summaryrefslogtreecommitdiff
path: root/cras/client/libcras/src/cras_shm.rs
blob: 055337537751397064320d81c756097b1c54514c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
// Copyright 2019 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::convert::TryFrom;
use std::io;
use std::mem;
use std::os::unix::io::{AsRawFd, RawFd};
use std::ptr;
use std::ptr::NonNull;
use std::slice;
use std::sync::atomic::{self, Ordering};
use std::thread;

use cras_sys::gen::{
    audio_dev_debug_info, audio_stream_debug_info, cras_audio_shm_header, cras_iodev_info,
    cras_ionode_info, cras_server_state, CRAS_MAX_IODEVS, CRAS_MAX_IONODES, CRAS_NUM_SHM_BUFFERS,
    CRAS_SERVER_STATE_VERSION, CRAS_SHM_BUFFERS_MASK, MAX_DEBUG_DEVS, MAX_DEBUG_STREAMS,
};
use cras_sys::{
    AudioDebugInfo, AudioDevDebugInfo, AudioStreamDebugInfo, CrasIodevInfo, CrasIonodeInfo,
};
use data_model::{VolatileRef, VolatileSlice};
use sys_util::warn;

/// A structure wrapping a fd which contains a shared `cras_audio_shm_header`.
/// * `shm_fd` - A shared memory fd contains a `cras_audio_shm_header`
pub struct CrasAudioShmHeaderFd {
    fd: CrasShmFd,
}

impl CrasAudioShmHeaderFd {
    /// Creates a `CrasAudioShmHeaderFd` by shared memory fd
    /// # Arguments
    /// * `fd` - A shared memory file descriptor, which will be owned by the resulting structure and
    /// the fd will be closed on drop.
    ///
    /// # Returns
    /// A structure wrapping a `CrasShmFd` with the input fd and `size` which equals to
    /// the size of `cras_audio_shm_header`.
    ///
    /// To use this function safely, we need to make sure
    /// - The input fd is a valid shared memory fd.
    /// - The input shared memory fd won't be used by others.
    /// - The shared memory area in the input fd contains a `cras_audio_shm_header`.
    pub unsafe fn new(fd: libc::c_int) -> Self {
        Self {
            fd: CrasShmFd::new(fd, mem::size_of::<cras_audio_shm_header>()),
        }
    }
}

/// A wrapper for the raw structure `cras_audio_shm_header` with
/// size information for the separate audio samples shm area and several
/// `VolatileRef` to sub fields for safe access to the header.
pub struct CrasAudioHeader<'a> {
    addr: *mut libc::c_void,
    /// Size of the buffer for samples in CrasAudioBuffer
    samples_len: usize,
    used_size: VolatileRef<'a, u32>,
    frame_size: VolatileRef<'a, u32>,
    read_buf_idx: VolatileRef<'a, u32>,
    write_buf_idx: VolatileRef<'a, u32>,
    read_offset: [VolatileRef<'a, u32>; CRAS_NUM_SHM_BUFFERS as usize],
    write_offset: [VolatileRef<'a, u32>; CRAS_NUM_SHM_BUFFERS as usize],
    buffer_offset: [VolatileRef<'a, u64>; CRAS_NUM_SHM_BUFFERS as usize],
}

// It is safe to send audio buffers between threads as this struct has exclusive ownership of the
// pointers contained in it.
unsafe impl<'a> Send for CrasAudioHeader<'a> {}

/// An unsafe macro for getting `VolatileRef` for a field from a given NonNull pointer.
/// It Supports
/// - Nested sub-field
/// - Element of an array field
///
/// To use this macro safely, we need to
/// - Make sure the pointer address is readable and writable for its structure.
/// - Make sure all `VolatileRef`s generated from this macro have exclusive ownership for the same
/// pointer.
#[macro_export]
macro_rules! vref_from_addr {
    ($addr:ident, $($field:ident).*) => {
        VolatileRef::new(&mut $addr.as_mut().$($field).* as *mut _)
    };

    ($addr:ident, $field:ident[$idx:tt]) => {
        VolatileRef::new(&mut $addr.as_mut().$field[$idx] as *mut _)
    };
}

// Generates error when an index is out of range.
fn index_out_of_range() -> io::Error {
    io::Error::new(io::ErrorKind::InvalidInput, "Index out of range.")
}

impl<'a> CrasAudioHeader<'a> {
    // Creates a `CrasAudioHeader` with given `CrasAudioShmHeaderFd` and `samples_len`
    fn new(header_fd: CrasAudioShmHeaderFd, samples_len: usize) -> io::Result<Self> {
        // Safe because the creator of CrasAudioShmHeaderFd already
        // ensured that header_fd contains a cras_audio_shm_header.
        let mmap_addr = unsafe {
            cras_mmap(
                header_fd.fd.size,
                libc::PROT_READ | libc::PROT_WRITE,
                header_fd.fd.as_raw_fd(),
            )?
        };

        let mut addr = NonNull::new(mmap_addr as *mut cras_audio_shm_header)
            .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "Failed to create header."))?;

        // Safe because we know that mmap_addr (contained in addr) contains a
        // cras_audio_shm_header, and the mapped area will be exclusively
        // owned by this struct.
        unsafe {
            Ok(CrasAudioHeader {
                addr: addr.as_ptr() as *mut libc::c_void,
                samples_len,
                used_size: vref_from_addr!(addr, config.used_size),
                frame_size: vref_from_addr!(addr, config.frame_bytes),
                read_buf_idx: vref_from_addr!(addr, read_buf_idx),
                write_buf_idx: vref_from_addr!(addr, write_buf_idx),
                read_offset: [
                    vref_from_addr!(addr, read_offset[0]),
                    vref_from_addr!(addr, read_offset[1]),
                ],
                write_offset: [
                    vref_from_addr!(addr, write_offset[0]),
                    vref_from_addr!(addr, write_offset[1]),
                ],
                buffer_offset: [
                    vref_from_addr!(addr, buffer_offset[0]),
                    vref_from_addr!(addr, buffer_offset[1]),
                ],
            })
        }
    }

