for the new max-level
    angle::Result initReadViews(ContextVk *contextVk,
                                gl::TextureType viewType,
                                const ImageHelper &image,
                                const gl::SwizzleState &formatSwizzle,
                                const gl::SwizzleState &readSwizzle,
                                LevelIndex baseLevel,
                                uint32_t levelCount,
                                uint32_t baseLayer,
                                uint32_t layerCount,
                                bool requiresSRGBViews,
                                VkImageUsageFlags imageUsageFlags);

    // Creates a storage view with all layers of the level.
    angle::Result getLevelStorageImageView(Context *context,
                                           gl::TextureType viewType,
                                           const ImageHelper &image,
                                           LevelIndex levelVk,
                                           uint32_t layer,
                                           VkImageUsageFlags imageUsageFlags,
                                           angle::FormatID formatID,
                                           const ImageView **imageViewOut);

    // Creates a storage view with a single layer of the level.
    angle::Result getLevelLayerStorageImageView(Context *context,
                                                const ImageHelper &image,
                                                LevelIndex levelVk,
                                                uint32_t layer,
                                                VkImageUsageFlags imageUsageFlags,
                                                angle::FormatID formatID,
                                                const ImageView **imageViewOut);

    // Creates a draw view with a range of layers of the level.
    angle::Result getLevelDrawImageView(Context *context,
                                        const ImageHelper &image,
                                        LevelIndex levelVk,
                                        uint32_t layer,
                                        uint32_t layerCount,
                                        gl::SrgbWriteControlMode mode,
                                        const ImageView **imageViewOut);

    // Creates a draw view with a single layer of the level.
    angle::Result getLevelLayerDrawImageView(Context *context,
                                             const ImageHelper &image,
                                             LevelIndex levelVk,
                                             uint32_t layer,
                                             gl::SrgbWriteControlMode mode,
                                             const ImageView **imageViewOut);

    // Return unique Serial for an imageView.
    ImageOrBufferViewSubresourceSerial getSubresourceSerial(
        gl::LevelIndex levelGL,
        uint32_t levelCount,
        uint32_t layer,
        LayerMode layerMode,
        SrgbDecodeMode srgbDecodeMode,
        gl::SrgbOverride srgbOverrideMode) const;

    bool isImageViewGarbageEmpty() const;

    void release(RendererVk *renderer, const ResourceUse &use);

  private:
    ImageView &getReadImageView()
    {
        return mLinearColorspace ? getReadViewImpl(mPerLevelRangeLinearReadImageViews)
                                 : getReadViewImpl(mPerLevelRangeSRGBReadImageViews);
    }
    ImageView &getFetchImageView()
    {
        return mLinearColorspace ? getReadViewImpl(mPerLevelRangeLinearFetchImageViews)
                                 : getReadViewImpl(mPerLevelRangeSRGBFetchImageViews);
    }
    ImageView &getCopyImageView()
    {
        return mLinearColorspace ? getReadViewImpl(mPerLevelRangeLinearCopyImageViews)
                                 : getReadViewImpl(mPerLevelRangeSRGBCopyImageViews);
    }

    // Used by public get*ImageView() methods to do proper assert based on vector size and validity
    inline const ImageView &getValidReadViewImpl(const ImageViewVector &imageViewVector) const
    {
        ASSERT(mCurrentBaseMaxLevelHash < imageViewVector.size() &&
               imageViewVector[mCurrentBaseMaxLevelHash].valid());
        return imageViewVector[mCurrentBaseMaxLevelHash];
    }

    // Used by public get*ImageView() methods to do proper assert based on vector size
    inline const ImageView &getReadViewImpl(const ImageViewVector &imageViewVector) const
    {
        ASSERT(mCurrentBaseMaxLevelHash < imageViewVector.size());
        return imageViewVector[mCurrentBaseMaxLevelHash];
    }

    // Used by private get*ImageView() methods to do proper assert based on vector size
    inline ImageView &getReadViewImpl(ImageViewVector &imageViewVector)
    {
        ASSERT(mCurrentBaseMaxLevelHash < imageViewVector.size());
        return imageViewVector[mCurrentBaseMaxLevelHash];
    }

    // Creates views with multiple layers and levels.
    angle::Result initReadViewsImpl(ContextVk *contextVk,
                                    gl::TextureType viewType,
                                    const ImageHelper &image,
                                    const gl::SwizzleState &formatSwizzle,
                                    const gl::SwizzleState &readSwizzle,
                                    LevelIndex baseLevel,
                                    uint32_t levelCount,
                                    uint32_t baseLayer,
                                    uint32_t layerCount,
                                    VkImageUsageFlags imageUsageFlags);

