aboutsummaryrefslogtreecommitdiff
path: root/src/libANGLE/renderer/vulkan/BufferVk.cpp
blob: 7d786ccae39b67e84472a0674a20326f30e7da1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// BufferVk.cpp:
//    Implements the class methods for BufferVk.
//

#include "libANGLE/renderer/vulkan/BufferVk.h"

#include "common/FixedVector.h"
#include "common/debug.h"
#include "common/mathutil.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"

namespace rx
{
VkBufferUsageFlags GetDefaultBufferUsageFlags(RendererVk *renderer)
{
    // We could potentially use multiple backing buffers for different usages.
    // For now keep a single buffer with all relevant usage flags.
    VkBufferUsageFlags defaultBufferUsageFlags =
        VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
        VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT |
        VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
        VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT |
        VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT;
    if (renderer->getFeatures().supportsTransformFeedbackExtension.enabled)
    {
        defaultBufferUsageFlags |= VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT |
                                   VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT;
    }
    return defaultBufferUsageFlags;
}

namespace
{
constexpr VkMemoryPropertyFlags kDeviceLocalFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
constexpr VkMemoryPropertyFlags kDeviceLocalHostCoherentFlags =
    (VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
     VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
constexpr VkMemoryPropertyFlags kHostCachedFlags =
    (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
     VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
constexpr VkMemoryPropertyFlags kHostUncachedFlags =
    (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);

// Vertex attribute buffers are used as storage buffers for conversion in compute, where access to
// the buffer is made in 4-byte chunks.  Assume the size of the buffer is 4k+n where n is in [0, 3).
// On some hardware, reading 4 bytes from address 4k returns 0, making it impossible to read the
// last n bytes.  By rounding up the buffer sizes to a multiple of 4, the problem is alleviated.
constexpr size_t kBufferSizeGranularity = 4;
static_assert(gl::isPow2(kBufferSizeGranularity), "use as alignment, must be power of two");

// Start with a fairly small buffer size. We can increase this dynamically as we convert more data.
constexpr size_t kConvertedArrayBufferInitialSize = 1024 * 8;

// Buffers that have a static usage pattern will be allocated in
// device local memory to speed up access to and from the GPU.
// Dynamic usage patterns or that are frequently mapped
// will now request host cached memory to speed up access from the CPU.
VkMemoryPropertyFlags GetPreferredMemoryType(RendererVk *renderer,
                                             gl::BufferBinding target,
                                             gl::BufferUsage usage)
{
    if (target == gl::BufferBinding::PixelUnpack)
    {
        return kHostCachedFlags;
    }

    switch (usage)
    {
        case gl::BufferUsage::StaticCopy:
        case gl::BufferUsage::StaticDraw:
        case gl::BufferUsage::StaticRead:
            // For static usage, request a device local memory
            return renderer->getFeatures().preferDeviceLocalMemoryHostVisible.enabled
                       ? kDeviceLocalHostCoherentFlags
                       : kDeviceLocalFlags;
        case gl::BufferUsage::DynamicDraw:
        case gl::BufferUsage::StreamDraw:
            // For non-static usage where the CPU performs a write-only access, request
            // a host uncached memory
            return renderer->getFeatures().preferHostCachedForNonStaticBufferUsage.enabled
                       ? kHostCachedFlags
                       : kHostUncachedFlags;
        case gl::BufferUsage::DynamicCopy:
        case gl::BufferUsage::DynamicRead:
        case gl::BufferUsage::StreamCopy:
        case gl::BufferUsage::StreamRead:
            // For all other types of usage, request a host cached memory
            return kHostCachedFlags;
        default:
            UNREACHABLE();
            return kHostCachedFlags;
    }
}

VkMemoryPropertyFlags GetStorageMemoryType(RendererVk *renderer,
                                           GLbitfield storageFlags,
                                           bool externalBuffer)
{
    const bool hasMapAccess =
        (storageFlags & (GL_MAP_READ_BIT | GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT_EXT)) != 0;

    if (renderer->getFeatures().preferDeviceLocalMemoryHostVisible.enabled)
    {
        const bool canUpdate = (storageFlags & GL_DYNAMIC_STORAGE_BIT_EXT) != 0;
        if (canUpdate || hasMapAccess || externalBuffer)
        {
            // We currently allocate coherent memory for persistently mapped buffers.
            // GL_EXT_buffer_storage allows non-coherent memory, but currently the implementation of
            // |glMemoryBarrier(CLIENT_MAPPED_BUFFER_BARRIER_BIT_EXT)| relies on the mapping being
            // coherent.
            //
            // If persistently mapped buffers ever use non-coherent memory, then said
            // |glMemoryBarrier| call must result in |vkInvalidateMappedMemoryRanges| for all
            // persistently mapped buffers.
            return kDeviceLocalHostCoherentFlags;
        }
        return kDeviceLocalFlags;
    }

    return hasMapAccess ? kHostCachedFlags : kDeviceLocalFlags;
}

bool ShouldAllocateNewMemoryForUpdate(ContextVk *contextVk, size_t subDataSize, size_t bufferSize)
{
    // A sub data update with size > 50% of buffer size meets the threshold
    // to acquire a new BufferHelper from the pool.
    return contextVk->getRenderer()->getFeatures().preferCPUForBufferSubData.enabled ||
           subDataSize > (bufferSize / 2);
}

bool ShouldUseCPUToCopyData(ContextVk *contextVk,
                            const vk::BufferHelper &buffer,
                            size_t copySize,
                            size_t bufferSize)
{
    RendererVk *renderer = contextVk->getRenderer();

    // If the buffer is not host-visible, or if it's busy on the GPU, can't read from it from the
    // CPU
    if (!buffer.isHostVisible() || !renderer->hasResourceUseFinished(buffer.getWriteResourceUse()))
    {
        return false;
    }

