aboutsummaryrefslogtreecommitdiff
path: root/linker/linker_phdr.cpp
blob: ef7671ceecf2df49204f135304055bcfed48d6ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
/*
 * Copyright (C) 2012 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "linker_phdr.h"

#include <errno.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

#include "linker.h"
#include "linker_dlwarning.h"
#include "linker_globals.h"
#include "linker_debug.h"
#include "linker_utils.h"

#include "private/bionic_asm_note.h"
#include "private/CFIShadow.h" // For kLibraryAlignment
#include "private/elf_note.h"

static int GetTargetElfMachine() {
#if defined(__arm__)
  return EM_ARM;
#elif defined(__aarch64__)
  return EM_AARCH64;
#elif defined(__i386__)
  return EM_386;
#elif defined(__riscv)
  return EM_RISCV;
#elif defined(__x86_64__)
  return EM_X86_64;
#endif
}

/**
  TECHNICAL NOTE ON ELF LOADING.

  An ELF file's program header table contains one or more PT_LOAD
  segments, which corresponds to portions of the file that need to
  be mapped into the process' address space.

  Each loadable segment has the following important properties:

    p_offset  -> segment file offset
    p_filesz  -> segment file size
    p_memsz   -> segment memory size (always >= p_filesz)
    p_vaddr   -> segment's virtual address
    p_flags   -> segment flags (e.g. readable, writable, executable)
    p_align   -> segment's in-memory and in-file alignment

  We will ignore the p_paddr field of ElfW(Phdr) for now.

  The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
  ranges of virtual addresses. A few rules apply:

  - the virtual address ranges should not overlap.

  - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
    between them should always be initialized to 0.

  - ranges do not necessarily start or end at page boundaries. Two distinct
    segments can have their start and end on the same page. In this case, the
    page inherits the mapping flags of the latter segment.

  Finally, the real load addrs of each segment is not p_vaddr. Instead the
  loader decides where to load the first segment, then will load all others
  relative to the first one to respect the initial range layout.

  For example, consider the following list:

    [ offset:0,      filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
    [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],

  This corresponds to two segments that cover these virtual address ranges:

       0x30000...0x34000
       0x40000...0x48000

  If the loader decides to load the first segment at address 0xa0000000
  then the segments' load address ranges will be:

       0xa0030000...0xa0034000
       0xa0040000...0xa0048000

  In other words, all segments must be loaded at an address that has the same
  constant offset from their p_vaddr value. This offset is computed as the
  difference between the first segment's load address, and its p_vaddr value.

  However, in practice, segments do _not_ start at page boundaries. Since we
  can only memory-map at page boundaries, this means that the bias is
  computed as:

       load_bias = phdr0_load_address - page_start(phdr0->p_vaddr)

  (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
          possible wrap around UINT32_MAX for possible large p_vaddr values).

  And that the phdr0_load_address must start at a page boundary, with
  the segment's real content starting at:

       phdr0_load_address + page_offset(phdr0->p_vaddr)

  Note that ELF requires the following condition to make the mmap()-ing work:

      page_offset(phdr0->p_vaddr) == page_offset(phdr0->p_offset)

  The load_bias must be added to any p_vaddr value read from the ELF file to
  determine the corresponding memory address.

 **/

#define MAYBE_MAP_FLAG(x, from, to)  (((x) & (from)) ? (to) : 0)
#define PFLAGS_TO_PROT(x)            (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
                                      MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
                                      MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))

static const size_t kPageSize = page_size();

/*
 * Generic PMD size calculation:
 *    - Each page table (PT) is of size 1 page.
 *    - Each page table entry (PTE) is of size 64 bits.
 *    - Each PTE locates one physical page frame (PFN) of size 1 page.
 *    - A PMD entry locates 1 page table (PT)
 *
 *   PMD size = Num entries in a PT * page_size
 */
static const size_t kPmdSize = (kPageSize / sizeof(uint64_t)) * kPageSize;

