aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/math_brute_force/main.cpp
blob: 74dd5c47d72143d5dbe87d58a5163689cdecdc19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

#include "function_list.h"
#include "sleep.h"
#include "utility.h"

#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <string>
#include <vector>

#include "harness/errorHelpers.h"
#include "harness/kernelHelpers.h"
#include "harness/parseParameters.h"
#include "harness/typeWrappers.h"

#if defined(__APPLE__)
#include <sys/sysctl.h>
#include <sys/mman.h>
#include <libgen.h>
#include <sys/time.h>
#elif defined(__linux__)
#include <unistd.h>
#include <sys/syscall.h>
#include <linux/sysctl.h>
#include <sys/param.h>
#endif

#if defined(__linux__) || (defined WIN32 && defined __MINGW32__)
#include <sys/param.h>
#endif

#include "harness/testHarness.h"

#define kPageSize 4096
#define DOUBLE_REQUIRED_FEATURES                                               \
    (CL_FP_FMA | CL_FP_ROUND_TO_NEAREST | CL_FP_ROUND_TO_ZERO                  \
     | CL_FP_ROUND_TO_INF | CL_FP_INF_NAN | CL_FP_DENORM)

static std::vector<const char *> gTestNames;
static char appName[MAXPATHLEN] = "";
cl_device_id gDevice = NULL;
cl_context gContext = NULL;
cl_command_queue gQueue = NULL;
static size_t gStartTestNumber = ~0u;
static size_t gEndTestNumber = ~0u;
int gSkipCorrectnessTesting = 0;
static int gStopOnError = 0;
static bool gSkipRestOfTests;
int gForceFTZ = 0;
int gWimpyMode = 0;
int gHostFill = 0;
static int gHasDouble = 0;
static int gTestFloat = 1;
// This flag should be 'ON' by default and it can be changed through the command
// line arguments.
static int gTestFastRelaxed = 1;
/*This flag corresponds to defining if the implementation has Derived Fast
  Relaxed functions. The spec does not specify ULP for derived function.  The
  derived functions are composed of base functions which are tested for ULP,
  thus when this flag is enabled, Derived functions will not be tested for ULP,
  as per table 7.1 of OpenCL 2.0 spec. Since there is no way of quering the
  device whether it is a derived or non-derived implementation according to
  OpenCL 2.0 spec then it has to be changed through a command line argument.
*/
int gFastRelaxedDerived = 1;
static int gToggleCorrectlyRoundedDivideSqrt = 0;
int gDeviceILogb0 = 1;
int gDeviceILogbNaN = 1;
int gCheckTininessBeforeRounding = 1;
int gIsInRTZMode = 0;
uint32_t gMaxVectorSizeIndex = VECTOR_SIZE_COUNT;
uint32_t gMinVectorSizeIndex = 0;
void *gIn = NULL;
void *gIn2 = NULL;
void *gIn3 = NULL;
void *gOut_Ref = NULL;
void *gOut[VECTOR_SIZE_COUNT] = { NULL, NULL, NULL, NULL, NULL, NULL };
void *gOut_Ref2 = NULL;
void *gOut2[VECTOR_SIZE_COUNT] = { NULL, NULL, NULL, NULL, NULL, NULL };
cl_mem gInBuffer = NULL;
cl_mem gInBuffer2 = NULL;
cl_mem gInBuffer3 = NULL;
cl_mem gOutBuffer[VECTOR_SIZE_COUNT] = { NULL, NULL, NULL, NULL, NULL, NULL };
cl_mem gOutBuffer2[VECTOR_SIZE_COUNT] = { NULL, NULL, NULL, NULL, NULL, NULL };
static MTdataHolder gMTdata;
cl_device_fp_config gFloatCapabilities = 0;
int gWimpyReductionFactor = 32;
int gVerboseBruteForce = 0;

static int ParseArgs(int argc, const char **argv);
static void PrintUsage(void);
static void PrintFunctions(void);
static test_status InitCL(cl_device_id device);
static void ReleaseCL(void);
static int InitILogbConstants(void);
static int IsTininessDetectedBeforeRounding(void);
static int
IsInRTZMode(void); // expensive. Please check gIsInRTZMode global instead.

static int doTest(const char *name)
{
    if (gSkipRestOfTests)
    {
        vlog("Skipping function because of an earlier error.\n");
        return 1;
    }

    int error = 0;
    const Func *func_data = NULL;

    for (size_t i = 0; i < functionListCount; i++)
    {
        const Func *const temp_func = functionList + i;
        if (strcmp(temp_func->name, name) == 0)
        {
            if ((gStartTestNumber != ~0u && i < gStartTestNumber)
                || i > gEndTestNumber)
            {
                vlog("Skipping function #%zu\n", i);
                return 0;
            }

            func_data = temp_func;
            break;
        }
    }

    if (func_data == NULL)
    {
        vlog("Function '%s' doesn't exist!\n", name);
        exit(EXIT_FAILURE);
    }

    if (func_data->func.p == NULL)
    {
        vlog("'%s' is missing implementation, skipping function.\n",
             func_data->name);
        return 0;
    }

    // if correctly rounded divide & sqrt are supported by the implementation
    // then test it; otherwise skip the test
    if (strcmp(func_data->name, "sqrt_cr") == 0
        || strcmp(func_data->name, "divide_cr") == 0)
    {
        if ((gFloatCapabilities & CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT) == 0)
        {
            vlog("Correctly rounded divide and sqrt are not supported, "
                 "skipping function.\n");
            return 0;
        }
    }