    // For some GPUs (e.g. ARM) we always prefer using CPU to do copy instead of using the GPU to
    // avoid pipeline bubbles. If the GPU is currently busy and data copy size is less than certain
    // threshold, we choose to use CPU to do the copy over GPU to achieve better parallelism.
    return renderer->getFeatures().preferCPUForBufferSubData.enabled ||
           (renderer->isCommandQueueBusy() &&
            copySize < renderer->getMaxCopyBytesUsingCPUWhenPreservingBufferData());
}

bool RenderPassUsesBufferForReadOnly(ContextVk *contextVk, const vk::BufferHelper &buffer)
{
    if (!contextVk->hasActiveRenderPass())
    {
        return false;
    }

    vk::RenderPassCommandBufferHelper &renderPassCommands =
        contextVk->getStartedRenderPassCommands();
    return renderPassCommands.usesBuffer(buffer) && !renderPassCommands.usesBufferForWrite(buffer);
}

// If a render pass is open which uses the buffer in read-only mode, render pass break can be
// avoided by using acquireAndUpdate.  This can be costly however if the update is very small, and
// is limited to platforms where render pass break is itself costly (i.e. tiled-based renderers).
bool ShouldAvoidRenderPassBreakOnUpdate(ContextVk *contextVk,
                                        const vk::BufferHelper &buffer,
                                        size_t bufferSize)
{
    // Only avoid breaking the render pass if the buffer is not so big such that duplicating it
    // would outweight the cost of breaking the render pass.  A value of 1KB is temporary chosen as
    // a heuristic, and can be adjusted when such a situation is encountered.
    constexpr size_t kPreferDuplicateOverRenderPassBreakMaxBufferSize = 1024;
    if (!contextVk->getFeatures().preferCPUForBufferSubData.enabled ||
        bufferSize > kPreferDuplicateOverRenderPassBreakMaxBufferSize)
    {
        return false;
    }

    return RenderPassUsesBufferForReadOnly(contextVk, buffer);
}

BufferUsageType GetBufferUsageType(gl::BufferUsage usage)
{
    return (usage == gl::BufferUsage::DynamicDraw || usage == gl::BufferUsage::DynamicCopy ||
            usage == gl::BufferUsage::DynamicRead)
               ? BufferUsageType::Dynamic
               : BufferUsageType::Static;
}

angle::Result GetMemoryTypeIndex(ContextVk *contextVk,
                                 VkDeviceSize size,
                                 VkMemoryPropertyFlags memoryPropertyFlags,
                                 uint32_t *memoryTypeIndexOut)
{
    RendererVk *renderer           = contextVk->getRenderer();
    const vk::Allocator &allocator = renderer->getAllocator();

    bool persistentlyMapped = renderer->getFeatures().persistentlyMappedBuffers.enabled;
    VkBufferUsageFlags defaultBufferUsageFlags = GetDefaultBufferUsageFlags(renderer);

    VkBufferCreateInfo createInfo    = {};
    createInfo.sType                 = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
    createInfo.flags                 = 0;
    createInfo.size                  = size;
    createInfo.usage                 = defaultBufferUsageFlags;
    createInfo.sharingMode           = VK_SHARING_MODE_EXCLUSIVE;
    createInfo.queueFamilyIndexCount = 0;
    createInfo.pQueueFamilyIndices   = nullptr;

    // Host visible is required, all other bits are preferred, (i.e., optional)
    VkMemoryPropertyFlags requiredFlags =
        (memoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
    VkMemoryPropertyFlags preferredFlags =
        (memoryPropertyFlags & (~VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT));

    // Check that the allocation is not too large.
    uint32_t memoryTypeIndex = 0;
    ANGLE_VK_TRY(contextVk, allocator.findMemoryTypeIndexForBufferInfo(
                                createInfo, requiredFlags, preferredFlags, persistentlyMapped,
                                &memoryTypeIndex));
    *memoryTypeIndexOut = memoryTypeIndex;

    return angle::Result::Continue;
}

bool IsSelfCopy(const BufferDataSource &dataSource, const vk::BufferHelper &destination)
{
    return dataSource.data == nullptr &&
           dataSource.buffer->getBufferSerial() == destination.getBufferSerial();
}
}  // namespace

// ConversionBuffer implementation.
ConversionBuffer::ConversionBuffer(RendererVk *renderer,
                                   VkBufferUsageFlags usageFlags,
                                   size_t initialSize,
                                   size_t alignment,
                                   bool hostVisible)
    : dirty(true)
{
    data = std::make_unique<vk::BufferHelper>();
}

ConversionBuffer::~ConversionBuffer()
{
    ASSERT(!data || !data->valid());
}

ConversionBuffer::ConversionBuffer(ConversionBuffer &&other) = default;

// BufferVk::VertexConversionBuffer implementation.
BufferVk::VertexConversionBuffer::VertexConversionBuffer(RendererVk *renderer,
                                                         angle::FormatID formatIDIn,
                                                         GLuint strideIn,
                                                         size_t offsetIn,
                                                         bool hostVisible)
    : ConversionBuffer(renderer,
                       vk::kVertexBufferUsageFlags,
                       kConvertedArrayBufferInitialSize,
                       vk::kVertexBufferAlignment,
                       hostVisible),
      formatID(formatIDIn),
      stride(strideIn),
      offset(offsetIn)
{}

BufferVk::VertexConversionBuffer::VertexConversionBuffer(VertexConversionBuffer &&other) = default;

BufferVk::VertexConversionBuffer::~VertexConversionBuffer() = default;

// BufferVk implementation.
BufferVk::BufferVk(const gl::BufferState &state)
    : BufferImpl(state),
      mClientBuffer(nullptr),
      mMemoryTypeIndex(0),
      mMemoryPropertyFlags(0),
      mIsStagingBufferMapped(false),
      mHasValidData(false),
      mIsMappedForWrite(false),
      mUsageType(BufferUsageType::Static),
      mMappedOffset(0),
      mMappedLength(0)
{}

BufferVk::~BufferVk() {}

void BufferVk::destroy(const gl::Context *context)
{
    ContextVk *contextVk = vk::GetImpl(context);