    /// Calculates the length of a buffer with the given offset. This length will
    /// be `used_size`, unless the offset is closer than `used_size` to the end
    /// of samples, in which case the length will be as long as possible.
    ///
    /// If that buffer length is invalid (too small to hold a frame of audio data),
    /// then returns an error.
    /// The returned buffer length will be rounded down to a multiple of `frame_size`.
    fn buffer_len_from_offset(&self, offset: usize) -> io::Result<usize> {
        if offset > self.samples_len {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                format!(
                    "Buffer offset {} exceeds the length of samples area ({}).",
                    offset, self.samples_len
                ),
            ));
        }

        let used_size = self.get_used_size();
        let frame_size = self.get_frame_size();

        // We explicitly allow a buffer shorter than used_size, but only
        // at the end of the samples area.
        // This is useful if we're playing a file where the number of samples is
        // not a multiple of used_size (meaning the length of the samples area
        // won't be either). Then, the last buffer played will be smaller than
        // used_size.
        let mut buffer_length = used_size.min(self.samples_len - offset);
        if buffer_length < frame_size {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                format!(
                    "Buffer offset {} gives buffer length {} smaller than frame size {}.",
                    offset, buffer_length, frame_size
                ),
            ));
        }

        // Round buffer_length down to a multiple of frame size
        buffer_length = buffer_length / frame_size * frame_size;
        Ok(buffer_length)
    }

    /// Gets the base of the write buffer and the writable length (rounded to `frame_size`).
    /// Does not take into account the write offset.
    ///
    /// # Returns
    ///
    ///  * (`usize`, `usize`) - write buffer base as an offset from the start of
    ///                         the samples area and buffer length in bytes.
    pub fn get_write_offset_and_len(&self) -> io::Result<(usize, usize)> {
        let idx = self.get_write_buf_idx() as usize;
        let offset = self.get_buffer_offset(idx)?;
        let len = self.buffer_len_from_offset(offset)?;

        Ok((offset, len))
    }

    /// Gets the buffer offset of the read buffer.
    ///
    ///  # Returns
    ///
    ///  * `usize` - read offset in bytes
    pub fn get_read_buffer_offset(&self) -> io::Result<usize> {
        let idx = self.get_read_buf_idx() as usize;
        self.get_buffer_offset(idx)
    }

    /// Gets the offset of a buffer from the start of samples.
    ///
    /// # Arguments
    /// `index` - 0 <= `index` < `CRAS_NUM_SHM_BUFFERS`. The index of the buffer
    /// for which we want the `buffer_offset`.
    ///
    /// # Returns
    /// * `usize` - buffer offset in bytes
    fn get_buffer_offset(&self, idx: usize) -> io::Result<usize> {
        let buffer_offset = self
            .buffer_offset
            .get(idx)
            .ok_or_else(index_out_of_range)?
            .load() as usize;
        self.check_buffer_offset(idx, buffer_offset)?;
        Ok(buffer_offset)
    }

    /// Gets the number of bytes per frame from the shared memory structure.
    ///
    /// # Returns
    ///
    /// * `usize` - Number of bytes per frame
    pub fn get_frame_size(&self) -> usize {
        self.frame_size.load() as usize
    }

    /// Gets the max size in bytes of each shared memory buffer within
    /// the samples area.
    ///
    /// # Returns
    ///
    /// * `usize` - Value of `used_size` fetched from the shared memory header.
    pub fn get_used_size(&self) -> usize {
        self.used_size.load() as usize
    }

    /// Gets the index of the current written buffer.
    ///
    /// # Returns
    /// `u32` - the returned index is less than `CRAS_NUM_SHM_BUFFERS`.
    fn get_write_buf_idx(&self) -> u32 {
        self.write_buf_idx.load() & CRAS_SHM_BUFFERS_MASK
    }

    fn get_read_buf_idx(&self) -> u32 {
        self.read_buf_idx.load() & CRAS_SHM_BUFFERS_MASK
    }

    /// Switches the written buffer.
    fn switch_write_buf_idx(&mut self) {
        self.write_buf_idx
            .store(self.get_write_buf_idx() as u32 ^ 1u32)
    }

    /// Switches the buffer to read.
    fn switch_read_buf_idx(&mut self) {
        self.read_buf_idx
            .store(self.get_read_buf_idx() as u32 ^ 1u32)
    }

    /// Checks if the offset value for setting write_offset or read_offset is
    /// out of range or not.
    ///
    /// # Arguments
    /// `idx` - The index of the buffer for which we're checking the offset.
    /// `offset` - 0 <= `offset` <= `used_size` && `buffer_offset[idx]` + `offset` <=
    /// `samples_len`. Writable or readable size equals to 0 when offset equals
    /// to `used_size`.
    ///
    /// # Errors
    /// Returns an error if `offset` is out of range or if idx is not a valid
    /// buffer idx.
    fn check_rw_offset(&self, idx: usize, offset: u32) -> io::Result<()> {
        let buffer_len = self.buffer_len_from_offset(self.get_buffer_offset(idx)?)?;
        if offset as usize > buffer_len {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                format!(
                    "Offset {} is larger than buffer size {}.",
                    offset, buffer_len
                ),
            ));
        }

        Ok(())
    }

    /// Sets `write_offset[idx]` to the count of written bytes.
    ///
    /// # Arguments
    /// `idx` - 0 <= `idx` < `CRAS_NUM_SHM_BUFFERS`
    /// `offset` - 0 <= `offset` <= `used_size` && `offset` + `used_size` <=
    /// `samples_len`. Writable size equals to 0 when offset equals to
    /// `used_size`.
    ///
    /// # Errors
    /// Returns an error if `offset` is out of range.
    fn set_write_offset(&mut self, idx: usize, offset: u32) -> io::Result<()> {
        self.check_rw_offset(idx, offset)?;
        let write_offset = self.write_offset.get(idx).ok_or_else(index_out_of_range)?;
        write_offset.store(offset);
        Ok(())
    }