    {
        if (0 == strcmp("ilogb", func_data->name))
        {
            InitILogbConstants();
        }

        if (gTestFastRelaxed && func_data->relaxed)
        {
            if (get_device_cl_version(gDevice) > Version(1, 2))
            {
                gTestCount++;
                vlog("%3d: ", gTestCount);
                // Test with relaxed requirements here.
                if (func_data->vtbl_ptr->TestFunc(func_data, gMTdata,
                                                  true /* relaxed mode */))
                {
                    gFailCount++;
                    error++;
                    if (gStopOnError)
                    {
                        gSkipRestOfTests = true;
                        return error;
                    }
                }
            }
            else
            {
                vlog("Skipping reduced precision testing for device with "
                     "version 1.2 or less\n");
            }
        }

        if (gTestFloat)
        {
            gTestCount++;
            vlog("%3d: ", gTestCount);
            // Don't test with relaxed requirements.
            if (func_data->vtbl_ptr->TestFunc(func_data, gMTdata,
                                              false /* relaxed mode */))
            {
                gFailCount++;
                error++;
                if (gStopOnError)
                {
                    gSkipRestOfTests = true;
                    return error;
                }
            }
        }

        if (gHasDouble && NULL != func_data->vtbl_ptr->DoubleTestFunc
            && NULL != func_data->dfunc.p)
        {
            gTestCount++;
            vlog("%3d: ", gTestCount);
            // Don't test with relaxed requirements.
            if (func_data->vtbl_ptr->DoubleTestFunc(func_data, gMTdata,
                                                    false /* relaxed mode*/))
            {
                gFailCount++;
                error++;
                if (gStopOnError)
                {
                    gSkipRestOfTests = true;
                    return error;
                }
            }
        }
    }

    return error;
}


#define TEST_LAMBDA(name)                                                      \
    [](cl_device_id, cl_context, cl_command_queue, int) {                      \
        return doTest(#name);                                                  \
    }

// Redefine ADD_TEST to use TEST_LAMBDA.
#undef ADD_TEST
#define ADD_TEST(name)                                                         \
    {                                                                          \
        TEST_LAMBDA(name), #name, Version(1, 0)                                \
    }

static test_definition test_list[] = {
    ADD_TEST(acos),          ADD_TEST(acosh),      ADD_TEST(acospi),
    ADD_TEST(asin),          ADD_TEST(asinh),      ADD_TEST(asinpi),
    ADD_TEST(atan),          ADD_TEST(atanh),      ADD_TEST(atanpi),
    ADD_TEST(atan2),         ADD_TEST(atan2pi),    ADD_TEST(cbrt),
    ADD_TEST(ceil),          ADD_TEST(copysign),   ADD_TEST(cos),
    ADD_TEST(cosh),          ADD_TEST(cospi),      ADD_TEST(exp),
    ADD_TEST(exp2),          ADD_TEST(exp10),      ADD_TEST(expm1),
    ADD_TEST(fabs),          ADD_TEST(fdim),       ADD_TEST(floor),
    ADD_TEST(fma),           ADD_TEST(fmax),       ADD_TEST(fmin),
    ADD_TEST(fmod),          ADD_TEST(fract),      ADD_TEST(frexp),
    ADD_TEST(hypot),         ADD_TEST(ilogb),      ADD_TEST(isequal),
    ADD_TEST(isfinite),      ADD_TEST(isgreater),  ADD_TEST(isgreaterequal),
    ADD_TEST(isinf),         ADD_TEST(isless),     ADD_TEST(islessequal),
    ADD_TEST(islessgreater), ADD_TEST(isnan),      ADD_TEST(isnormal),
    ADD_TEST(isnotequal),    ADD_TEST(isordered),  ADD_TEST(isunordered),
    ADD_TEST(ldexp),         ADD_TEST(lgamma),     ADD_TEST(lgamma_r),
    ADD_TEST(log),           ADD_TEST(log2),       ADD_TEST(log10),
    ADD_TEST(log1p),         ADD_TEST(logb),       ADD_TEST(mad),
    ADD_TEST(maxmag),        ADD_TEST(minmag),     ADD_TEST(modf),
    ADD_TEST(nan),           ADD_TEST(nextafter),  ADD_TEST(pow),
    ADD_TEST(pown),          ADD_TEST(powr),       ADD_TEST(remainder),
    ADD_TEST(remquo),        ADD_TEST(rint),       ADD_TEST(rootn),
    ADD_TEST(round),         ADD_TEST(rsqrt),      ADD_TEST(signbit),
    ADD_TEST(sin),           ADD_TEST(sincos),     ADD_TEST(sinh),
    ADD_TEST(sinpi),         ADD_TEST(sqrt),       ADD_TEST(sqrt_cr),
    ADD_TEST(tan),           ADD_TEST(tanh),       ADD_TEST(tanpi),
    ADD_TEST(trunc),         ADD_TEST(half_cos),   ADD_TEST(half_divide),
    ADD_TEST(half_exp),      ADD_TEST(half_exp2),  ADD_TEST(half_exp10),
    ADD_TEST(half_log),      ADD_TEST(half_log2),  ADD_TEST(half_log10),
    ADD_TEST(half_powr),     ADD_TEST(half_recip), ADD_TEST(half_rsqrt),
    ADD_TEST(half_sin),      ADD_TEST(half_sqrt),  ADD_TEST(half_tan),
    ADD_TEST(add),           ADD_TEST(subtract),   ADD_TEST(divide),
    ADD_TEST(divide_cr),     ADD_TEST(multiply),   ADD_TEST(assignment),
    ADD_TEST(not),
};