    (void)release(contextVk);
}

angle::Result BufferVk::release(ContextVk *contextVk)
{
    RendererVk *renderer = contextVk->getRenderer();
    if (mBuffer.valid())
    {
        ANGLE_TRY(contextVk->releaseBufferAllocation(&mBuffer));
    }
    if (mStagingBuffer.valid())
    {
        mStagingBuffer.release(renderer);
    }

    for (ConversionBuffer &buffer : mVertexConversionBuffers)
    {
        buffer.data->release(renderer);
    }
    mVertexConversionBuffers.clear();

    return angle::Result::Continue;
}

angle::Result BufferVk::setExternalBufferData(const gl::Context *context,
                                              gl::BufferBinding target,
                                              GLeglClientBufferEXT clientBuffer,
                                              size_t size,
                                              VkMemoryPropertyFlags memoryPropertyFlags)
{
    ContextVk *contextVk = vk::GetImpl(context);

    // Release and re-create the memory and buffer.
    ANGLE_TRY(release(contextVk));

    VkBufferCreateInfo createInfo    = {};
    createInfo.sType                 = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
    createInfo.flags                 = 0;
    createInfo.size                  = size;
    createInfo.usage                 = GetDefaultBufferUsageFlags(contextVk->getRenderer());
    createInfo.sharingMode           = VK_SHARING_MODE_EXCLUSIVE;
    createInfo.queueFamilyIndexCount = 0;
    createInfo.pQueueFamilyIndices   = nullptr;

    return mBuffer.initExternal(contextVk, memoryPropertyFlags, createInfo, clientBuffer);
}

angle::Result BufferVk::setDataWithUsageFlags(const gl::Context *context,
                                              gl::BufferBinding target,
                                              GLeglClientBufferEXT clientBuffer,
                                              const void *data,
                                              size_t size,
                                              gl::BufferUsage usage,
                                              GLbitfield flags)
{
    ContextVk *contextVk                      = vk::GetImpl(context);
    VkMemoryPropertyFlags memoryPropertyFlags = 0;
    bool persistentMapRequired                = false;
    const bool isExternalBuffer               = clientBuffer != nullptr;

    switch (usage)
    {
        case gl::BufferUsage::InvalidEnum:
        {
            // glBufferStorage API call
            memoryPropertyFlags =
                GetStorageMemoryType(contextVk->getRenderer(), flags, isExternalBuffer);
            persistentMapRequired = (flags & GL_MAP_PERSISTENT_BIT_EXT) != 0;
            break;
        }
        default:
        {
            // glBufferData API call
            memoryPropertyFlags = GetPreferredMemoryType(contextVk->getRenderer(), target, usage);
            break;
        }
    }

    if (isExternalBuffer)
    {
        ANGLE_TRY(setExternalBufferData(context, target, clientBuffer, size, memoryPropertyFlags));
        if (!mBuffer.isHostVisible())
        {
            // If external buffer's memory does not support host visible memory property, we cannot
            // support a persistent map request.
            ANGLE_VK_CHECK(contextVk, !persistentMapRequired, VK_ERROR_MEMORY_MAP_FAILED);
        }

        mClientBuffer = clientBuffer;

        return angle::Result::Continue;
    }
    return setDataWithMemoryType(context, target, data, size, memoryPropertyFlags, usage);
}

angle::Result BufferVk::setData(const gl::Context *context,
                                gl::BufferBinding target,
                                const void *data,
                                size_t size,
                                gl::BufferUsage usage)
{
    ContextVk *contextVk = vk::GetImpl(context);
    // Assume host visible/coherent memory available.
    VkMemoryPropertyFlags memoryPropertyFlags =
        GetPreferredMemoryType(contextVk->getRenderer(), target, usage);
    return setDataWithMemoryType(context, target, data, size, memoryPropertyFlags, usage);
}

angle::Result BufferVk::setDataWithMemoryType(const gl::Context *context,
                                              gl::BufferBinding target,
                                              const void *data,
                                              size_t size,
                                              VkMemoryPropertyFlags memoryPropertyFlags,
                                              gl::BufferUsage usage)
{
    ContextVk *contextVk = vk::GetImpl(context);
    RendererVk *renderer = contextVk->getRenderer();

    // Since the buffer is being entirely reinitialized, reset the valid-data flag. If the caller
    // passed in data to fill the buffer, the flag will be updated when the data is copied to the
    // buffer.
    mHasValidData = false;

    if (size == 0)
    {
        // Nothing to do.
        return angle::Result::Continue;
    }

    const BufferUsageType usageType = GetBufferUsageType(usage);
    const BufferUpdateType updateType =
        calculateBufferUpdateTypeOnFullUpdate(renderer, size, memoryPropertyFlags, usageType, data);

    if (updateType == BufferUpdateType::StorageRedefined)
    {
        mUsageType           = usageType;
        mMemoryPropertyFlags = memoryPropertyFlags;
        ANGLE_TRY(GetMemoryTypeIndex(contextVk, size, memoryPropertyFlags, &mMemoryTypeIndex));
        ANGLE_TRY(acquireBufferHelper(contextVk, size, mUsageType));
    }
    else if (size != static_cast<size_t>(mState.getSize()))
    {
        if (mBuffer.onBufferUserSizeChange(renderer))
        {
            // If we have a dedicated VkBuffer created with user size, even if the storage is
            // reused, we have to recreate that VkBuffer with user size when user size changes.
            // When this happens, we must notify other objects that observing this buffer, such as
            // vertex array. The reason vertex array is observing the buffer's storage change is
            // because they uses VkBuffer. Now VkBuffer have changed, vertex array needs to
            // re-process it just like storage has been reallocated.
            onStateChange(angle::SubjectMessage::InternalMemoryAllocationChanged);
        }
    }

    if (data != nullptr)
    {
        BufferDataSource dataSource = {};
        dataSource.data             = data;

        // Handle full-buffer updates similarly to glBufferSubData
        ANGLE_TRY(setDataImpl(contextVk, size, dataSource, size, 0, updateType));
    }

    return angle::Result::Continue;
}

angle::Result BufferVk::setSubData(const gl::Context *context,
                                   gl::BufferBinding target,
                                   const void *data,
                                   size_t size,
                                   size_t offset)
{
    ASSERT(mBuffer.valid());