    /// Sets `read_offset[idx]` to count of written bytes.
    ///
    /// # Arguments
    /// `idx` - 0 <= `idx` < `CRAS_NUM_SHM_BUFFERS`
    /// `offset` - 0 <= `offset` <= `used_size` && `offset` + `used_size` <=
    /// `samples_len`. Readable size equals to 0 when offset equals to
    /// `used_size`.
    ///
    /// # Errors
    /// Returns error if index out of range.
    fn set_read_offset(&mut self, idx: usize, offset: u32) -> io::Result<()> {
        self.check_rw_offset(idx, offset)?;
        let read_offset = self.read_offset.get(idx).ok_or_else(index_out_of_range)?;
        read_offset.store(offset);
        Ok(())
    }

    /// Check that `offset` is a valid buffer offset for the buffer at `idx`
    /// An offset is not valid if it is
    ///  * outside of the samples area
    ///  * overlaps some other buffer `[other_offset, other_offset + used_size)`
    ///  * is close enough to the end of the samples area that the buffer would
    ///    be shorter than `frame_size`.
    fn check_buffer_offset(&self, idx: usize, offset: usize) -> io::Result<()> {
        let start = offset;
        let end = start + self.buffer_len_from_offset(start)?;

        let other_idx = (idx ^ 1) as usize;
        let other_start = self
            .buffer_offset
            .get(other_idx)
            .ok_or_else(index_out_of_range)?
            .load() as usize;
        let other_end = other_start + self.buffer_len_from_offset(other_start)?;
        if start < other_end && other_start < end {
            // Special case: occasionally we get the same buffer offset twice
            // from the intel8x0 kernel driver in crosvm's AC97 device, and we
            // don't want to crash in that case.
            if start == other_start && end == other_end {
                warn!(
                    "Setting buffer {} to same index/offset as buffer {}, [{}, {})",
                    idx, other_idx, other_start, other_end
                );
            } else {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidInput,
                    format!(
                        "Setting buffer {} to [{}, {}) overlaps buffer {} at [{}, {})",
                        idx, start, end, other_idx, other_start, other_end,
                    ),
                ));
            }
        }
        Ok(())
    }

    /// Sets the location of the audio buffer `idx` within the samples area to
    /// `offset`, so that CRAS will read/write samples for that buffer from that
    /// offset.
    ///
    /// # Arguments
    /// `idx` - 0 <= `idx` < `CRAS_NUM_SHM_BUFFERS`
    /// `offset` - 0 <= `offset` && `offset` + `frame_size` <= `samples_len`
    ///
    /// # Errors
    /// If `idx` is out of range
    /// If the offset is invalid, which can happen if `offset` is
    ///  * outside of the samples area
    ///  * overlaps some other buffer `[other_offset, other_offset + used_size)`
    ///  * is close enough to the end of the samples area that the buffer would
    ///    be shorter than `frame_size`.
    pub fn set_buffer_offset(&mut self, idx: usize, offset: usize) -> io::Result<()> {
        self.check_buffer_offset(idx, offset)?;

        let buffer_offset = self.buffer_offset.get(idx).ok_or_else(index_out_of_range)?;
        buffer_offset.store(offset as u64);
        Ok(())
    }

    /// Commits written frames by switching the current buffer to the other one
    /// after samples are ready and indexes of current buffer are all set.
    /// - Sets `write_offset` of current buffer to `frame_count * frame_size`
    /// - Sets `read_offset` of current buffer to `0`.
    ///
    /// # Arguments
    ///
    /// * `frame_count` - Number of frames written to the current buffer
    ///
    /// # Errors
    ///
    /// * Returns error if `frame_count` is larger than buffer size
    ///
    /// This function is safe because we switch `write_buf_idx` after letting
    /// `write_offset` and `read_offset` ready and we read / write shared memory
    /// variables with volatile operations.
    pub fn commit_written_frames(&mut self, frame_count: u32) -> io::Result<()> {
        // Uses `u64` to prevent possible overflow
        let byte_count = frame_count as u64 * self.get_frame_size() as u64;
        if byte_count > self.get_used_size() as u64 {
            Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                "frame_count * frame_size is larger than used_size",
            ))
        } else {
            let idx = self.get_write_buf_idx() as usize;
            // Sets `write_offset` of current buffer to frame_count * frame_size
            self.set_write_offset(idx, byte_count as u32)?;
            // Sets `read_offset` of current buffer to `0`.
            self.set_read_offset(idx, 0)?;
            // Switch to the other buffer
            self.switch_write_buf_idx();
            Ok(())
        }
    }

    /// Get readable frames in current buffer.
    ///
    /// # Returns
    ///
    /// * `usize` - number of readable frames.
    ///
    /// # Errors
    ///
    /// Returns error if index out of range.
    pub fn get_readable_frames(&self) -> io::Result<usize> {
        let idx = self.get_read_buf_idx() as usize;
        let read_offset = self.read_offset.get(idx).ok_or_else(index_out_of_range)?;
        let write_offset = self.write_offset.get(idx).ok_or_else(index_out_of_range)?;
        let nframes =
            (write_offset.load() as i32 - read_offset.load() as i32) / self.get_frame_size() as i32;
        if nframes < 0 {
            Ok(0)
        } else {
            Ok(nframes as usize)
        }
    }

    /// Commit read frames from reader, .
    /// - Sets `read_offset` of current buffer to `read_offset + frame_count * frame_size`.
    /// If `read_offset` is larger than or equal to `write_offset`, then
    /// - Sets `read_offset` and `write_offset` to `0` and switch `read_buf_idx`.
    ///
    /// # Arguments
    ///
    /// * `frame_count` - Read frames in current read buffer.
    ///
    /// # Errors
    ///
    /// Returns error if index out of range.
    pub fn commit_read_frames(&mut self, frame_count: u32) -> io::Result<()> {
        let idx = self.get_read_buf_idx() as usize;
        let read_offset = self.read_offset.get(idx).ok_or_else(index_out_of_range)?;
        let write_offset = self.write_offset.get(idx).ok_or_else(index_out_of_range)?;
        read_offset.store(read_offset.load() + frame_count * self.get_frame_size() as u32);
        if read_offset.load() >= write_offset.load() {
            read_offset.store(0);
            write_offset.store(0);
            self.switch_read_buf_idx();
        }
        Ok(())
    }
}

impl<'a> Drop for CrasAudioHeader<'a> {
    fn drop(&mut self) {
        // Safe because all references must be gone by the time drop is called.
        unsafe {
            libc::munmap(self.addr as *mut _, mem::size_of::<cras_audio_shm_header>());
        }
    }
}

