summaryrefslogtreecommitdiff
path: root/vm/alloc/CardTable.cpp
blob: 333b9f9197a96d2eff483efca6bee82d1358150f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <sys/mman.h>  /* for PROT_* */

#include "Dalvik.h"
#include "alloc/HeapBitmap.h"
#include "alloc/HeapBitmapInlines.h"
#include "alloc/HeapSource.h"
#include "alloc/Visit.h"

/*
 * Maintain a card table from the the write barrier. All writes of
 * non-NULL values to heap addresses should go through an entry in
 * WriteBarrier, and from there to here.
 *
 * The heap is divided into "cards" of GC_CARD_SIZE bytes, as
 * determined by GC_CARD_SHIFT. The card table contains one byte of
 * data per card, to be used by the GC. The value of the byte will be
 * one of GC_CARD_CLEAN or GC_CARD_DIRTY.
 *
 * After any store of a non-NULL object pointer into a heap object,
 * code is obliged to mark the card dirty. The setters in
 * ObjectInlines.h [such as dvmSetFieldObject] do this for you. The
 * JIT and fast interpreters also contain code to mark cards as dirty.
 *
 * The card table's base [the "biased card table"] gets set to a
 * rather strange value.  In order to keep the JIT from having to
 * fabricate or load GC_DIRTY_CARD to store into the card table,
 * biased base is within the mmap allocation at a point where it's low
 * byte is equal to GC_DIRTY_CARD. See dvmCardTableStartup for details.
 */

/*
 * Initializes the card table; must be called before any other
 * dvmCardTable*() functions.
 */
bool dvmCardTableStartup(size_t heapMaximumSize, size_t growthLimit)
{
    size_t length;
    void *allocBase;
    u1 *biasedBase;
    GcHeap *gcHeap = gDvm.gcHeap;
    void *heapBase = dvmHeapSourceGetBase();
    assert(gcHeap != NULL);
    assert(heapBase != NULL);

    /* Set up the card table */
    length = heapMaximumSize / GC_CARD_SIZE;
    /* Allocate an extra 256 bytes to allow fixed low-byte of base */
    allocBase = dvmAllocRegion(length + 0x100, PROT_READ | PROT_WRITE,
                            "dalvik-card-table");
    if (allocBase == NULL) {
        return false;
    }
    gcHeap->cardTableBase = (u1*)allocBase;
    gcHeap->cardTableLength = growthLimit / GC_CARD_SIZE;
    gcHeap->cardTableMaxLength = length;
    gcHeap->cardTableOffset = 0;
    /* All zeros is the correct initial value; all clean. */
    assert(GC_CARD_CLEAN == 0);

    biasedBase = (u1 *)((uintptr_t)allocBase -
                        ((uintptr_t)heapBase >> GC_CARD_SHIFT));
    if (((uintptr_t)biasedBase & 0xff) != GC_CARD_DIRTY) {
        int offset = GC_CARD_DIRTY - ((uintptr_t)biasedBase & 0xff);
        gcHeap->cardTableOffset = offset + (offset < 0 ? 0x100 : 0);
        biasedBase += gcHeap->cardTableOffset;
    }
    assert(((uintptr_t)biasedBase & 0xff) == GC_CARD_DIRTY);
    gDvm.biasedCardTableBase = biasedBase;

    return true;
}

/*
 * Tears down the entire CardTable.
 */
void dvmCardTableShutdown()
{
    gDvm.biasedCardTableBase = NULL;
    munmap(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength);
}