#undef ADD_TEST
#undef TEST_LAMBDA

static const int test_num = ARRAY_SIZE(test_list);

#pragma mark -

int main(int argc, const char *argv[])
{
    int error;

    argc = parseCustomParam(argc, argv);
    if (argc == -1)
    {
        return -1;
    }

    error = ParseArgs(argc, argv);
    if (error) return error;

    // This takes a while, so prevent the machine from going to sleep.
    PreventSleep();
    atexit(ResumeSleep);

    if (gSkipCorrectnessTesting)
        vlog("*** Skipping correctness testing! ***\n\n");
    else if (gStopOnError)
        vlog("Stopping at first error.\n");

    vlog("   \t                                        ");
    if (gWimpyMode) vlog("   ");
    if (!gSkipCorrectnessTesting) vlog("\t  max_ulps");

    vlog("\n-------------------------------------------------------------------"
         "----------------------------------------\n");

    gMTdata = MTdataHolder(gRandomSeed);

    FPU_mode_type oldMode;
    DisableFTZ(&oldMode);

    int ret = runTestHarnessWithCheck(gTestNames.size(), gTestNames.data(),
                                      test_num, test_list, true, 0, InitCL);

    RestoreFPState(&oldMode);

    if (gQueue)
    {
        int error_code = clFinish(gQueue);
        if (error_code) vlog_error("clFinish failed:%d\n", error_code);
    }

    ReleaseCL();

    return ret;
}

static int ParseArgs(int argc, const char **argv)
{
    // We only pass test names to runTestHarnessWithCheck, hence global command
    // line options defined by the harness cannot be used by the user.
    // To respect the implementation details of runTestHarnessWithCheck,
    // gTestNames[0] has to exist although its value is not important.
    gTestNames.push_back("");

    int singleThreaded = 0;

    { // Extract the app name
        strncpy(appName, argv[0], MAXPATHLEN - 1);
        appName[MAXPATHLEN - 1] = '\0';

#if defined(__APPLE__)
        char baseName[MAXPATHLEN];
        char *base = NULL;
        strncpy(baseName, argv[0], MAXPATHLEN - 1);
        baseName[MAXPATHLEN - 1] = '\0';
        base = basename(baseName);
        if (NULL != base)
        {
            strncpy(appName, base, sizeof(appName) - 1);
            appName[sizeof(appName) - 1] = '\0';
        }
#endif
    }

    vlog("\n%s\t", appName);
    for (int i = 1; i < argc; i++)
    {
        const char *arg = argv[i];
        if (NULL == arg) break;

        vlog("\t%s", arg);
        int optionFound = 0;
        if (arg[0] == '-')
        {
            while (arg[1] != '\0')
            {
                arg++;
                optionFound = 1;
                switch (*arg)
                {
                    case 'c': gToggleCorrectlyRoundedDivideSqrt ^= 1; break;

                    case 'd': gHasDouble ^= 1; break;

                    case 'e': gFastRelaxedDerived ^= 1; break;

                    case 'f': gTestFloat ^= 1; break;

                    case 'h': PrintUsage(); return -1;

                    case 'p': PrintFunctions(); return -1;

                    case 'l': gSkipCorrectnessTesting ^= 1; break;

                    case 'm': singleThreaded ^= 1; break;

                    case 'r': gTestFastRelaxed ^= 1; break;

                    case 's': gStopOnError ^= 1; break;

                    case 'v': gVerboseBruteForce ^= 1; break;

                    case 'w': // wimpy mode
                        gWimpyMode ^= 1;
                        break;

                    case '[':
                        parseWimpyReductionFactor(arg, gWimpyReductionFactor);
                        break;

                    case 'b': gHostFill ^= 1; break;

                    case 'z': gForceFTZ ^= 1; break;

                    case '1':
                        if (arg[1] == '6')
                        {
                            gMinVectorSizeIndex = 5;
                            gMaxVectorSizeIndex = gMinVectorSizeIndex + 1;
                            arg++;
                        }
                        else
                        {
                            gMinVectorSizeIndex = 0;
                            gMaxVectorSizeIndex = gMinVectorSizeIndex + 1;
                        }
                        break;
                    case '2':
                        gMinVectorSizeIndex = 1;
                        gMaxVectorSizeIndex = gMinVectorSizeIndex + 1;
                        break;
                    case '3':
                        gMinVectorSizeIndex = 2;
                        gMaxVectorSizeIndex = gMinVectorSizeIndex + 1;
                        break;
                    case '4':
                        gMinVectorSizeIndex = 3;
                        gMaxVectorSizeIndex = gMinVectorSizeIndex + 1;
                        break;
                    case '8':
                        gMinVectorSizeIndex = 4;
                        gMaxVectorSizeIndex = gMinVectorSizeIndex + 1;
                        break;

                    default:
                        vlog(" <-- unknown flag: %c (0x%2.2x)\n)", *arg, *arg);
                        PrintUsage();
                        return -1;
                }
            }
        }

        if (!optionFound)
        {
            char *t = NULL;
            long number = strtol(arg, &t, 0);
            if (t != arg)
            {
                if (~0u == gStartTestNumber)
                    gStartTestNumber = (int32_t)number;
                else
                    gEndTestNumber = gStartTestNumber + (int32_t)number;
            }
            else
            {
                // Make sure this is a valid name
                unsigned int k;
                for (k = 0; k < functionListCount; k++)
                {
                    const Func *f = functionList + k;
                    if (strcmp(arg, f->name) == 0)
                    {
                        gTestNames.push_back(arg);
                        break;
                    }
                }
                // If we didn't find it in the list of test names
                if (k >= functionListCount)
                {
                    gTestNames.push_back(arg);
                }
            }
        }
    }