    BufferDataSource dataSource = {};
    dataSource.data             = data;

    ContextVk *contextVk = vk::GetImpl(context);
    return setDataImpl(contextVk, static_cast<size_t>(mState.getSize()), dataSource, size, offset,
                       BufferUpdateType::ContentsUpdate);
}

angle::Result BufferVk::copySubData(const gl::Context *context,
                                    BufferImpl *source,
                                    GLintptr sourceOffset,
                                    GLintptr destOffset,
                                    GLsizeiptr size)
{
    ASSERT(mBuffer.valid());

    ContextVk *contextVk = vk::GetImpl(context);
    BufferVk *sourceVk   = GetAs<BufferVk>(source);

    BufferDataSource dataSource = {};
    dataSource.buffer           = &sourceVk->getBuffer();
    dataSource.bufferOffset     = static_cast<VkDeviceSize>(sourceOffset);

    ASSERT(dataSource.buffer->valid());

    return setDataImpl(contextVk, static_cast<size_t>(mState.getSize()), dataSource, size,
                       destOffset, BufferUpdateType::ContentsUpdate);
}

angle::Result BufferVk::allocStagingBuffer(ContextVk *contextVk,
                                           vk::MemoryCoherency coherency,
                                           VkDeviceSize size,
                                           uint8_t **mapPtr)
{
    ASSERT(!mIsStagingBufferMapped);

    if (mStagingBuffer.valid())
    {
        if (size <= mStagingBuffer.getSize() &&
            (coherency == vk::MemoryCoherency::Coherent) == mStagingBuffer.isCoherent() &&
            contextVk->getRenderer()->hasResourceUseFinished(mStagingBuffer.getResourceUse()))
        {
            // If size is big enough and it is idle, then just reuse the existing staging buffer
            *mapPtr                = mStagingBuffer.getMappedMemory();
            mIsStagingBufferMapped = true;
            return angle::Result::Continue;
        }
        mStagingBuffer.release(contextVk->getRenderer());
    }

    ANGLE_TRY(
        contextVk->initBufferForBufferCopy(&mStagingBuffer, static_cast<size_t>(size), coherency));
    *mapPtr                = mStagingBuffer.getMappedMemory();
    mIsStagingBufferMapped = true;

    return angle::Result::Continue;
}

angle::Result BufferVk::flushStagingBuffer(ContextVk *contextVk,
                                           VkDeviceSize offset,
                                           VkDeviceSize size)
{
    RendererVk *renderer = contextVk->getRenderer();

    ASSERT(mIsStagingBufferMapped);
    ASSERT(mStagingBuffer.valid());

    if (!mStagingBuffer.isCoherent())
    {
        ANGLE_TRY(mStagingBuffer.flush(renderer));
    }

    // Enqueue a copy command on the GPU.
    VkBufferCopy copyRegion = {mStagingBuffer.getOffset(), mBuffer.getOffset() + offset, size};
    ANGLE_TRY(mBuffer.copyFromBuffer(contextVk, &mStagingBuffer, 1, &copyRegion));

    return angle::Result::Continue;
}

angle::Result BufferVk::handleDeviceLocalBufferMap(ContextVk *contextVk,
                                                   VkDeviceSize offset,
                                                   VkDeviceSize size,
                                                   uint8_t **mapPtr)
{
    ANGLE_TRY(allocStagingBuffer(contextVk, vk::MemoryCoherency::Coherent, size, mapPtr));

    // Copy data from device local buffer to host visible staging buffer.
    VkBufferCopy copyRegion = {mBuffer.getOffset() + offset, mStagingBuffer.getOffset(), size};
    ANGLE_TRY(mStagingBuffer.copyFromBuffer(contextVk, &mBuffer, 1, &copyRegion));
    ANGLE_TRY(mStagingBuffer.waitForIdle(contextVk, "GPU stall due to mapping device local buffer",
                                         RenderPassClosureReason::DeviceLocalBufferMap));
    // Because the buffer is coherent, no need to call invalidate here.

    return angle::Result::Continue;
}

angle::Result BufferVk::map(const gl::Context *context, GLenum access, void **mapPtr)
{
    ASSERT(mBuffer.valid());
    ASSERT(access == GL_WRITE_ONLY_OES);

    return mapImpl(vk::GetImpl(context), GL_MAP_WRITE_BIT, mapPtr);
}

angle::Result BufferVk::mapRange(const gl::Context *context,
                                 size_t offset,
                                 size_t length,
                                 GLbitfield access,
                                 void **mapPtr)
{
    ANGLE_TRACE_EVENT0("gpu.angle", "BufferVk::mapRange");
    return mapRangeImpl(vk::GetImpl(context), offset, length, access, mapPtr);
}

angle::Result BufferVk::mapImpl(ContextVk *contextVk, GLbitfield access, void **mapPtr)
{
    return mapRangeImpl(contextVk, 0, static_cast<VkDeviceSize>(mState.getSize()), access, mapPtr);
}

angle::Result BufferVk::ghostMappedBuffer(ContextVk *contextVk,
                                          VkDeviceSize offset,
                                          VkDeviceSize length,
                                          GLbitfield access,
                                          void **mapPtr)
{
    // We shouldn't get here if it is external memory
    ASSERT(!isExternalBuffer());

    ++contextVk->getPerfCounters().buffersGhosted;

    // If we are creating a new buffer because the GPU is using it as read-only, then we
    // also need to copy the contents of the previous buffer into the new buffer, in
    // case the caller only updates a portion of the new buffer.
    vk::BufferHelper src = std::move(mBuffer);
    ANGLE_TRY(acquireBufferHelper(contextVk, static_cast<size_t>(mState.getSize()),
                                  BufferUsageType::Dynamic));

    // Before returning the new buffer, map the previous buffer and copy its entire
    // contents into the new buffer.
    uint8_t *srcMapPtr = nullptr;
    uint8_t *dstMapPtr = nullptr;
    ANGLE_TRY(src.map(contextVk, &srcMapPtr));
    ANGLE_TRY(mBuffer.map(contextVk, &dstMapPtr));