    // Create SRGB-reinterpreted read views
    angle::Result initSRGBReadViewsImpl(ContextVk *contextVk,
                                        gl::TextureType viewType,
                                        const ImageHelper &image,
                                        const gl::SwizzleState &formatSwizzle,
                                        const gl::SwizzleState &readSwizzle,
                                        LevelIndex baseLevel,
                                        uint32_t levelCount,
                                        uint32_t baseLayer,
                                        uint32_t layerCount,
                                        VkImageUsageFlags imageUsageFlags);

    // For applications that frequently switch a texture's base/max level, and make no other changes
    // to the texture, keep track of the currently-used base and max levels, and keep one "read
    // view" per each combination.  The value stored here is base<<4|max, used to look up the view
    // in a vector.
    static_assert(gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS <= 16,
                  "Not enough bits in mCurrentBaseMaxLevelHash");
    uint8_t mCurrentBaseMaxLevelHash;

    bool mLinearColorspace;

    // Read views (one per [base, max] level range)
    ImageViewVector mPerLevelRangeLinearReadImageViews;
    ImageViewVector mPerLevelRangeSRGBReadImageViews;
    ImageViewVector mPerLevelRangeLinearFetchImageViews;
    ImageViewVector mPerLevelRangeSRGBFetchImageViews;
    ImageViewVector mPerLevelRangeLinearCopyImageViews;
    ImageViewVector mPerLevelRangeSRGBCopyImageViews;
    ImageViewVector mPerLevelRangeStencilReadImageViews;
    ImageViewVector mPerLevelRangeSamplerExternal2DY2YEXTImageViews;

    // Draw views
    LayerLevelImageViewVector mLayerLevelDrawImageViews;
    LayerLevelImageViewVector mLayerLevelDrawImageViewsLinear;
    angle::HashMap<ImageSubresourceRange, std::unique_ptr<ImageView>> mSubresourceDrawImageViews;

    // Storage views
    ImageViewVector mLevelStorageImageViews;
    LayerLevelImageViewVector mLayerLevelStorageImageViews;

    // Serial for the image view set. getSubresourceSerial combines it with subresource info.
    ImageOrBufferViewSerial mImageViewSerial;
};

ImageSubresourceRange MakeImageSubresourceReadRange(gl::LevelIndex level,
                                                    uint32_t levelCount,
                                                    uint32_t layer,
                                                    LayerMode layerMode,
                                                    SrgbDecodeMode srgbDecodeMode,
                                                    gl::SrgbOverride srgbOverrideMode);
ImageSubresourceRange MakeImageSubresourceDrawRange(gl::LevelIndex level,
                                                    uint32_t layer,
                                                    LayerMode layerMode,
                                                    gl::SrgbWriteControlMode srgbWriteControlMode);

class BufferViewHelper final : public Resource
{
  public:
    BufferViewHelper();
    BufferViewHelper(BufferViewHelper &&other);
    ~BufferViewHelper() override;

    void init(RendererVk *renderer, VkDeviceSize offset, VkDeviceSize size);
    bool isInitialized() const { return mInitialized; }
    void release(ContextVk *contextVk);
    void destroy(VkDevice device);

    angle::Result getView(Context *context,
                          const BufferHelper &buffer,
                          VkDeviceSize bufferOffset,
                          const Format &format,
                          const BufferView **viewOut);

    // Return unique Serial for a bufferView.
    ImageOrBufferViewSubresourceSerial getSerial() const;

  private:
    bool mInitialized;

    // To support format reinterpretation, additional views for formats other than the one specified
    // to glTexBuffer may need to be created.  On draw/dispatch, the format layout qualifier of the
    // imageBuffer is used (if provided) to create a potentially different view of the buffer.
    angle::HashMap<VkFormat, BufferView> mViews;

    // View properties:
    //
    // Offset and size specified to glTexBufferRange
    VkDeviceSize mOffset;
    VkDeviceSize mSize;

    // Serial for the buffer view.  An ImageOrBufferViewSerial is used for texture buffers so that
    // they fit together with the other texture types.
    ImageOrBufferViewSerial mViewSerial;
};

// Context state that can affect a compute pipeline
enum class ComputePipelineFlag : uint8_t
{
    // Whether VK_EXT_pipeline_robustness should be used to make the pipeline robust.  Note that
    // programs are allowed to be shared between robust and non-robust contexts, so different
    // pipelines can be created for the same compute program.
    Robust,
    // Whether VK_EXT_pipeline_protected_access should be used to make the pipeline protected-only.
    // Similar to robustness, EGL allows protected and unprotected to be in the same share group.
    Protected,