    // Check for the wimpy mode environment variable
    if (getenv("CL_WIMPY_MODE"))
    {
        vlog("\n");
        vlog("*** Detected CL_WIMPY_MODE env                          ***\n");
        gWimpyMode = 1;
    }

    PrintArch();

    if (gWimpyMode)
    {
        vlog("\n");
        vlog("*** WARNING: Testing in Wimpy mode!                     ***\n");
        vlog("*** Wimpy mode is not sufficient to verify correctness. ***\n");
        vlog("*** Wimpy Reduction Factor: %-27u ***\n\n",
             gWimpyReductionFactor);
    }

    if (singleThreaded) SetThreadCount(1);

    return 0;
}


static void PrintFunctions(void)
{
    vlog("\nMath function names:\n");
    for (size_t i = 0; i < functionListCount; i++)
    {
        vlog("\t%s\n", functionList[i].name);
    }
}

static void PrintUsage(void)
{
    vlog("%s [-cglsz]: <optional: math function names>\n", appName);
    vlog("\toptions:\n");
    vlog("\t\t-c\tToggle test fp correctly rounded divide and sqrt (Default: "
         "off)\n");
    vlog("\t\t-d\tToggle double precision testing. (Default: on iff khr_fp_64 "
         "on)\n");
    vlog("\t\t-f\tToggle float precision testing. (Default: on)\n");
    vlog("\t\t-r\tToggle fast relaxed math precision testing. (Default: on)\n");
    vlog("\t\t-e\tToggle test as derived implementations for fast relaxed math "
         "precision. (Default: on)\n");
    vlog("\t\t-h\tPrint this message and quit\n");
    vlog("\t\t-p\tPrint all math function names and quit\n");
    vlog("\t\t-l\tlink check only (make sure functions are present, skip "
         "accuracy checks.)\n");
    vlog("\t\t-m\tToggle run multi-threaded. (Default: on) )\n");
    vlog("\t\t-s\tStop on error\n");
    vlog("\t\t-w\tToggle Wimpy Mode, * Not a valid test * \n");
    vlog("\t\t-[2^n]\tSet wimpy reduction factor, recommended range of n is "
         "1-10, default factor(%u)\n",
         gWimpyReductionFactor);
    vlog("\t\t-b\tFill buffers on host instead of device. (Default: off)\n");
    vlog("\t\t-z\tToggle FTZ mode (Section 6.5.3) for all functions. (Set by "
         "device capabilities by default.)\n");
    vlog("\t\t-v\tToggle Verbosity (Default: off)\n ");
    vlog("\t\t-#\tTest only vector sizes #, e.g. \"-1\" tests scalar only, "
         "\"-16\" tests 16-wide vectors only.\n");
    vlog("\n\tYou may also pass a number instead of a function name.\n");
    vlog("\tThis causes the first N tests to be skipped. The tests are "
         "numbered.\n");
    vlog("\tIf you pass a second number, that is the number tests to run after "
         "the first one.\n");
    vlog("\tA name list may be used in conjunction with a number range. In "
         "that case,\n");
    vlog("\tonly the named cases in the number range will run.\n");
    vlog("\tYou may also choose to pass no arguments, in which case all tests "
         "will be run.\n");
    vlog("\tYou may pass CL_DEVICE_TYPE_CPU/GPU/ACCELERATOR to select the "
         "device.\n");
    vlog("\n");
}

static void CL_CALLBACK bruteforce_notify_callback(const char *errinfo,
                                                   const void *private_info,
                                                   size_t cb, void *user_data)
{
    vlog("%s  (%p, %zd, %p)\n", errinfo, private_info, cb, user_data);
}

test_status InitCL(cl_device_id device)
{
    int error;
    uint32_t i;
    cl_device_type device_type;

    error = clGetDeviceInfo(device, CL_DEVICE_TYPE, sizeof(device_type),
                            &device_type, NULL);
    if (error)
    {
        print_error(error, "Unable to get device type");
        return TEST_FAIL;
    }

    gDevice = device;

    // Check extensions
    if (is_extension_available(gDevice, "cl_khr_fp64"))
    {
        gHasDouble ^= 1;
#if defined(CL_DEVICE_DOUBLE_FP_CONFIG)
        cl_device_fp_config doubleCapabilities = 0;
        if ((error = clGetDeviceInfo(gDevice, CL_DEVICE_DOUBLE_FP_CONFIG,
                                     sizeof(doubleCapabilities),
                                     &doubleCapabilities, NULL)))
        {
            vlog_error("ERROR: Unable to get device "
                       "CL_DEVICE_DOUBLE_FP_CONFIG. (%d)\n",
                       error);
            return TEST_FAIL;
        }