    ASSERT(src.isCoherent());
    ASSERT(mBuffer.isCoherent());

    // No need to copy over [offset, offset + length), just around it
    if ((access & GL_MAP_INVALIDATE_RANGE_BIT) != 0)
    {
        if (offset != 0)
        {
            memcpy(dstMapPtr, srcMapPtr, static_cast<size_t>(offset));
        }
        size_t totalSize      = static_cast<size_t>(mState.getSize());
        size_t remainingStart = static_cast<size_t>(offset + length);
        size_t remainingSize  = totalSize - remainingStart;
        if (remainingSize != 0)
        {
            memcpy(dstMapPtr + remainingStart, srcMapPtr + remainingStart, remainingSize);
        }
    }
    else
    {
        memcpy(dstMapPtr, srcMapPtr, static_cast<size_t>(mState.getSize()));
    }

    ANGLE_TRY(contextVk->releaseBufferAllocation(&src));

    // Return the already mapped pointer with the offset adjustment to avoid the call to unmap().
    *mapPtr = dstMapPtr + offset;

    return angle::Result::Continue;
}

angle::Result BufferVk::mapRangeImpl(ContextVk *contextVk,
                                     VkDeviceSize offset,
                                     VkDeviceSize length,
                                     GLbitfield access,
                                     void **mapPtr)
{
    RendererVk *renderer = contextVk->getRenderer();
    ASSERT(mBuffer.valid());

    // Record map call parameters in case this call is from angle internal (the access/offset/length
    // will be inconsistent from mState).
    mIsMappedForWrite = (access & GL_MAP_WRITE_BIT) != 0;
    mMappedOffset     = offset;
    mMappedLength     = length;

    uint8_t **mapPtrBytes = reinterpret_cast<uint8_t **>(mapPtr);
    bool hostVisible      = mBuffer.isHostVisible();

    // MAP_UNSYNCHRONIZED_BIT, so immediately map.
    if ((access & GL_MAP_UNSYNCHRONIZED_BIT) != 0)
    {
        if (hostVisible)
        {
            return mBuffer.mapWithOffset(contextVk, mapPtrBytes, static_cast<size_t>(offset));
        }
        return handleDeviceLocalBufferMap(contextVk, offset, length, mapPtrBytes);
    }

    // Read case
    if ((access & GL_MAP_WRITE_BIT) == 0)
    {
        // If app is not going to write, all we need is to ensure GPU write is finished.
        // Concurrent reads from CPU and GPU is allowed.
        if (!renderer->hasResourceUseFinished(mBuffer.getWriteResourceUse()))
        {
            // If there are unflushed write commands for the resource, flush them.
            if (contextVk->hasUnsubmittedUse(mBuffer.getWriteResourceUse()))
            {
                ANGLE_TRY(contextVk->flushImpl(nullptr, nullptr,
                                               RenderPassClosureReason::BufferWriteThenMap));
            }
            ANGLE_TRY(renderer->finishResourceUse(contextVk, mBuffer.getWriteResourceUse()));
        }
        if (hostVisible)
        {
            return mBuffer.mapWithOffset(contextVk, mapPtrBytes, static_cast<size_t>(offset));
        }
        return handleDeviceLocalBufferMap(contextVk, offset, length, mapPtrBytes);
    }

    // Write case
    if (!hostVisible)
    {
        return handleDeviceLocalBufferMap(contextVk, offset, length, mapPtrBytes);
    }

    // Write case, buffer not in use.
    if (isExternalBuffer() || !isCurrentlyInUse(contextVk->getRenderer()))
    {
        return mBuffer.mapWithOffset(contextVk, mapPtrBytes, static_cast<size_t>(offset));
    }

    // Write case, buffer in use.
    //
    // Here, we try to map the buffer, but it's busy. Instead of waiting for the GPU to
    // finish, we just allocate a new buffer if:
    // 1.) Caller has told us it doesn't care about previous contents, or
    // 2.) The GPU won't write to the buffer.

    bool rangeInvalidate = (access & GL_MAP_INVALIDATE_RANGE_BIT) != 0;
    bool entireBufferInvalidated =
        ((access & GL_MAP_INVALIDATE_BUFFER_BIT) != 0) ||
        (rangeInvalidate && offset == 0 && static_cast<VkDeviceSize>(mState.getSize()) == length);

    if (entireBufferInvalidated)
    {
        ANGLE_TRY(acquireBufferHelper(contextVk, static_cast<size_t>(mState.getSize()),
                                      BufferUsageType::Dynamic));
        return mBuffer.mapWithOffset(contextVk, mapPtrBytes, static_cast<size_t>(offset));
    }

    bool smallMapRange = (length < static_cast<VkDeviceSize>(mState.getSize()) / 2);

    if (smallMapRange && rangeInvalidate)
    {
        ANGLE_TRY(allocStagingBuffer(contextVk, vk::MemoryCoherency::NonCoherent,
                                     static_cast<size_t>(length), mapPtrBytes));
        return angle::Result::Continue;
    }

    if (renderer->hasResourceUseFinished(mBuffer.getWriteResourceUse()))
    {
        // This will keep the new buffer mapped and update mapPtr, so return immediately.
        return ghostMappedBuffer(contextVk, offset, length, access, mapPtr);
    }

    // Write case (worst case, buffer in use for write)
    ANGLE_TRY(mBuffer.waitForIdle(contextVk, "GPU stall due to mapping buffer in use by the GPU",
                                  RenderPassClosureReason::BufferInUseWhenSynchronizedMap));
    return mBuffer.mapWithOffset(contextVk, mapPtrBytes, static_cast<size_t>(offset));
}

angle::Result BufferVk::unmap(const gl::Context *context, GLboolean *result)
{
    ANGLE_TRY(unmapImpl(vk::GetImpl(context)));