    InvalidEnum,
    EnumCount = InvalidEnum,
};

using ComputePipelineFlags = angle::PackedEnumBitSet<ComputePipelineFlag, uint8_t>;
using ComputePipelineCache = std::array<PipelineHelper, 1u << ComputePipelineFlags::size()>;

class ShaderProgramHelper : angle::NonCopyable
{
  public:
    ShaderProgramHelper();
    ~ShaderProgramHelper();

    bool valid(const gl::ShaderType shaderType) const;
    void destroy(RendererVk *rendererVk);
    void release(ContextVk *contextVk);

    void setShader(gl::ShaderType shaderType, RefCounted<ShaderModule> *shader);

    // Create a graphics pipeline and place it in the cache.  Must not be called if the pipeline
    // exists in cache.
    template <typename PipelineHash>
    ANGLE_INLINE angle::Result createGraphicsPipeline(
        vk::Context *context,
        GraphicsPipelineCache<PipelineHash> *graphicsPipelines,
        PipelineCacheAccess *pipelineCache,
        const RenderPass &compatibleRenderPass,
        const PipelineLayout &pipelineLayout,
        PipelineSource source,
        const GraphicsPipelineDesc &pipelineDesc,
        const SpecializationConstants &specConsts,
        const GraphicsPipelineDesc **descPtrOut,
        PipelineHelper **pipelineOut) const
    {
        return graphicsPipelines->createPipeline(context, pipelineCache, compatibleRenderPass,
                                                 pipelineLayout, mShaders, specConsts, source,
                                                 pipelineDesc, descPtrOut, pipelineOut);
    }

    void createMonolithicPipelineCreationTask(vk::Context *context,
                                              PipelineCacheAccess *pipelineCache,
                                              const GraphicsPipelineDesc &desc,
                                              const PipelineLayout &pipelineLayout,
                                              const SpecializationConstants &specConsts,
                                              PipelineHelper *pipeline) const;

    angle::Result getOrCreateComputePipeline(vk::Context *context,
                                             ComputePipelineCache *computePipelines,
                                             PipelineCacheAccess *pipelineCache,
                                             const PipelineLayout &pipelineLayout,
                                             ComputePipelineFlags pipelineFlags,
                                             PipelineSource source,
                                             PipelineHelper **pipelineOut) const;

  private:
    ShaderModuleMap mShaders;
};

// Tracks current handle allocation counts in the back-end. Useful for debugging and profiling.
// Note: not all handle types are currently implemented.
class ActiveHandleCounter final : angle::NonCopyable
{
  public:
    ActiveHandleCounter();
    ~ActiveHandleCounter();

    void onAllocate(HandleType handleType)
    {
        mActiveCounts[handleType]++;
        mAllocatedCounts[handleType]++;
    }

    void onDeallocate(HandleType handleType) { mActiveCounts[handleType]--; }

    uint32_t getActive(HandleType handleType) const { return mActiveCounts[handleType]; }
    uint32_t getAllocated(HandleType handleType) const { return mAllocatedCounts[handleType]; }

  private:
    angle::PackedEnumMap<HandleType, uint32_t> mActiveCounts;
    angle::PackedEnumMap<HandleType, uint32_t> mAllocatedCounts;
};

// Sometimes ANGLE issues a command internally, such as copies, draws and dispatches that do not
// directly correspond to the application draw/dispatch call.  Before the command is recorded in the
// command buffer, the render pass may need to be broken and/or appropriate barriers may need to be
// inserted.  The following struct aggregates all resources that such internal commands need.
struct CommandBufferBufferAccess
{
    BufferHelper *buffer;
    VkAccessFlags accessType;
    PipelineStage stage;
};
struct CommandBufferImageAccess
{
    ImageHelper *image;
    VkImageAspectFlags aspectFlags;
    ImageLayout imageLayout;
};
struct CommandBufferImageWrite
{
    CommandBufferImageAccess access;
    gl::LevelIndex levelStart;
    uint32_t levelCount;
    uint32_t layerStart;
    uint32_t layerCount;
};
struct CommandBufferBufferExternalAcquireRelease
{
    BufferHelper *buffer;
};
struct CommandBufferResourceAccess
{
    Resource *resource;
};
class CommandBufferAccess : angle::NonCopyable
{
  public:
    CommandBufferAccess();
    ~CommandBufferAccess();