// To use this safely, we need to make sure
// - The given fd contains valid space which is larger than `len` + `offset`
unsafe fn cras_mmap_offset(
    len: usize,
    prot: libc::c_int,
    fd: libc::c_int,
    offset: usize,
) -> io::Result<*mut libc::c_void> {
    if offset > libc::off_t::max_value() as usize {
        return Err(io::Error::new(
            io::ErrorKind::InvalidInput,
            "Requested offset is out of range of `libc::off_t`.",
        ));
    }
    // It's safe because we handle its returned results.
    match libc::mmap(
        ptr::null_mut(),
        len,
        prot,
        libc::MAP_SHARED,
        fd,
        offset as libc::off_t,
    ) {
        libc::MAP_FAILED => Err(io::Error::last_os_error()),
        shm_ptr => Ok(shm_ptr),
    }
}

// To use this safely, we need to make sure
// - The given fd contains valid space which is larger than `len`
unsafe fn cras_mmap(
    len: usize,
    prot: libc::c_int,
    fd: libc::c_int,
) -> io::Result<*mut libc::c_void> {
    cras_mmap_offset(len, prot, fd, 0)
}

/// An unsafe macro for getting a `VolatileSlice` representing an entire array
/// field from a given NonNull pointer.
///
/// To use this macro safely, we need to
/// - Make sure the pointer address is readable and writeable for its struct.
/// - Make sure all `VolatileSlice`s generated from this macro have exclusive ownership for the same
/// pointer.
/// - Make sure the length of the array field is non-zero.
#[macro_export]
macro_rules! vslice_from_addr {
    ($addr:ident, $($field:ident).*) => {{
        let ptr = &mut $addr.as_mut().$($field).* as *mut _ as *mut u8;
        let size = std::mem::size_of_val(&$addr.as_mut().$($field).*);
        VolatileSlice::from_raw_parts(ptr, size)
    }};
}

/// A structure that points to RO shared memory area - `cras_server_state`
/// The structure is created from a shared memory fd which contains the structure.
#[derive(Debug)]
pub struct CrasServerState<'a> {
    addr: *mut libc::c_void,
    volume: VolatileRef<'a, u32>,
    mute: VolatileRef<'a, i32>,
    num_output_devs: VolatileRef<'a, u32>,
    output_devs: VolatileSlice<'a>,
    num_input_devs: VolatileRef<'a, u32>,
    input_devs: VolatileSlice<'a>,
    num_output_nodes: VolatileRef<'a, u32>,
    num_input_nodes: VolatileRef<'a, u32>,
    output_nodes: VolatileSlice<'a>,
    input_nodes: VolatileSlice<'a>,
    update_count: VolatileRef<'a, u32>,
    debug_info_num_devs: VolatileRef<'a, u32>,
    debug_info_devs: VolatileSlice<'a>,
    debug_info_num_streams: VolatileRef<'a, u32>,
    debug_info_streams: VolatileSlice<'a>,
}

// It is safe to send server_state between threads as this struct has exclusive
// ownership of the shared memory area contained in it.
unsafe impl<'a> Send for CrasServerState<'a> {}

impl<'a> CrasServerState<'a> {
    /// Create a CrasServerState
    pub fn try_new(state_fd: CrasServerStateShmFd) -> io::Result<Self> {
        // Safe because the creator of CrasServerStateShmFd already
        // ensured that state_fd contains a cras_server_state.
        let mmap_addr =
            unsafe { cras_mmap(state_fd.fd.size, libc::PROT_READ, state_fd.fd.as_raw_fd())? };

        let mut addr = NonNull::new(mmap_addr as *mut cras_server_state).ok_or_else(|| {
            io::Error::new(io::ErrorKind::Other, "Failed to create CrasServerState.")
        })?;

        // Safe because we know that addr is a non-null pointer to cras_server_state.
        let state_version = unsafe { vref_from_addr!(addr, state_version) };
        if state_version.load() != CRAS_SERVER_STATE_VERSION {
            return Err(io::Error::new(
                io::ErrorKind::Other,
                format!(
                    "CrasServerState version {} does not match expected version {}",
                    state_version.load(),
                    CRAS_SERVER_STATE_VERSION
                ),
            ));
        }

        // Safe because we know that mmap_addr (contained in addr) contains a
        // cras_server_state, and the mapped area will be exclusively
        // owned by this struct.
        unsafe {
            Ok(CrasServerState {
                addr: addr.as_ptr() as *mut libc::c_void,
                volume: vref_from_addr!(addr, volume),
                mute: vref_from_addr!(addr, mute),
                num_output_devs: vref_from_addr!(addr, num_output_devs),
                num_input_devs: vref_from_addr!(addr, num_input_devs),
                output_devs: vslice_from_addr!(addr, output_devs),
                input_devs: vslice_from_addr!(addr, input_devs),
                num_output_nodes: vref_from_addr!(addr, num_output_nodes),
                num_input_nodes: vref_from_addr!(addr, num_input_nodes),
                output_nodes: vslice_from_addr!(addr, output_nodes),
                input_nodes: vslice_from_addr!(addr, input_nodes),
                update_count: vref_from_addr!(addr, update_count),
                debug_info_num_devs: vref_from_addr!(addr, audio_debug_info.num_devs),
                debug_info_devs: vslice_from_addr!(addr, audio_debug_info.devs),
                debug_info_num_streams: vref_from_addr!(addr, audio_debug_info.num_streams),
                debug_info_streams: vslice_from_addr!(addr, audio_debug_info.streams),
            })
        }
    }