        if (DOUBLE_REQUIRED_FEATURES
            != (doubleCapabilities & DOUBLE_REQUIRED_FEATURES))
        {
            std::string list;
            if (0 == (doubleCapabilities & CL_FP_FMA)) list += "CL_FP_FMA, ";
            if (0 == (doubleCapabilities & CL_FP_ROUND_TO_NEAREST))
                list += "CL_FP_ROUND_TO_NEAREST, ";
            if (0 == (doubleCapabilities & CL_FP_ROUND_TO_ZERO))
                list += "CL_FP_ROUND_TO_ZERO, ";
            if (0 == (doubleCapabilities & CL_FP_ROUND_TO_INF))
                list += "CL_FP_ROUND_TO_INF, ";
            if (0 == (doubleCapabilities & CL_FP_INF_NAN))
                list += "CL_FP_INF_NAN, ";
            if (0 == (doubleCapabilities & CL_FP_DENORM))
                list += "CL_FP_DENORM, ";
            vlog_error("ERROR: required double features are missing: %s\n",
                       list.c_str());

            return TEST_FAIL;
        }
#else
        vlog_error("FAIL: device says it supports cl_khr_fp64 but "
                   "CL_DEVICE_DOUBLE_FP_CONFIG is not in the headers!\n");
        return TEST_FAIL;
#endif
    }

    uint32_t deviceFrequency = 0;
    size_t configSize = sizeof(deviceFrequency);
    if ((error = clGetDeviceInfo(gDevice, CL_DEVICE_MAX_CLOCK_FREQUENCY,
                                 configSize, &deviceFrequency, NULL)))
        deviceFrequency = 0;

    if ((error = clGetDeviceInfo(gDevice, CL_DEVICE_SINGLE_FP_CONFIG,
                                 sizeof(gFloatCapabilities),
                                 &gFloatCapabilities, NULL)))
    {
        vlog_error(
            "ERROR: Unable to get device CL_DEVICE_SINGLE_FP_CONFIG. (%d)\n",
            error);
        return TEST_FAIL;
    }

    gContext = clCreateContext(NULL, 1, &gDevice, bruteforce_notify_callback,
                               NULL, &error);
    if (NULL == gContext || error)
    {
        vlog_error("clCreateContext failed. (%d) \n", error);
        return TEST_FAIL;
    }

    gQueue = clCreateCommandQueue(gContext, gDevice, 0, &error);
    if (NULL == gQueue || error)
    {
        vlog_error("clCreateCommandQueue failed. (%d)\n", error);
        return TEST_FAIL;
    }

    // Allocate buffers
    cl_uint min_alignment = 0;
    error = clGetDeviceInfo(gDevice, CL_DEVICE_MEM_BASE_ADDR_ALIGN,
                            sizeof(cl_uint), (void *)&min_alignment, NULL);
    if (CL_SUCCESS != error)
    {
        vlog_error("clGetDeviceInfo failed. (%d)\n", error);
        return TEST_FAIL;
    }
    min_alignment >>= 3; // convert bits to bytes

    gIn = align_malloc(BUFFER_SIZE, min_alignment);
    if (NULL == gIn) return TEST_FAIL;
    gIn2 = align_malloc(BUFFER_SIZE, min_alignment);
    if (NULL == gIn2) return TEST_FAIL;
    gIn3 = align_malloc(BUFFER_SIZE, min_alignment);
    if (NULL == gIn3) return TEST_FAIL;
    gOut_Ref = align_malloc(BUFFER_SIZE, min_alignment);
    if (NULL == gOut_Ref) return TEST_FAIL;
    gOut_Ref2 = align_malloc(BUFFER_SIZE, min_alignment);
    if (NULL == gOut_Ref2) return TEST_FAIL;

    for (i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
    {
        gOut[i] = align_malloc(BUFFER_SIZE, min_alignment);
        if (NULL == gOut[i]) return TEST_FAIL;
        gOut2[i] = align_malloc(BUFFER_SIZE, min_alignment);
        if (NULL == gOut2[i]) return TEST_FAIL;
    }

    cl_mem_flags device_flags = CL_MEM_READ_ONLY;
    // save a copy on the host device to make this go faster
    if (CL_DEVICE_TYPE_CPU == device_type)
        device_flags |= CL_MEM_USE_HOST_PTR;
    else
        device_flags |= CL_MEM_COPY_HOST_PTR;

    // setup input buffers
    gInBuffer =
        clCreateBuffer(gContext, device_flags, BUFFER_SIZE, gIn, &error);
    if (gInBuffer == NULL || error)
    {
        vlog_error("clCreateBuffer1 failed for input (%d)\n", error);
        return TEST_FAIL;
    }

    gInBuffer2 =
        clCreateBuffer(gContext, device_flags, BUFFER_SIZE, gIn2, &error);
    if (gInBuffer2 == NULL || error)
    {
        vlog_error("clCreateBuffer2 failed for input (%d)\n", error);
        return TEST_FAIL;
    }

    gInBuffer3 =
        clCreateBuffer(gContext, device_flags, BUFFER_SIZE, gIn3, &error);
    if (gInBuffer3 == NULL || error)
    {
        vlog_error("clCreateBuffer3 failed for input (%d)\n", error);
        return TEST_FAIL;
    }


    // setup output buffers
    device_flags = CL_MEM_READ_WRITE;
    // save a copy on the host device to make this go faster
    if (CL_DEVICE_TYPE_CPU == device_type)
        device_flags |= CL_MEM_USE_HOST_PTR;
    else
        device_flags |= CL_MEM_COPY_HOST_PTR;
    for (i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
    {
        gOutBuffer[i] = clCreateBuffer(gContext, device_flags, BUFFER_SIZE,
                                       gOut[i], &error);
        if (gOutBuffer[i] == NULL || error)
        {
            vlog_error("clCreateBuffer failed for output (%d)\n", error);
            return TEST_FAIL;
        }
        gOutBuffer2[i] = clCreateBuffer(gContext, device_flags, BUFFER_SIZE,
                                        gOut2[i], &error);
        if (gOutBuffer2[i] == NULL || error)
        {
            vlog_error("clCreateBuffer2 failed for output (%d)\n", error);
            return TEST_FAIL;
        }
    }