    void onBufferTransferRead(BufferHelper *buffer)
    {
        onBufferRead(VK_ACCESS_TRANSFER_READ_BIT, PipelineStage::Transfer, buffer);
    }
    void onBufferTransferWrite(BufferHelper *buffer)
    {
        onBufferWrite(VK_ACCESS_TRANSFER_WRITE_BIT, PipelineStage::Transfer, buffer);
    }
    void onBufferSelfCopy(BufferHelper *buffer)
    {
        onBufferWrite(VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT,
                      PipelineStage::Transfer, buffer);
    }
    void onBufferComputeShaderRead(BufferHelper *buffer)
    {
        onBufferRead(VK_ACCESS_SHADER_READ_BIT, PipelineStage::ComputeShader, buffer);
    }
    void onBufferComputeShaderWrite(BufferHelper *buffer)
    {
        onBufferWrite(VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_SHADER_READ_BIT,
                      PipelineStage::ComputeShader, buffer);
    }

    void onImageTransferRead(VkImageAspectFlags aspectFlags, ImageHelper *image)
    {
        onImageRead(aspectFlags, ImageLayout::TransferSrc, image);
    }
    void onImageTransferWrite(gl::LevelIndex levelStart,
                              uint32_t levelCount,
                              uint32_t layerStart,
                              uint32_t layerCount,
                              VkImageAspectFlags aspectFlags,
                              ImageHelper *image)
    {
        onImageWrite(levelStart, levelCount, layerStart, layerCount, aspectFlags,
                     ImageLayout::TransferDst, image);
    }
    void onImageSelfCopy(gl::LevelIndex writeLevelStart,
                         uint32_t writeLevelCount,
                         uint32_t writeLayerStart,
                         uint32_t writeLayerCount,
                         VkImageAspectFlags aspectFlags,
                         ImageHelper *image)
    {
        onImageWrite(writeLevelStart, writeLevelCount, writeLayerStart, writeLayerCount,
                     aspectFlags, ImageLayout::TransferSrcDst, image);
    }
    void onImageComputeShaderRead(VkImageAspectFlags aspectFlags, ImageHelper *image)
    {
        onImageRead(aspectFlags, ImageLayout::ComputeShaderReadOnly, image);
    }
    void onImageComputeShaderWrite(gl::LevelIndex levelStart,
                                   uint32_t levelCount,
                                   uint32_t layerStart,
                                   uint32_t layerCount,
                                   VkImageAspectFlags aspectFlags,
                                   ImageHelper *image)
    {
        onImageWrite(levelStart, levelCount, layerStart, layerCount, aspectFlags,
                     ImageLayout::ComputeShaderWrite, image);
    }
    void onImageTransferDstAndComputeWrite(gl::LevelIndex levelStart,
                                           uint32_t levelCount,
                                           uint32_t layerStart,
                                           uint32_t layerCount,
                                           VkImageAspectFlags aspectFlags,
                                           ImageHelper *image)
    {
        onImageWrite(levelStart, levelCount, layerStart, layerCount, aspectFlags,
                     ImageLayout::TransferDstAndComputeWrite, image);
    }
    void onExternalAcquireRelease(ImageHelper *image) { onResourceAccess(image); }
    void onQueryAccess(QueryHelper *query) { onResourceAccess(query); }
    void onBufferExternalAcquireRelease(BufferHelper *buffer);

    // The limits reflect the current maximum concurrent usage of each resource type.  ASSERTs will
    // fire if this limit is exceeded in the future.
    using ReadBuffers  = angle::FixedVector<CommandBufferBufferAccess, 2>;
    using WriteBuffers = angle::FixedVector<CommandBufferBufferAccess, 2>;
    using ReadImages   = angle::FixedVector<CommandBufferImageAccess, 2>;
    using WriteImages  = angle::FixedVector<CommandBufferImageWrite, 1>;
    using ExternalAcquireReleaseBuffers =
        angle::FixedVector<CommandBufferBufferExternalAcquireRelease, 1>;
    using AccessResources = angle::FixedVector<CommandBufferResourceAccess, 1>;

    const ReadBuffers &getReadBuffers() const { return mReadBuffers; }
    const WriteBuffers &getWriteBuffers() const { return mWriteBuffers; }
    const ReadImages &getReadImages() const { return mReadImages; }
    const WriteImages &getWriteImages() const { return mWriteImages; }
    const ExternalAcquireReleaseBuffers &getExternalAcquireReleaseBuffers() const
    {
        return mExternalAcquireReleaseBuffers;
    }
    const AccessResources &getAccessResources() const { return mAccessResources; }