    /// Gets the system volume.
    ///
    /// Read the current value for system volume from shared memory.
    pub fn get_system_volume(&self) -> u32 {
        self.volume.load()
    }

    /// Gets the system mute.
    ///
    /// Read the current value for system mute from shared memory.
    pub fn get_system_mute(&self) -> bool {
        self.mute.load() != 0
    }

    /// Runs a closure safely such that it can be sure that the server state
    /// was not updated during the read.
    /// This can be used for an "atomic" read of non-atomic data from the
    /// state shared memory.
    fn synchronized_state_read<F, T>(&self, mut func: F) -> T
    where
        F: FnMut() -> T,
    {
        // Waits until the server has completed a state update before returning
        // the current update count.
        let begin_server_state_read = || -> u32 {
            loop {
                let update_count = self.update_count.load();
                if update_count % 2 == 0 {
                    atomic::fence(Ordering::Acquire);
                    return update_count;
                } else {
                    thread::yield_now();
                }
            }
        };

        // Checks that the update count has not changed since the start
        // of the server state read.
        let end_server_state_read = |count: u32| -> bool {
            let result = count == self.update_count.load();
            atomic::fence(Ordering::Release);
            result
        };

        // Get the state's update count and run the provided closure.
        // If the update count has not changed once the closure is finished,
        // return the result, otherwise repeat the process.
        loop {
            let update_count = begin_server_state_read();
            let result = func();
            if end_server_state_read(update_count) {
                return result;
            }
        }
    }

    /// Gets a list of output devices
    ///
    /// Read a list of the currently attached output devices from shared memory.
    pub fn output_devices(&self) -> impl Iterator<Item = CrasIodevInfo> {
        let mut devs: Vec<cras_iodev_info> = vec![Default::default(); CRAS_MAX_IODEVS as usize];
        let num_devs = self.synchronized_state_read(|| {
            self.output_devs.copy_to(&mut devs);
            self.num_output_devs.load()
        });
        devs.into_iter()
            .take(num_devs as usize)
            .map(CrasIodevInfo::from)
    }

    /// Gets a list of input devices
    ///
    /// Read a list of the currently attached input devices from shared memory.
    pub fn input_devices(&self) -> impl Iterator<Item = CrasIodevInfo> {
        let mut devs: Vec<cras_iodev_info> = vec![Default::default(); CRAS_MAX_IODEVS as usize];
        let num_devs = self.synchronized_state_read(|| {
            self.input_devs.copy_to(&mut devs);
            self.num_input_devs.load()
        });
        devs.into_iter()
            .take(num_devs as usize)
            .map(CrasIodevInfo::from)
    }

    /// Gets a list of output nodes
    ///
    /// Read a list of the currently attached output nodes from shared memory.
    pub fn output_nodes(&self) -> impl Iterator<Item = CrasIonodeInfo> {
        let mut nodes: Vec<cras_ionode_info> = vec![Default::default(); CRAS_MAX_IONODES as usize];
        let num_nodes = self.synchronized_state_read(|| {
            self.output_nodes.copy_to(&mut nodes);
            self.num_output_nodes.load()
        });
        nodes
            .into_iter()
            .take(num_nodes as usize)
            .map(CrasIonodeInfo::from)
    }

    /// Gets a list of input nodes
    ///
    /// Read a list of the currently attached input nodes from shared memory.
    pub fn input_nodes(&self) -> impl Iterator<Item = CrasIonodeInfo> {
        let mut nodes: Vec<cras_ionode_info> = vec![Default::default(); CRAS_MAX_IONODES as usize];
        let num_nodes = self.synchronized_state_read(|| {
            self.input_nodes.copy_to(&mut nodes);
            self.num_input_nodes.load()
        });
        nodes
            .into_iter()
            .take(num_nodes as usize)
            .map(CrasIonodeInfo::from)
    }

    /// Get audio debug info
    ///
    /// Loads the server's audio_debug_info struct and converts it into an
    /// idiomatic rust representation.
    ///
    /// # Errors
    /// * If any of the stream debug information structs are invalid.
    pub fn get_audio_debug_info(&self) -> Result<AudioDebugInfo, cras_sys::Error> {
        let mut devs: Vec<audio_dev_debug_info> = vec![Default::default(); MAX_DEBUG_DEVS as usize];
        let mut streams: Vec<audio_stream_debug_info> =
            vec![Default::default(); MAX_DEBUG_STREAMS as usize];
        let (num_devs, num_streams) = self.synchronized_state_read(|| {
            self.debug_info_devs.copy_to(&mut devs);
            self.debug_info_streams.copy_to(&mut streams);
            (
                self.debug_info_num_devs.load(),
                self.debug_info_num_streams.load(),
            )
        });
        let dev_info = devs
            .into_iter()
            .take(num_devs as usize)
            .map(AudioDevDebugInfo::from)
            .collect();
        let stream_info = streams
            .into_iter()
            .take(num_streams as usize)
            .map(AudioStreamDebugInfo::try_from)
            .collect::<Result<Vec<_>, _>>()?;
        Ok(AudioDebugInfo::new(dev_info, stream_info))
    }
}

impl<'a> Drop for CrasServerState<'a> {
    /// Call `munmap` for `addr`.
    fn drop(&mut self) {
        unsafe {
            // Safe because all references must be gone by the time drop is called.
            libc::munmap(self.addr, mem::size_of::<cras_server_state>());
        }
    }
}

/// A structure holding the mapped shared memory area used to exchange
/// samples with CRAS. The shared memory is owned exclusively by this structure,
/// and will be cleaned up on drop.
/// * `addr` - The address of the mapped shared memory.
/// * `len` - Length of the mapped shared memory in bytes.
pub struct CrasAudioBuffer {
    addr: *mut u8,
    len: usize,
}