    // This should be false if the contents have been corrupted through external means.  Vulkan
    // doesn't provide such information.
    *result = true;

    return angle::Result::Continue;
}

angle::Result BufferVk::unmapImpl(ContextVk *contextVk)
{
    ASSERT(mBuffer.valid());

    if (mIsStagingBufferMapped)
    {
        ASSERT(mStagingBuffer.valid());
        // The buffer is device local or optimization of small range map.
        if (mIsMappedForWrite)
        {
            ANGLE_TRY(flushStagingBuffer(contextVk, mMappedOffset, mMappedLength));
        }

        mIsStagingBufferMapped = false;
    }
    else
    {
        ASSERT(mBuffer.isHostVisible());
        mBuffer.unmap(contextVk->getRenderer());
    }

    if (mIsMappedForWrite)
    {
        dataUpdated();
    }

    // Reset the mapping parameters
    mIsMappedForWrite = false;
    mMappedOffset     = 0;
    mMappedLength     = 0;

    return angle::Result::Continue;
}

angle::Result BufferVk::getSubData(const gl::Context *context,
                                   GLintptr offset,
                                   GLsizeiptr size,
                                   void *outData)
{
    ASSERT(offset + size <= getSize());
    ASSERT(mBuffer.valid());
    ContextVk *contextVk = vk::GetImpl(context);
    void *mapPtr;
    ANGLE_TRY(mapRangeImpl(contextVk, offset, size, GL_MAP_READ_BIT, &mapPtr));
    memcpy(outData, mapPtr, size);
    return unmapImpl(contextVk);
}

angle::Result BufferVk::getIndexRange(const gl::Context *context,
                                      gl::DrawElementsType type,
                                      size_t offset,
                                      size_t count,
                                      bool primitiveRestartEnabled,
                                      gl::IndexRange *outRange)
{
    ContextVk *contextVk = vk::GetImpl(context);
    RendererVk *renderer = contextVk->getRenderer();

    // This is a workaround for the mock ICD not implementing buffer memory state.
    // Could be removed if https://github.com/KhronosGroup/Vulkan-Tools/issues/84 is fixed.
    if (renderer->isMockICDEnabled())
    {
        outRange->start = 0;
        outRange->end   = 0;
        return angle::Result::Continue;
    }

    ANGLE_TRACE_EVENT0("gpu.angle", "BufferVk::getIndexRange");

    void *mapPtr;
    ANGLE_TRY(mapRangeImpl(contextVk, offset, getSize(), GL_MAP_READ_BIT, &mapPtr));
    *outRange = gl::ComputeIndexRange(type, mapPtr, count, primitiveRestartEnabled);
    ANGLE_TRY(unmapImpl(contextVk));

    return angle::Result::Continue;
}

angle::Result BufferVk::updateBuffer(ContextVk *contextVk,
                                     size_t bufferSize,
                                     const BufferDataSource &dataSource,
                                     size_t updateSize,
                                     size_t updateOffset)
{
    // To copy on the CPU, destination must be host-visible.  The source should also be either a CPU
    // pointer or other a host-visible buffer that is not being written to by the GPU.
    const bool shouldCopyOnCPU =
        mBuffer.isHostVisible() &&
        (dataSource.data != nullptr ||
         ShouldUseCPUToCopyData(contextVk, *dataSource.buffer, updateSize, bufferSize));

    if (shouldCopyOnCPU)
    {
        ANGLE_TRY(directUpdate(contextVk, dataSource, updateSize, updateOffset));
    }
    else
    {
        ANGLE_TRY(stagedUpdate(contextVk, dataSource, updateSize, updateOffset));
    }
    return angle::Result::Continue;
}

angle::Result BufferVk::directUpdate(ContextVk *contextVk,
                                     const BufferDataSource &dataSource,
                                     size_t size,
                                     size_t offset)
{
    RendererVk *renderer      = contextVk->getRenderer();
    uint8_t *srcPointerMapped = nullptr;
    const uint8_t *srcPointer = nullptr;
    uint8_t *dstPointer       = nullptr;

    // Map the destination buffer.
    ASSERT(mBuffer.isHostVisible());
    ANGLE_TRY(mBuffer.mapWithOffset(contextVk, &dstPointer, offset));
    ASSERT(dstPointer);

    // If source data is coming from a buffer, map it.  If this is a self-copy, avoid double-mapping
    // the buffer.
    if (dataSource.data != nullptr)
    {
        srcPointer = static_cast<const uint8_t *>(dataSource.data);
    }
    else
    {
        ANGLE_TRY(dataSource.buffer->mapWithOffset(contextVk, &srcPointerMapped,
                                                   static_cast<size_t>(dataSource.bufferOffset)));
        srcPointer = srcPointerMapped;
    }

    memcpy(dstPointer, srcPointer, size);

    // Unmap the destination and source buffers if applicable.
    //
    // If the buffer has dynamic usage then the intent is frequent client side updates to the
    // buffer. Don't CPU unmap the buffer, we will take care of unmapping when releasing the buffer
    // to either the renderer or mBufferFreeList.
    if (GetBufferUsageType(mState.getUsage()) == BufferUsageType::Static)
    {
        mBuffer.unmap(renderer);
    }
    ASSERT(mBuffer.isCoherent());

    if (srcPointerMapped != nullptr)
    {
        dataSource.buffer->unmap(renderer);
    }

    return angle::Result::Continue;
}

angle::Result BufferVk::stagedUpdate(ContextVk *contextVk,
                                     const BufferDataSource &dataSource,
                                     size_t size,
                                     size_t offset)
{
    // If data is coming from a CPU pointer, stage it in a temporary staging buffer.
    // Otherwise, do a GPU copy directly from the given buffer.
    if (dataSource.data != nullptr)
    {
        uint8_t *mapPointer = nullptr;
        ANGLE_TRY(
            allocStagingBuffer(contextVk, vk::MemoryCoherency::NonCoherent, size, &mapPointer));
        memcpy(mapPointer, dataSource.data, size);
        ANGLE_TRY(flushStagingBuffer(contextVk, offset, size));
        mIsStagingBufferMapped = false;
    }
    else
    {
        // Check for self-dependency.
        vk::CommandBufferAccess access;
        if (dataSource.buffer->getBufferSerial() == mBuffer.getBufferSerial())
        {
            access.onBufferSelfCopy(&mBuffer);
        }
        else
        {
            access.onBufferTransferRead(dataSource.buffer);
            access.onBufferTransferWrite(&mBuffer);
        }

        vk::OutsideRenderPassCommandBuffer *commandBuffer;
        ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));