void dvmClearCardTable()
{
    /*
     * The goal is to zero out some mmap-allocated pages.  We can accomplish
     * this with memset() or madvise(MADV_DONTNEED).  The latter has some
     * useful properties, notably that the pages are returned to the system,
     * so cards for parts of the heap we haven't expanded into won't be
     * allocated physical pages.  On the other hand, if we un-map the card
     * area, we'll have to fault it back in as we resume dirtying objects,
     * which reduces performance.
     *
     * We don't cause any correctness issues by failing to clear cards; we
     * just take a performance hit during the second pause of the concurrent
     * collection.  The "advisory" nature of madvise() isn't a big problem.
     *
     * What we really want to do is:
     * (1) zero out all cards that were touched
     * (2) use madvise() to release any pages that won't be used in the near
     *     future
     *
     * For #1, we don't really know which cards were touched, but we can
     * approximate it with the "live bits max" value, which tells us the
     * highest start address at which an object was allocated.  This may
     * leave vestigial nonzero entries at the end if temporary objects are
     * created during a concurrent GC, but that should be harmless.  (We
     * can round up to the end of the card table page to reduce this.)
     *
     * For #2, we don't know which pages will be used in the future.  Some
     * simple experiments suggested that a "typical" app will touch about
     * 60KB of pages while initializing, but drops down to 20-24KB while
     * idle.  We can save a few hundred KB system-wide with aggressive
     * use of madvise().  The cost of mapping those pages back in is paid
     * outside of the GC pause, which reduces the impact.  (We might be
     * able to get the benefits by only doing this occasionally, e.g. if
     * the heap shrinks a lot or we somehow notice that we've been idle.)
     *
     * Note that cardTableLength is initially set to the growth limit, and
     * on request will be expanded to the heap maximum.
     */
    assert(gDvm.gcHeap->cardTableBase != NULL);

#if 1
    // zero out cards with memset(), using liveBits as an estimate
    const HeapBitmap* liveBits = dvmHeapSourceGetLiveBits();
    size_t maxLiveCard = (liveBits->max - liveBits->base) / GC_CARD_SIZE;
    maxLiveCard = ALIGN_UP_TO_PAGE_SIZE(maxLiveCard);
    if (maxLiveCard > gDvm.gcHeap->cardTableLength) {
        maxLiveCard = gDvm.gcHeap->cardTableLength;
    }

    memset(gDvm.gcHeap->cardTableBase, GC_CARD_CLEAN, maxLiveCard);
#else
    // zero out cards with madvise(), discarding all pages in the card table
    madvise(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength,
        MADV_DONTNEED);
#endif
}

/*
 * Returns true iff the address is within the bounds of the card table.
 */
bool dvmIsValidCard(const u1 *cardAddr)
{
    GcHeap *h = gDvm.gcHeap;
    u1* begin = h->cardTableBase + h->cardTableOffset;
    u1* end = &begin[h->cardTableLength];
    return cardAddr >= begin && cardAddr < end;
}

/*
 * Returns the address of the relevent byte in the card table, given
 * an address on the heap.
 */
u1 *dvmCardFromAddr(const void *addr)
{
    u1 *biasedBase = gDvm.biasedCardTableBase;
    u1 *cardAddr = biasedBase + ((uintptr_t)addr >> GC_CARD_SHIFT);
    assert(dvmIsValidCard(cardAddr));
    return cardAddr;
}

/*
 * Returns the first address in the heap which maps to this card.
 */
void *dvmAddrFromCard(const u1 *cardAddr)
{
    assert(dvmIsValidCard(cardAddr));
    uintptr_t offset = cardAddr - gDvm.biasedCardTableBase;
    return (void *)(offset << GC_CARD_SHIFT);
}

/*
 * Dirties the card for the given address.
 */
void dvmMarkCard(const void *addr)
{
    u1 *cardAddr = dvmCardFromAddr(addr);
    *cardAddr = GC_CARD_DIRTY;
}

/*
 * Returns true if the object is on a dirty card.
 */
static bool isObjectDirty(const Object *obj)
{
    assert(obj != NULL);
    assert(dvmIsValidObject(obj));
    u1 *card = dvmCardFromAddr(obj);
    return *card == GC_CARD_DIRTY;
}

/*
 * Context structure for verifying the card table.
 */
struct WhiteReferenceCounter {
    HeapBitmap *markBits;
    size_t whiteRefs;
};

/*
 * Visitor that counts white referents.
 */
static void countWhiteReferenceVisitor(void *addr, void *arg)
{
    WhiteReferenceCounter *ctx;
    Object *obj;

    assert(addr != NULL);
    assert(arg != NULL);
    obj = *(Object **)addr;
    if (obj == NULL) {
        return;
    }
    assert(dvmIsValidObject(obj));
    ctx = (WhiteReferenceCounter *)arg;
    if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
        return;
    }
    ctx->whiteRefs += 1;
}

/*
 * Visitor that logs white references.
 */
static void dumpWhiteReferenceVisitor(void *addr, void *arg)
{
    WhiteReferenceCounter *ctx;
    Object *obj;

    assert(addr != NULL);
    assert(arg != NULL);
    obj = *(Object **)addr;
    if (obj == NULL) {
        return;
    }
    assert(dvmIsValidObject(obj));
    ctx = (WhiteReferenceCounter*)arg;
    if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
        return;
    }
    LOGE("object %p is white", obj);
}