// It is safe to send audio buffers between threads as this struct has exclusive ownership of the
// shared memory area contained in it.
unsafe impl Send for CrasAudioBuffer {}

impl CrasAudioBuffer {
    fn new(samples_fd: CrasShmFd) -> io::Result<Self> {
        // This is safe because we checked that the size of the shm in samples_fd
        // was at least samples_fd.size when it was created.
        let addr = unsafe {
            cras_mmap(
                samples_fd.size,
                libc::PROT_READ | libc::PROT_WRITE,
                samples_fd.as_raw_fd(),
            )? as *mut u8
        };
        Ok(Self {
            addr,
            len: samples_fd.size,
        })
    }

    /// Provides a mutable slice to be filled with audio samples.
    pub fn get_buffer(&mut self) -> &mut [u8] {
        // This is safe because it takes a mutable reference to self, and there can only be one
        // taken at a time. Although this is shared memory, the reader side must have it mapped as
        // read only.
        unsafe { slice::from_raw_parts_mut(self.addr, self.len) }
    }
}

impl Drop for CrasAudioBuffer {
    fn drop(&mut self) {
        // Safe because all references must be gone by the time drop is called.
        unsafe {
            libc::munmap(self.addr as *mut _, self.len);
        }
    }
}

/// Creates header and buffer from given shared memory fds.
pub fn create_header_and_buffers<'a>(
    header_fd: CrasAudioShmHeaderFd,
    samples_fd: CrasShmFd,
) -> io::Result<(CrasAudioHeader<'a>, CrasAudioBuffer)> {
    let header = CrasAudioHeader::new(header_fd, samples_fd.size)?;
    let buffer = CrasAudioBuffer::new(samples_fd)?;

    Ok((header, buffer))
}

/// Creates header from header shared memory fds. Use this function
/// when mapping the samples shm is not necessary, for instance with a
/// client-provided shm stream.
pub fn create_header<'a>(
    header_fd: CrasAudioShmHeaderFd,
    samples_len: usize,
) -> io::Result<CrasAudioHeader<'a>> {
    Ok(CrasAudioHeader::new(header_fd, samples_len)?)
}

/// A structure wrapping a fd which contains a shared memory area and its size.
/// * `fd` - The shared memory file descriptor, a `libc::c_int`.
/// * `size` - Size of the shared memory area.
pub struct CrasShmFd {
    fd: libc::c_int,
    size: usize,
}

impl CrasShmFd {
    /// Creates a `CrasShmFd` by shared memory fd and size
    /// # Arguments
    /// * `fd` - A shared memory file descriptor, which will be owned by the resulting structure and
    /// the fd will be closed on drop.
    /// * `size` - Size of the shared memory.
    ///
    /// # Returns
    /// * `CrasShmFd` - Wrap the input arguments without doing anything.
    ///
    /// To use this function safely, we need to make sure
    /// - The input fd is a valid shared memory fd.
    /// - The input shared memory fd won't be used by others.
    /// - The input fd contains memory size larger than `size`.
    pub unsafe fn new(fd: libc::c_int, size: usize) -> CrasShmFd {
        CrasShmFd { fd, size }
    }
}

impl AsRawFd for CrasShmFd {
    fn as_raw_fd(&self) -> RawFd {
        self.fd
    }
}

impl Drop for CrasShmFd {
    fn drop(&mut self) {
        // It's safe here if we make sure
        // - the input fd is valid and
        // - `CrasShmFd` is the only owner
        // in `new` function
        unsafe {
            libc::close(self.fd);
        }
    }
}

/// A structure wrapping a fd which contains a shared `cras_server_state`.
/// * `shm_fd` - A shared memory fd contains a `cras_server_state`
pub struct CrasServerStateShmFd {
    fd: CrasShmFd,
}

impl CrasServerStateShmFd {
    /// Creates a `CrasServerStateShmFd` by shared memory fd
    /// # Arguments
    /// * `fd` - A shared memory file descriptor, which will be owned by the resulting structure and
    /// the fd will be closed on drop.
    ///
    /// # Returns
    /// A structure wrapping a `CrasShmFd` with the input fd and `size` which equals to
    /// the size of `cras_server_sate`.
    ///
    /// To use this function safely, we need to make sure
    /// - The input fd is a valid shared memory fd.
    /// - The input shared memory fd won't be used by others.
    /// - The shared memory area in the input fd contains a `cras_server_state`.
    pub unsafe fn new(fd: libc::c_int) -> Self {
        Self {
            fd: CrasShmFd::new(fd, mem::size_of::<cras_server_state>()),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::fs::File;
    use std::os::unix::io::IntoRawFd;
    use std::sync::{Arc, Mutex};
    use std::thread;
    use sys_util::{kernel_has_memfd, SharedMemory};

    #[test]
    fn cras_audio_header_switch_test() {
        if !kernel_has_memfd() {
            return;
        }
        let mut header = create_cras_audio_header(20);
        assert_eq!(0, header.get_write_buf_idx());
        header.switch_write_buf_idx();
        assert_eq!(1, header.get_write_buf_idx());
    }

    #[test]
    fn cras_audio_header_write_offset_test() {
        if !kernel_has_memfd() {
            return;
        }
        let mut header = create_cras_audio_header(20);
        header.frame_size.store(2);
        header.used_size.store(5);
        header.set_buffer_offset(0, 12).unwrap();

        assert_eq!(0, header.write_offset[0].load());
        // Index out of bound
        assert!(header.set_write_offset(2, 5).is_err());
        // Offset out of bound
        // Buffer length is 4, since that's the largest multiple of frame_size
        // less than used_size.
        assert!(header.set_write_offset(0, 6).is_err());
        assert_eq!(0, header.write_offset[0].load());
        assert!(header.set_write_offset(0, 5).is_err());
        assert_eq!(0, header.write_offset[0].load());
        assert!(header.set_write_offset(0, 4).is_ok());
        assert_eq!(4, header.write_offset[0].load());
    }