    // we are embedded, check current rounding mode
    if (gIsEmbedded)
    {
        gIsInRTZMode = IsInRTZMode();
    }

    // Check tininess detection
    IsTininessDetectedBeforeRounding();

    cl_platform_id platform;
    int err = clGetPlatformIDs(1, &platform, NULL);
    if (err)
    {
        print_error(err, "clGetPlatformIDs failed");
        return TEST_FAIL;
    }

    char c[1024];
    static const char *no_yes[] = { "NO", "YES" };
    vlog("\nCompute Device info:\n");
    clGetPlatformInfo(platform, CL_PLATFORM_VERSION, sizeof(c), &c, NULL);
    vlog("\tPlatform Version: %s\n", c);
    clGetDeviceInfo(gDevice, CL_DEVICE_NAME, sizeof(c), &c, NULL);
    vlog("\tDevice Name: %s\n", c);
    clGetDeviceInfo(gDevice, CL_DEVICE_VENDOR, sizeof(c), &c, NULL);
    vlog("\tVendor: %s\n", c);
    clGetDeviceInfo(gDevice, CL_DEVICE_VERSION, sizeof(c), &c, NULL);
    vlog("\tDevice Version: %s\n", c);
    clGetDeviceInfo(gDevice, CL_DEVICE_OPENCL_C_VERSION, sizeof(c), &c, NULL);
    vlog("\tCL C Version: %s\n", c);
    clGetDeviceInfo(gDevice, CL_DRIVER_VERSION, sizeof(c), &c, NULL);
    vlog("\tDriver Version: %s\n", c);
    vlog("\tDevice Frequency: %d MHz\n", deviceFrequency);
    vlog("\tSubnormal values supported for floats? %s\n",
         no_yes[0 != (CL_FP_DENORM & gFloatCapabilities)]);
    vlog("\tCorrectly rounded divide and sqrt supported for floats? %s\n",
         no_yes[0
                != (CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT & gFloatCapabilities)]);
    if (gToggleCorrectlyRoundedDivideSqrt)
    {
        gFloatCapabilities ^= CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT;
    }
    vlog("\tTesting with correctly rounded float divide and sqrt? %s\n",
         no_yes[0
                != (CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT & gFloatCapabilities)]);
    vlog("\tTesting with FTZ mode ON for floats? %s\n",
         no_yes[0 != gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities)]);
    vlog("\tTesting single precision? %s\n", no_yes[0 != gTestFloat]);
    vlog("\tTesting fast relaxed math? %s\n", no_yes[0 != gTestFastRelaxed]);
    if (gTestFastRelaxed)
    {
        vlog("\tFast relaxed math has derived implementations? %s\n",
             no_yes[0 != gFastRelaxedDerived]);
    }
    vlog("\tTesting double precision? %s\n", no_yes[0 != gHasDouble]);
    if (sizeof(long double) == sizeof(double) && gHasDouble)
    {
        vlog("\n\t\tWARNING: Host system long double does not have better "
             "precision than double!\n");
        vlog("\t\t         All double results that do not match the reference "
             "result have their reported\n");
        vlog("\t\t         error inflated by 0.5 ulps to account for the fact "
             "that this system\n");
        vlog("\t\t         can not accurately represent the right result to an "
             "accuracy closer\n");
        vlog("\t\t         than half an ulp. See comments in "
             "Bruteforce_Ulp_Error_Double() for more details.\n\n");
    }

    vlog("\tIs Embedded? %s\n", no_yes[0 != gIsEmbedded]);
    if (gIsEmbedded)
        vlog("\tRunning in RTZ mode? %s\n", no_yes[0 != gIsInRTZMode]);
    vlog("\tTininess is detected before rounding? %s\n",
         no_yes[0 != gCheckTininessBeforeRounding]);
    vlog("\tWorker threads: %d\n", GetThreadCount());
    vlog("\tTesting vector sizes:");
    for (i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
        vlog("\t%d", sizeValues[i]);

    vlog("\n");
    vlog("\tVerbose? %s\n", no_yes[0 != gVerboseBruteForce]);
    vlog("\n\n");

    // Check to see if we are using single threaded mode on other than a 1.0
    // device
    if (getenv("CL_TEST_SINGLE_THREADED"))
    {

        char device_version[1024] = { 0 };
        clGetDeviceInfo(gDevice, CL_DEVICE_VERSION, sizeof(device_version),
                        device_version, NULL);

        if (strcmp("OpenCL 1.0 ", device_version))
        {
            vlog("ERROR: CL_TEST_SINGLE_THREADED is set in the environment. "
                 "Running single threaded.\n");
        }
    }

    return TEST_PASS;
}

static void ReleaseCL(void)
{
    uint32_t i;
    clReleaseMemObject(gInBuffer);
    clReleaseMemObject(gInBuffer2);
    clReleaseMemObject(gInBuffer3);
    for (i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
    {
        clReleaseMemObject(gOutBuffer[i]);
        clReleaseMemObject(gOutBuffer2[i]);
    }
    clReleaseCommandQueue(gQueue);
    clReleaseContext(gContext);