        // Enqueue a copy command on the GPU.
        const VkBufferCopy copyRegion = {dataSource.bufferOffset + dataSource.buffer->getOffset(),
                                         static_cast<VkDeviceSize>(offset) + mBuffer.getOffset(),
                                         static_cast<VkDeviceSize>(size)};

        commandBuffer->copyBuffer(dataSource.buffer->getBuffer(), mBuffer.getBuffer(), 1,
                                  &copyRegion);
    }

    return angle::Result::Continue;
}

angle::Result BufferVk::acquireAndUpdate(ContextVk *contextVk,
                                         size_t bufferSize,
                                         const BufferDataSource &dataSource,
                                         size_t updateSize,
                                         size_t updateOffset,
                                         BufferUpdateType updateType)
{
    // We shouldn't get here if this is external memory
    ASSERT(!isExternalBuffer());
    // If StorageRedefined, we cannot use mState.getSize() to allocate a new buffer.
    ASSERT(updateType != BufferUpdateType::StorageRedefined);
    ASSERT(mBuffer.valid());
    ASSERT(mBuffer.getSize() >= bufferSize);

    // Here we acquire a new BufferHelper and directUpdate() the new buffer.
    // If the subData size was less than the buffer's size we additionally enqueue
    // a GPU copy of the remaining regions from the old mBuffer to the new one.
    vk::BufferHelper prevBuffer;
    size_t offsetAfterSubdata      = (updateOffset + updateSize);
    bool updateRegionBeforeSubData = mHasValidData && (updateOffset > 0);
    bool updateRegionAfterSubData  = mHasValidData && (offsetAfterSubdata < bufferSize);

    uint8_t *prevMapPtrBeforeSubData = nullptr;
    uint8_t *prevMapPtrAfterSubData  = nullptr;
    if (updateRegionBeforeSubData || updateRegionAfterSubData)
    {
        prevBuffer = std::move(mBuffer);

        // The total bytes that we need to copy from old buffer to new buffer
        size_t copySize = bufferSize - updateSize;

        // If the buffer is host visible and the GPU is not writing to it, we use the CPU to do the
        // copy. We need to save the source buffer pointer before we acquire a new buffer.
        if (ShouldUseCPUToCopyData(contextVk, prevBuffer, copySize, bufferSize))
        {
            uint8_t *mapPointer = nullptr;
            // prevBuffer buffer will be recycled (or released and unmapped) by acquireBufferHelper
            ANGLE_TRY(prevBuffer.map(contextVk, &mapPointer));
            ASSERT(mapPointer);
            prevMapPtrBeforeSubData = mapPointer;
            prevMapPtrAfterSubData  = mapPointer + offsetAfterSubdata;
        }
    }

    ANGLE_TRY(acquireBufferHelper(contextVk, bufferSize, BufferUsageType::Dynamic));
    ANGLE_TRY(updateBuffer(contextVk, bufferSize, dataSource, updateSize, updateOffset));

    constexpr int kMaxCopyRegions = 2;
    angle::FixedVector<VkBufferCopy, kMaxCopyRegions> copyRegions;

    if (updateRegionBeforeSubData)
    {
        if (prevMapPtrBeforeSubData)
        {
            BufferDataSource beforeSrc = {};
            beforeSrc.data             = prevMapPtrBeforeSubData;

            ANGLE_TRY(directUpdate(contextVk, beforeSrc, updateOffset, 0));
        }
        else
        {
            copyRegions.push_back({prevBuffer.getOffset(), mBuffer.getOffset(), updateOffset});
        }
    }

    if (updateRegionAfterSubData)
    {
        size_t copySize = bufferSize - offsetAfterSubdata;
        if (prevMapPtrAfterSubData)
        {
            BufferDataSource afterSrc = {};
            afterSrc.data             = prevMapPtrAfterSubData;

            ANGLE_TRY(directUpdate(contextVk, afterSrc, copySize, offsetAfterSubdata));
        }
        else
        {
            copyRegions.push_back({prevBuffer.getOffset() + offsetAfterSubdata,
                                   mBuffer.getOffset() + offsetAfterSubdata, copySize});
        }
    }

    if (!copyRegions.empty())
    {
        ANGLE_TRY(mBuffer.copyFromBuffer(
            contextVk, &prevBuffer, static_cast<uint32_t>(copyRegions.size()), copyRegions.data()));
    }

    if (prevBuffer.valid())
    {
        ANGLE_TRY(contextVk->releaseBufferAllocation(&prevBuffer));
    }