/*
 * Visitor that signals the caller when a matching reference is found.
 */
static void dumpReferencesVisitor(void *pObj, void *arg)
{
    Object *obj = *(Object **)pObj;
    Object *lookingFor = *(Object **)arg;
    if (lookingFor != NULL && lookingFor == obj) {
        *(Object **)arg = NULL;
    }
}

static void dumpReferencesCallback(Object *obj, void *arg)
{
    if (obj == (Object *)arg) {
        return;
    }
    dvmVisitObject(dumpReferencesVisitor, obj, &arg);
    if (arg == NULL) {
        LOGD("Found %p in the heap @ %p", arg, obj);
        dvmDumpObject(obj);
    }
}

/*
 * Root visitor that looks for matching references.
 */
static void dumpReferencesRootVisitor(void *ptr, u4 threadId,
                                      RootType type, void *arg)
{
    Object *obj = *(Object **)ptr;
    Object *lookingFor = *(Object **)arg;
    if (obj == lookingFor) {
        LOGD("Found %p in a root @ %p", arg, ptr);
    }
}

/*
 * Invokes visitors to search for references to an object.
 */
static void dumpReferences(const Object *obj)
{
    HeapBitmap *bitmap = dvmHeapSourceGetLiveBits();
    void *arg = (void *)obj;
    dvmVisitRoots(dumpReferencesRootVisitor, arg);
    dvmHeapBitmapWalk(bitmap, dumpReferencesCallback, arg);
}

/*
 * Returns true if the given object is a reference object and the
 * just the referent is unmarked.
 */
static bool isReferentUnmarked(const Object *obj,
                               const WhiteReferenceCounter* ctx)
{
    assert(obj != NULL);
    assert(obj->clazz != NULL);
    assert(ctx != NULL);
    if (ctx->whiteRefs != 1) {
        return false;
    } else if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISREFERENCE)) {
        size_t offset = gDvm.offJavaLangRefReference_referent;
        const Object *referent = dvmGetFieldObject(obj, offset);
        return !dvmHeapBitmapIsObjectBitSet(ctx->markBits, referent);
    } else {
        return false;
    }
}

/*
 * Returns true if the given object is a string and has been interned
 * by the user.
 */
static bool isWeakInternedString(const Object *obj)
{
    assert(obj != NULL);
    if (obj->clazz == gDvm.classJavaLangString) {
        return dvmIsWeakInternedString((StringObject *)obj);
    } else {
        return false;
    }
}

/*
 * Returns true if the given object has been pushed on the mark stack
 * by root marking.
 */
static bool isPushedOnMarkStack(const Object *obj)
{
    GcMarkStack *stack = &gDvm.gcHeap->markContext.stack;
    for (const Object **ptr = stack->base; ptr < stack->top; ++ptr) {
        if (*ptr == obj) {
            return true;
        }
    }
    return false;
}

/*
 * Callback applied to marked objects.  If the object is gray and on
 * an unmarked card an error is logged and the VM is aborted.  Card
 * table verification occurs between root marking and weak reference
 * processing.  We treat objects marked from the roots and weak
 * references specially as it is permissible for these objects to be
 * gray and on an unmarked card.
 */
static void verifyCardTableCallback(Object *obj, void *arg)
{
    WhiteReferenceCounter ctx = { (HeapBitmap *)arg, 0 };

    dvmVisitObject(countWhiteReferenceVisitor, obj, &ctx);
    if (ctx.whiteRefs == 0) {
        return;
    } else if (isObjectDirty(obj)) {
        return;
    } else if (isReferentUnmarked(obj, &ctx)) {
        return;
    } else if (isWeakInternedString(obj)) {
        return;
    } else if (isPushedOnMarkStack(obj)) {
        return;
    } else {
        LOGE("Verify failed, object %p is gray and on an unmarked card", obj);
        dvmDumpObject(obj);
        dvmVisitObject(dumpWhiteReferenceVisitor, obj, &ctx);
        dumpReferences(obj);
        dvmAbort();
    }
}

/*
 * Verifies that gray objects are on a dirty card.
 */
void dvmVerifyCardTable()
{
    HeapBitmap *markBits = gDvm.gcHeap->markContext.bitmap;
    dvmHeapBitmapWalk(markBits, verifyCardTableCallback, markBits);
}