    #[test]
    fn cras_audio_header_read_offset_test() {
        if !kernel_has_memfd() {
            return;
        }
        let mut header = create_cras_audio_header(20);
        header.frame_size.store(2);
        header.used_size.store(5);
        header.set_buffer_offset(0, 12).unwrap();

        assert_eq!(0, header.read_offset[0].load());
        // Index out of bound
        assert!(header.set_read_offset(2, 5).is_err());
        // Offset out of bound
        // Buffer length is 4, since that's the largest multiple of frame_size
        // less than used_size.
        assert!(header.set_read_offset(0, 6).is_err());
        assert_eq!(0, header.read_offset[0].load());
        assert!(header.set_read_offset(0, 5).is_err());
        assert_eq!(0, header.read_offset[0].load());
        assert!(header.set_read_offset(0, 4).is_ok());
        assert_eq!(4, header.read_offset[0].load());
    }

    #[test]
    fn cras_audio_header_commit_written_frame_test() {
        if !kernel_has_memfd() {
            return;
        }
        let mut header = create_cras_audio_header(20);
        header.frame_size.store(2);
        header.used_size.store(10);
        header.read_offset[0].store(10);
        header.set_buffer_offset(0, 10).unwrap();

        assert!(header.commit_written_frames(5).is_ok());
        assert_eq!(header.write_offset[0].load(), 10);
        assert_eq!(header.read_offset[0].load(), 0);
        assert_eq!(header.write_buf_idx.load(), 1);
    }

    #[test]
    fn cras_audio_header_get_readable_frames_test() {
        if !kernel_has_memfd() {
            return;
        }
        let header = create_cras_audio_header(20);
        header.frame_size.store(2);
        header.used_size.store(10);
        header.read_offset[0].store(2);
        header.write_offset[0].store(10);
        let frames = header
            .get_readable_frames()
            .expect("Failed to get readable frames.");
        assert_eq!(frames, 4);
    }

    #[test]
    fn cras_audio_header_commit_read_frames_test() {
        if !kernel_has_memfd() {
            return;
        }
        let mut header = create_cras_audio_header(20);
        header.frame_size.store(2);
        header.used_size.store(10);
        header.read_offset[0].store(2);
        header.write_offset[0].store(10);
        header
            .commit_read_frames(3)
            .expect("Failed to commit read frames.");
        assert_eq!(header.get_read_buf_idx(), 0);
        assert_eq!(header.read_offset[0].load(), 8);

        header
            .commit_read_frames(1)
            .expect("Failed to commit read frames.");
        // Read buffer should be switched
        assert_eq!(header.get_read_buf_idx(), 1);
        assert_eq!(header.read_offset[0].load(), 0);
        assert_eq!(header.read_offset[0].load(), 0);
    }

    #[test]
    fn cras_audio_header_get_write_offset_and_len() {
        if !kernel_has_memfd() {
            return;
        }
        let header = create_cras_audio_header(30);
        header.frame_size.store(2);
        header.used_size.store(10);
        header.write_buf_idx.store(0);
        header.read_offset[0].store(0);
        header.write_offset[0].store(0);
        header.buffer_offset[0].store(0);

        header.read_buf_idx.store(1);
        header.read_offset[1].store(0);
        header.write_offset[1].store(0);
        header.buffer_offset[1].store(10);

        // standard offsets and lens
        let (offset, len) = header.get_write_offset_and_len().unwrap();
        assert_eq!(offset, 0);
        assert_eq!(len, 10);

        header.write_buf_idx.store(1);
        header.read_buf_idx.store(0);
        let (offset, len) = header.get_write_offset_and_len().unwrap();
        assert_eq!(offset, 10);
        assert_eq!(len, 10);

        // relocate buffer offsets
        header.buffer_offset[1].store(16);
        let (offset, len) = header.get_write_offset_and_len().unwrap();
        assert_eq!(offset, 16);
        assert_eq!(len, 10);

        header.buffer_offset[0].store(5);
        header.write_buf_idx.store(0);
        let (offset, len) = header.get_write_offset_and_len().unwrap();
        assert_eq!(offset, 5);
        assert_eq!(len, 10);

        header.write_buf_idx.store(0);
        header.buffer_offset[0].store(2);
        header.read_buf_idx.store(1);
        header.buffer_offset[1].store(10);
        let result = header.get_write_offset_and_len();
        // Should be an error as write buffer would overrun into other buffer.
        assert!(result.is_err());

        header.buffer_offset[0].store(24);
        header.buffer_offset[1].store(10);
        let (offset, len) = header.get_write_offset_and_len().unwrap();
        // Should be ok since we're only running up against the end of samples.
        assert_eq!(offset, 24);
        assert_eq!(len, 6);

        header.buffer_offset[0].store(25);
        let (offset, len) = header.get_write_offset_and_len().unwrap();
        // Should be ok, but we'll truncate len to frame_size.
        assert_eq!(offset, 25);
        assert_eq!(len, 4);

        header.buffer_offset[0].store(29);
        let result = header.get_write_offset_and_len();
        // Should be an error as buffer is smaller than frame_size.
        assert!(result.is_err());
    }

    #[test]
    fn cras_audio_header_set_buffer_offset() {
        if !kernel_has_memfd() {
            return;
        }
        let mut header = create_cras_audio_header(30);
        header.frame_size.store(2);
        header.used_size.store(10);
        header.write_buf_idx.store(0);
        header.read_offset[0].store(0);
        header.write_offset[0].store(0);
        header.buffer_offset[0].store(0);

        header.read_buf_idx.store(1);
        header.read_offset[1].store(0);
        header.write_offset[1].store(0);
        header.buffer_offset[1].store(10);

        // Setting buffer_offset to exactly overlap with other buffer is okay
        assert!(header.set_buffer_offset(0, 10).is_ok());

        // Setting buffer_offset to partially overlap other buffer is not okay
        assert!(header.set_buffer_offset(0, 9).is_err());

        header.buffer_offset[0].store(0);
        header.write_offset[1].store(8);
        // With samples, it's still an error.
        assert!(header.set_buffer_offset(0, 9).is_err());

        // Setting the offset past the end of the other buffer is okay
        assert!(header.set_buffer_offset(0, 20).is_ok());