    align_free(gIn);
    align_free(gIn2);
    align_free(gIn3);
    align_free(gOut_Ref);
    align_free(gOut_Ref2);

    for (i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
    {
        align_free(gOut[i]);
        align_free(gOut2[i]);
    }
}

void _LogBuildError(cl_program p, int line, const char *file)
{
    char the_log[2048] = "";

    vlog_error("%s:%d: Build Log:\n", file, line);
    if (0
        == clGetProgramBuildInfo(p, gDevice, CL_PROGRAM_BUILD_LOG,
                                 sizeof(the_log), the_log, NULL))
        vlog_error("%s", the_log);
    else
        vlog_error("*** Error getting build log for program %p\n", p);
}

int InitILogbConstants(void)
{
    int error;
    const char *kernelSource =
        R"(__kernel void GetILogBConstants( __global int *out )
        {
            out[0] = FP_ILOGB0;
            out[1] = FP_ILOGBNAN;
        })";

    clProgramWrapper query;
    clKernelWrapper kernel;
    error = create_single_kernel_helper(gContext, &query, &kernel, 1,
                                        &kernelSource, "GetILogBConstants");
    if (error != CL_SUCCESS)
    {
        vlog_error("Error: Unable to create kernel to get FP_ILOGB0 and "
                   "FP_ILOGBNAN for the device. (%d)",
                   error);
        return error;
    }

    if ((error =
             clSetKernelArg(kernel, 0, sizeof(gOutBuffer[gMinVectorSizeIndex]),
                            &gOutBuffer[gMinVectorSizeIndex])))
    {
        vlog_error("Error: Unable to set kernel arg to get FP_ILOGB0 and "
                   "FP_ILOGBNAN for the device. Err = %d",
                   error);
        return error;
    }

    size_t dim = 1;
    if ((error = clEnqueueNDRangeKernel(gQueue, kernel, 1, NULL, &dim, NULL, 0,
                                        NULL, NULL)))
    {
        vlog_error("Error: Unable to execute kernel to get FP_ILOGB0 and "
                   "FP_ILOGBNAN for the device. Err = %d",
                   error);
        return error;
    }

    struct
    {
        cl_int ilogb0, ilogbnan;
    } data;
    if ((error = clEnqueueReadBuffer(gQueue, gOutBuffer[gMinVectorSizeIndex],
                                     CL_TRUE, 0, sizeof(data), &data, 0, NULL,
                                     NULL)))
    {
        vlog_error("Error: unable to read FP_ILOGB0 and FP_ILOGBNAN from the "
                   "device. Err = %d",
                   error);
        return error;
    }

    gDeviceILogb0 = data.ilogb0;
    gDeviceILogbNaN = data.ilogbnan;

    return 0;
}

int IsTininessDetectedBeforeRounding(void)
{
    int error;
    const char *kernelSource =
        R"(__kernel void IsTininessDetectedBeforeRounding( __global float *out )
        {
           volatile float a = 0x1.000002p-126f;
           volatile float b = 0x1.fffffcp-1f;
           out[0] = a * b; // product is 0x1.fffffffffff8p-127
        })";

    clProgramWrapper query;
    clKernelWrapper kernel;
    error =
        create_single_kernel_helper(gContext, &query, &kernel, 1, &kernelSource,
                                    "IsTininessDetectedBeforeRounding");
    if (error != CL_SUCCESS)
    {
        vlog_error("Error: Unable to create kernel to detect how tininess is "
                   "detected for the device. (%d)",
                   error);
        return error;
    }

    if ((error =
             clSetKernelArg(kernel, 0, sizeof(gOutBuffer[gMinVectorSizeIndex]),
                            &gOutBuffer[gMinVectorSizeIndex])))
    {
        vlog_error("Error: Unable to set kernel arg to detect how tininess is "
                   "detected  for the device. Err = %d",
                   error);
        return error;
    }

    size_t dim = 1;
    if ((error = clEnqueueNDRangeKernel(gQueue, kernel, 1, NULL, &dim, NULL, 0,
                                        NULL, NULL)))
    {
        vlog_error("Error: Unable to execute kernel to detect how tininess is "
                   "detected  for the device. Err = %d",
                   error);
        return error;
    }

    struct
    {
        cl_uint f;
    } data;
    if ((error = clEnqueueReadBuffer(gQueue, gOutBuffer[gMinVectorSizeIndex],
                                     CL_TRUE, 0, sizeof(data), &data, 0, NULL,
                                     NULL)))
    {
        vlog_error("Error: unable to read result from tininess test from the "
                   "device. Err = %d",
                   error);
        return error;
    }

    gCheckTininessBeforeRounding = 0 == (data.f & 0x7fffffff);

    return 0;
}

static int IsInRTZMode(void)
{
    int error;
    const char *kernelSource =
        R"(__kernel void GetRoundingMode( __global int *out )
        {
            volatile float a = 0x1.0p23f;
            volatile float b = -0x1.0p23f;
            out[0] = (a + 0x1.fffffep-1f == a) && (b - 0x1.fffffep-1f == b);
        })";

    clProgramWrapper query;
    clKernelWrapper kernel;
    error = create_single_kernel_helper(gContext, &query, &kernel, 1,
                                        &kernelSource, "GetRoundingMode");
    if (error != CL_SUCCESS)
    {
        vlog_error("Error: Unable to create kernel to detect RTZ mode for the "
                   "device. (%d)",
                   error);
        return error;
    }