  private:
    void onBufferRead(VkAccessFlags readAccessType, PipelineStage readStage, BufferHelper *buffer);
    void onBufferWrite(VkAccessFlags writeAccessType,
                       PipelineStage writeStage,
                       BufferHelper *buffer);

    void onImageRead(VkImageAspectFlags aspectFlags, ImageLayout imageLayout, ImageHelper *image);
    void onImageWrite(gl::LevelIndex levelStart,
                      uint32_t levelCount,
                      uint32_t layerStart,
                      uint32_t layerCount,
                      VkImageAspectFlags aspectFlags,
                      ImageLayout imageLayout,
                      ImageHelper *image);
    void onResourceAccess(Resource *resource);

    ReadBuffers mReadBuffers;
    WriteBuffers mWriteBuffers;
    ReadImages mReadImages;
    WriteImages mWriteImages;
    ExternalAcquireReleaseBuffers mExternalAcquireReleaseBuffers;
    AccessResources mAccessResources;
};

// This class' responsibility is to create index buffers needed to support line loops in Vulkan.
// In the setup phase of drawing, the createIndexBuffer method should be called with the
// current draw call parameters. If an element array buffer is bound for an indexed draw, use
// createIndexBufferFromElementArrayBuffer.
//
// If the user wants to draw a loop between [v1, v2, v3], we will create an indexed buffer with
// these indexes: [0, 1, 2, 3, 0] to emulate the loop.
class LineLoopHelper final : angle::NonCopyable
{
  public:
    LineLoopHelper(RendererVk *renderer);
    ~LineLoopHelper();

    angle::Result getIndexBufferForDrawArrays(ContextVk *contextVk,
                                              uint32_t clampedVertexCount,
                                              GLint firstVertex,
                                              BufferHelper **bufferOut);

    angle::Result getIndexBufferForElementArrayBuffer(ContextVk *contextVk,
                                                      BufferVk *elementArrayBufferVk,
                                                      gl::DrawElementsType glIndexType,
                                                      int indexCount,
                                                      intptr_t elementArrayOffset,
                                                      BufferHelper **bufferOut,
                                                      uint32_t *indexCountOut);

    angle::Result streamIndices(ContextVk *contextVk,
                                gl::DrawElementsType glIndexType,
                                GLsizei indexCount,
                                const uint8_t *srcPtr,
                                BufferHelper **bufferOut,
                                uint32_t *indexCountOut);

    angle::Result streamIndicesIndirect(ContextVk *contextVk,
                                        gl::DrawElementsType glIndexType,
                                        BufferHelper *indexBuffer,
                                        BufferHelper *indirectBuffer,
                                        VkDeviceSize indirectBufferOffset,
                                        BufferHelper **indexBufferOut,
                                        BufferHelper **indirectBufferOut);

    angle::Result streamArrayIndirect(ContextVk *contextVk,
                                      size_t vertexCount,
                                      BufferHelper *arrayIndirectBuffer,
                                      VkDeviceSize arrayIndirectBufferOffset,
                                      BufferHelper **indexBufferOut,
                                      BufferHelper **indexIndirectBufferOut);

    void release(ContextVk *contextVk);
    void destroy(RendererVk *renderer);

    static void Draw(uint32_t count, uint32_t baseVertex, RenderPassCommandBuffer *commandBuffer);

  private:
    BufferHelper mDynamicIndexBuffer;
    BufferHelper mDynamicIndirectBuffer;
};

enum class PresentMode
{
    ImmediateKHR               = VK_PRESENT_MODE_IMMEDIATE_KHR,
    MailboxKHR                 = VK_PRESENT_MODE_MAILBOX_KHR,
    FifoKHR                    = VK_PRESENT_MODE_FIFO_KHR,
    FifoRelaxedKHR             = VK_PRESENT_MODE_FIFO_RELAXED_KHR,
    SharedDemandRefreshKHR     = VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR,
    SharedContinuousRefreshKHR = VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR,

    InvalidEnum,
    EnumCount = InvalidEnum,
};

VkPresentModeKHR ConvertPresentModeToVkPresentMode(PresentMode presentMode);
PresentMode ConvertVkPresentModeToPresentMode(VkPresentModeKHR vkPresentMode);

}  // namespace vk
}  // namespace rx

#endif  // LIBANGLE_RENDERER_VULKAN_VK_HELPERS_H_