        // Setting buffer offset such that buffer length is less than used_size
        // is okay, but only at the end of the samples area.
        assert!(header.set_buffer_offset(0, 21).is_ok());
        assert!(header.set_buffer_offset(0, 27).is_ok());

        // It's not okay if we get a buffer with length less than frame_size.
        assert!(header.set_buffer_offset(0, 29).is_err());
        assert!(header.set_buffer_offset(0, 30).is_err());

        // If we try to overlap another buffer with that other buffer at the end,
        // it's not okay, unless it's the exact same index.
        assert!(header.set_buffer_offset(1, 25).is_err());
        assert!(header.set_buffer_offset(1, 27).is_ok());
        assert!(header.set_buffer_offset(1, 28).is_err());

        // Setting buffer offset past the end of samples is an error.
        assert!(header.set_buffer_offset(0, 33).is_err());
    }

    #[test]
    fn create_header_and_buffers_test() {
        if !kernel_has_memfd() {
            return;
        }
        let header_fd = cras_audio_header_fd();
        let samples_fd = cras_audio_samples_fd(20);
        let res = create_header_and_buffers(header_fd, samples_fd);
        res.expect("Failed to create header and buffer.");
    }

    fn create_shm(size: usize) -> File {
        let mut shm = SharedMemory::new(None).expect("failed to create shm");
        shm.set_size(size as u64).expect("failed to set shm size");
        shm.into()
    }

    fn create_cras_audio_header<'a>(samples_len: usize) -> CrasAudioHeader<'a> {
        CrasAudioHeader::new(cras_audio_header_fd(), samples_len).unwrap()
    }

    fn cras_audio_header_fd() -> CrasAudioShmHeaderFd {
        let size = mem::size_of::<cras_audio_shm_header>();
        let shm = create_shm(size);
        unsafe { CrasAudioShmHeaderFd::new(shm.into_raw_fd()) }
    }

    fn cras_audio_samples_fd(size: usize) -> CrasShmFd {
        let shm = create_shm(size);
        unsafe { CrasShmFd::new(shm.into_raw_fd(), size) }
    }

    #[test]
    fn cras_mmap_pass() {
        if !kernel_has_memfd() {
            return;
        }
        let shm = create_shm(100);
        let rc = unsafe { cras_mmap(10, libc::PROT_READ, shm.as_raw_fd()) };
        assert!(rc.is_ok());
        unsafe { libc::munmap(rc.unwrap(), 10) };
    }

    #[test]
    fn cras_mmap_failed() {
        if !kernel_has_memfd() {
            return;
        }
        let rc = unsafe { cras_mmap(10, libc::PROT_READ, -1) };
        assert!(rc.is_err());
    }

    #[test]
    fn cras_server_state() {
        let size = mem::size_of::<cras_server_state>();
        let shm = create_shm(size);
        unsafe {
            let addr = cras_mmap(size, libc::PROT_WRITE, shm.as_raw_fd())
                .expect("failed to mmap state shm");
            {
                let state: &mut cras_server_state = &mut *(addr as *mut cras_server_state);
                state.state_version = CRAS_SERVER_STATE_VERSION;
                state.volume = 47;
                state.mute = 1;
            }
            libc::munmap(addr, size);
        };
        let state_fd = unsafe { CrasServerStateShmFd::new(shm.into_raw_fd()) };
        let state =
            CrasServerState::try_new(state_fd).expect("try_new failed for valid server_state fd");
        assert_eq!(state.get_system_volume(), 47);
        assert_eq!(state.get_system_mute(), true);
    }

    #[test]
    fn cras_server_state_old_version() {
        let size = mem::size_of::<cras_server_state>();
        let shm = create_shm(size);
        unsafe {
            let addr = cras_mmap(size, libc::PROT_WRITE, shm.as_raw_fd())
                .expect("failed to mmap state shm");
            {
                let state: &mut cras_server_state = &mut *(addr as *mut cras_server_state);
                state.state_version = CRAS_SERVER_STATE_VERSION - 1;
                state.volume = 29;
                state.mute = 0;
            }
            libc::munmap(addr, size);
        };
        let state_fd = unsafe { CrasServerStateShmFd::new(shm.into_raw_fd()) };
        CrasServerState::try_new(state_fd)
            .expect_err("try_new succeeded for invalid state version");
    }

    #[test]
    fn cras_server_sync_state_read() {
        let size = mem::size_of::<cras_server_state>();
        let shm = create_shm(size);
        let addr = unsafe { cras_mmap(size, libc::PROT_WRITE, shm.as_raw_fd()).unwrap() };
        let state: &mut cras_server_state = unsafe { &mut *(addr as *mut cras_server_state) };
        state.state_version = CRAS_SERVER_STATE_VERSION;
        state.update_count = 14;
        state.volume = 12;

        let state_fd = unsafe { CrasServerStateShmFd::new(shm.into_raw_fd()) };
        let state_struct = CrasServerState::try_new(state_fd).unwrap();

        // Create a lock so that we can block the reader while we change the
        // update_count;
        let lock = Arc::new(Mutex::new(()));
        let thread_lock = lock.clone();
        let reader_thread = {
            let _guard = lock.lock().unwrap();

            // Create reader thread that will get the value of volume. Since we
            // hold the lock currently, this will block until we release the lock.
            let reader_thread = thread::spawn(move || {
                state_struct.synchronized_state_read(|| {
                    let _guard = thread_lock.lock().unwrap();
                    state_struct.volume.load()
                })
            });

            // Update volume and change update count so that the synchronized read
            // will not return (odd update count means update in progress).
            state.volume = 27;
            state.update_count = 15;

            reader_thread
        };

        // The lock has been released, but the reader thread should still not
        // terminate, because of the update in progress.

        // Yield thread to give reader_thread a chance to get scheduled.
        thread::yield_now();
        {
            let _guard = lock.lock().unwrap();

            // Update volume and change update count to indicate the write has
            // finished.
            state.volume = 42;
            state.update_count = 16;
        }

        let read_value = reader_thread.join().unwrap();
        assert_eq!(read_value, 42);
    }
}