    if ((error =
             clSetKernelArg(kernel, 0, sizeof(gOutBuffer[gMinVectorSizeIndex]),
                            &gOutBuffer[gMinVectorSizeIndex])))
    {
        vlog_error("Error: Unable to set kernel arg to detect RTZ mode for the "
                   "device. Err = %d",
                   error);
        return error;
    }

    size_t dim = 1;
    if ((error = clEnqueueNDRangeKernel(gQueue, kernel, 1, NULL, &dim, NULL, 0,
                                        NULL, NULL)))
    {
        vlog_error("Error: Unable to execute kernel to detect RTZ mode for the "
                   "device. Err = %d",
                   error);
        return error;
    }

    struct
    {
        cl_int isRTZ;
    } data;
    if ((error = clEnqueueReadBuffer(gQueue, gOutBuffer[gMinVectorSizeIndex],
                                     CL_TRUE, 0, sizeof(data), &data, 0, NULL,
                                     NULL)))
    {
        vlog_error(
            "Error: unable to read RTZ mode data from the device. Err = %d",
            error);
        return error;
    }

    return data.isRTZ;
}

#pragma mark -

const char *sizeNames[VECTOR_SIZE_COUNT] = { "", "2", "3", "4", "8", "16" };
const int sizeValues[VECTOR_SIZE_COUNT] = { 1, 2, 3, 4, 8, 16 };

// TODO: There is another version of Ulp_Error_Double defined in
// test_common/harness/errorHelpers.c
float Bruteforce_Ulp_Error_Double(double test, long double reference)
{
    // Check for Non-power-of-two and NaN

    // Note: This function presumes that someone has already tested whether the
    // result is correctly, rounded before calling this function.  That test:
    //
    //    if( (float) reference == test )
    //        return 0.0f;
    //
    // would ensure that cases like fabs(reference) > FLT_MAX are weeded out
    // before we get here. Otherwise, we'll return inf ulp error here, for what
    // are otherwise correctly rounded results.

    // Deal with long double = double
    // On most systems long double is a higher precision type than double. They
    // provide either a 80-bit or greater floating point type, or they provide a
    // head-tail double double format. That is sufficient to represent the
    // accuracy of a floating point result to many more bits than double and we
    // can calculate sub-ulp errors. This is the standard system for which this
    // test suite is designed.
    //
    // On some systems double and long double are the same thing. Then we run
    // into a problem, because our representation of the infinitely precise
    // result (passed in as reference above) can be off by as much as a half
    // double precision ulp itself.  In this case, we inflate the reported error
    // by half an ulp to take this into account.  A more correct and permanent
    // fix would be to undertake refactoring the reference code to return
    // results in this format:
    //
    //    typedef struct DoubleReference
    //    { // true value = correctlyRoundedResult + ulps *
    //    ulp(correctlyRoundedResult)        (infinitely precise)
    //        double  correctlyRoundedResult;     // as best we can
    //        double  ulps;                       // plus a fractional amount to
    //        account for the difference
    //    }DoubleReference;                       //     between infinitely
    //    precise result and correctlyRoundedResult, in units of ulps.
    //
    // This would provide a useful higher-than-double precision format for
    // everyone that we can use, and would solve a few problems with
    // representing absolute errors below DBL_MIN and over DBL_MAX for systems
    // that use a head to tail double double for long double.

    int x;
    long double testVal = test;

    // First, handle special reference values
    if (isinf(reference))
    {
        if (reference == testVal) return 0.0f;

        return INFINITY;
    }

    if (isnan(reference))
    {
        if (isnan(testVal)) return 0.0f;

        return INFINITY;
    }

    if (0.0L != reference && 0.5L != frexpl(reference, &x))
    { // Non-zero and Non-power of two

        // allow correctly rounded results to pass through unmolested. (We might
        // add error to it below.) There is something of a performance
        // optimization here.
        if (testVal == reference) return 0.0f;

        // The unbiased exponent of the ulp unit place
        int ulp_exp =
            DBL_MANT_DIG - 1 - std::max(ilogbl(reference), DBL_MIN_EXP - 1);

        // Scale the exponent of the error
        float result = (float)scalbnl(testVal - reference, ulp_exp);

        // account for rounding error in reference result on systems that do not
        // have a higher precision floating point type (see above)
        if (sizeof(long double) == sizeof(double))
            result += copysignf(0.5f, result);

        return result;
    }

    // reference is a normal power of two or a zero
    // The unbiased exponent of the ulp unit place
    int ulp_exp =
        DBL_MANT_DIG - 1 - std::max(ilogbl(reference) - 1, DBL_MIN_EXP - 1);

    // allow correctly rounded results to pass through unmolested. (We might add
    // error to it below.) There is something of a performance optimization here
    // too.
    if (testVal == reference) return 0.0f;

    // Scale the exponent of the error
    float result = (float)scalbnl(testVal - reference, ulp_exp);

    // account for rounding error in reference result on systems that do not
    // have a higher precision floating point type (see above)
    if (sizeof(long double) == sizeof(double))
        result += copysignf(0.5f, result);

    return result;
}

float Abs_Error(float test, double reference)
{
    if (isnan(test) && isnan(reference)) return 0.0f;
    return fabs((float)(reference - (double)test));
}

cl_uint RoundUpToNextPowerOfTwo(cl_uint x)
{
    if (0 == (x & (x - 1))) return x;

    while (x & (x - 1)) x &= x - 1;

    return x + x;
}