    return angle::Result::Continue;
}

angle::Result BufferVk::setDataImpl(ContextVk *contextVk,
                                    size_t bufferSize,
                                    const BufferDataSource &dataSource,
                                    size_t updateSize,
                                    size_t updateOffset,
                                    BufferUpdateType updateType)
{
    // if the buffer is currently in use
    //     if it isn't an external buffer and not a self-copy and sub data size meets threshold
    //          acquire a new BufferHelper from the pool
    //     else stage the update
    // else update the buffer directly
    if (isCurrentlyInUse(contextVk->getRenderer()))
    {
        // The acquire-and-update path creates a new buffer, which is sometimes more efficient than
        // trying to update the existing one.  Firstly, this is not done in the following
        // situations:
        //
        // - For external buffers, the underlying storage cannot be reallocated.
        // - If storage has just been redefined, this path is not taken because a new buffer has
        //   already been created by the caller. Besides, this path uses mState.getSize(), which the
        //   frontend updates only after this call in situations where the storage may be redefined.
        //   This could happen if the buffer memory is DEVICE_LOCAL and
        //   renderer->getFeatures().allocateNonZeroMemory.enabled is true. In this case a
        //   copyToBuffer is immediately issued after allocation and isCurrentlyInUse will be true.
        // - If this is a self copy through glCopyBufferSubData, |dataSource| will contain a
        //   reference to |mBuffer|, in which case source information is lost after acquiring a new
        //   buffer.
        //
        // Additionally, this path is taken only if either of the following conditions are true:
        //
        // - If BufferVk does not have any valid data.  This means that there is no data to be
        //   copied from the old buffer to the new one after acquiring it.  This could happen when
        //   the application calls glBufferData with the same size and we reuse the existing buffer
        //   storage.
        // - If the buffer is used read-only in the current render pass.  In this case, acquiring a
        //   new buffer is preferred to avoid breaking the render pass.
        // - The update modifies a significant portion of the buffer
        // - The preferCPUForBufferSubData feature is enabled.
        //
        const bool canAcquireAndUpdate = !isExternalBuffer() &&
                                         updateType != BufferUpdateType::StorageRedefined &&
                                         !IsSelfCopy(dataSource, mBuffer);
        if (canAcquireAndUpdate &&
            (!mHasValidData || ShouldAvoidRenderPassBreakOnUpdate(contextVk, mBuffer, bufferSize) ||
             ShouldAllocateNewMemoryForUpdate(contextVk, updateSize, bufferSize)))
        {
            ANGLE_TRY(acquireAndUpdate(contextVk, bufferSize, dataSource, updateSize, updateOffset,
                                       updateType));
        }
        else
        {
            if (canAcquireAndUpdate && RenderPassUsesBufferForReadOnly(contextVk, mBuffer))
            {
                ANGLE_VK_PERF_WARNING(contextVk, GL_DEBUG_SEVERITY_LOW,
                                      "Breaking the render pass on small upload to large buffer");
            }

            ANGLE_TRY(stagedUpdate(contextVk, dataSource, updateSize, updateOffset));
        }
    }
    else
    {
        ANGLE_TRY(updateBuffer(contextVk, bufferSize, dataSource, updateSize, updateOffset));
    }

    // Update conversions
    dataUpdated();

    return angle::Result::Continue;
}

ConversionBuffer *BufferVk::getVertexConversionBuffer(RendererVk *renderer,
                                                      angle::FormatID formatID,
                                                      GLuint stride,
                                                      size_t offset,
                                                      bool hostVisible)
{
    for (VertexConversionBuffer &buffer : mVertexConversionBuffers)
    {
        if (buffer.formatID == formatID && buffer.stride == stride && buffer.offset == offset)
        {
            ASSERT(buffer.data && buffer.data->valid());
            return &buffer;
        }
    }

    mVertexConversionBuffers.emplace_back(renderer, formatID, stride, offset, hostVisible);
    return &mVertexConversionBuffers.back();
}

void BufferVk::dataUpdated()
{
    for (VertexConversionBuffer &buffer : mVertexConversionBuffers)
    {
        buffer.dirty = true;
    }
    // Now we have valid data
    mHasValidData = true;
}

void BufferVk::onDataChanged()
{
    dataUpdated();
}

angle::Result BufferVk::acquireBufferHelper(ContextVk *contextVk,
                                            size_t sizeInBytes,
                                            BufferUsageType usageType)
{
    RendererVk *renderer = contextVk->getRenderer();
    size_t size          = roundUpPow2(sizeInBytes, kBufferSizeGranularity);
    size_t alignment     = renderer->getDefaultBufferAlignment();

    if (mBuffer.valid())
    {
        ANGLE_TRY(contextVk->releaseBufferAllocation(&mBuffer));
    }

    // Allocate the buffer directly
    ANGLE_TRY(
        contextVk->initBufferAllocation(&mBuffer, mMemoryTypeIndex, size, alignment, usageType));

    // Tell the observers (front end) that a new buffer was created, so the necessary
    // dirty bits can be set. This allows the buffer views pointing to the old buffer to
    // be recreated and point to the new buffer, along with updating the descriptor sets
    // to use the new buffer.
    onStateChange(angle::SubjectMessage::InternalMemoryAllocationChanged);

    return angle::Result::Continue;
}

bool BufferVk::isCurrentlyInUse(RendererVk *renderer) const
{
    return !renderer->hasResourceUseFinished(mBuffer.getResourceUse());
}

// When a buffer is being completely changed, calculate whether it's better to allocate a new buffer
// or overwrite the existing one.
BufferUpdateType BufferVk::calculateBufferUpdateTypeOnFullUpdate(
    RendererVk *renderer,
    size_t size,
    VkMemoryPropertyFlags memoryPropertyFlags,
    BufferUsageType usageType,
    const void *data) const
{
    // 0-sized updates should be no-op'd before this call.
    ASSERT(size > 0);

    // If there is no existing buffer, this cannot be a content update.
    if (!mBuffer.valid())
    {
        return BufferUpdateType::StorageRedefined;
    }

    const bool inUseAndRespecifiedWithoutData = data == nullptr && isCurrentlyInUse(renderer);
    bool redefineStorage = shouldRedefineStorage(renderer, usageType, memoryPropertyFlags, size);

    // Create a new buffer if the buffer is busy and it's being redefined without data.
    // Additionally, a new buffer is created if any of the parameters change (memory type, usage,
    // size).
    return redefineStorage || inUseAndRespecifiedWithoutData ? BufferUpdateType::StorageRedefined
                                                             : BufferUpdateType::ContentsUpdate;
}

bool BufferVk::shouldRedefineStorage(RendererVk *renderer,
                                     BufferUsageType usageType,
                                     VkMemoryPropertyFlags memoryPropertyFlags,
                                     size_t size) const
{
    if (mUsageType != usageType)
    {
        return true;
    }

    if (mMemoryPropertyFlags != memoryPropertyFlags)
    {
        return true;
    }

    if (size > mBuffer.getSize())
    {
        return true;
    }
    else
    {
        size_t alignment   = renderer->getDefaultBufferAlignment();
        size_t sizeInBytes = roundUpPow2(size, kBufferSizeGranularity);
        size_t alignedSize = roundUp(sizeInBytes, alignment);
        if (alignedSize != mBuffer.getSize())
        {
            return true;
        }
    }

    return false;
}
}  // namespace rx