ElfReader::ElfReader()
    : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0),
      phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr),
      strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr),
      mapped_by_caller_(false) {
}

bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) {
  if (did_read_) {
    return true;
  }
  name_ = name;
  fd_ = fd;
  file_offset_ = file_offset;
  file_size_ = file_size;

  if (ReadElfHeader() &&
      VerifyElfHeader() &&
      ReadProgramHeaders() &&
      ReadSectionHeaders() &&
      ReadDynamicSection() &&
      ReadPadSegmentNote()) {
    did_read_ = true;
  }

  return did_read_;
}

bool ElfReader::Load(address_space_params* address_space) {
  CHECK(did_read_);
  if (did_load_) {
    return true;
  }
  bool reserveSuccess = ReserveAddressSpace(address_space);
  if (reserveSuccess && LoadSegments() && FindPhdr() &&
      FindGnuPropertySection()) {
    did_load_ = true;
#if defined(__aarch64__)
    // For Armv8.5-A loaded executable segments may require PROT_BTI.
    if (note_gnu_property_.IsBTICompatible()) {
      did_load_ = (phdr_table_protect_segments(phdr_table_, phdr_num_, load_bias_,
                                               should_pad_segments_, &note_gnu_property_) == 0);
    }
#endif
  }
  if (reserveSuccess && !did_load_) {
    if (load_start_ != nullptr && load_size_ != 0) {
      if (!mapped_by_caller_) {
        munmap(load_start_, load_size_);
      }
    }
  }

  return did_load_;
}

const char* ElfReader::get_string(ElfW(Word) index) const {
  CHECK(strtab_ != nullptr);
  CHECK(index < strtab_size_);

  return strtab_ + index;
}

bool ElfReader::ReadElfHeader() {
  ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_));
  if (rc < 0) {
    DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno));
    return false;
  }

  if (rc != sizeof(header_)) {
    DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(),
           static_cast<size_t>(rc));
    return false;
  }
  return true;
}

static const char* EM_to_string(int em) {
  if (em == EM_386) return "EM_386";
  if (em == EM_AARCH64) return "EM_AARCH64";
  if (em == EM_ARM) return "EM_ARM";
  if (em == EM_RISCV) return "EM_RISCV";
  if (em == EM_X86_64) return "EM_X86_64";
  return "EM_???";
}

bool ElfReader::VerifyElfHeader() {
  if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
    DL_ERR("\"%s\" has bad ELF magic: %02x%02x%02x%02x", name_.c_str(),
           header_.e_ident[0], header_.e_ident[1], header_.e_ident[2], header_.e_ident[3]);
    return false;
  }

  // Try to give a clear diagnostic for ELF class mismatches, since they're
  // an easy mistake to make during the 32-bit/64-bit transition period.
  int elf_class = header_.e_ident[EI_CLASS];
#if defined(__LP64__)
  if (elf_class != ELFCLASS64) {
    if (elf_class == ELFCLASS32) {
      DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str());
    } else {
      DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
    }
    return false;
  }
#else
  if (elf_class != ELFCLASS32) {
    if (elf_class == ELFCLASS64) {
      DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str());
    } else {
      DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
    }
    return false;
  }
#endif

  if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
    DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]);
    return false;
  }

  if (header_.e_type != ET_DYN) {
    DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type);
    return false;
  }

  if (header_.e_version != EV_CURRENT) {
    DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version);
    return false;
  }

  if (header_.e_machine != GetTargetElfMachine()) {
    DL_ERR("\"%s\" is for %s (%d) instead of %s (%d)",
           name_.c_str(),
           EM_to_string(header_.e_machine), header_.e_machine,
           EM_to_string(GetTargetElfMachine()), GetTargetElfMachine());
    return false;
  }

  if (header_.e_shentsize != sizeof(ElfW(Shdr))) {
    // Fail if app is targeting Android O or above
    if (get_application_target_sdk_version() >= 26) {
      DL_ERR_AND_LOG("\"%s\" has unsupported e_shentsize: 0x%x (expected 0x%zx)",
                     name_.c_str(), header_.e_shentsize, sizeof(ElfW(Shdr)));
      return false;
    }
    DL_WARN_documented_change(26,
                              "invalid-elf-header_section-headers-enforced-for-api-level-26",
                              "\"%s\" has unsupported e_shentsize 0x%x (expected 0x%zx)",
                              name_.c_str(), header_.e_shentsize, sizeof(ElfW(Shdr)));
    add_dlwarning(name_.c_str(), "has invalid ELF header");
  }

  if (header_.e_shstrndx == 0) {
    // Fail if app is targeting Android O or above
    if (get_application_target_sdk_version() >= 26) {
      DL_ERR_AND_LOG("\"%s\" has invalid e_shstrndx", name_.c_str());
      return false;
    }

    DL_WARN_documented_change(26,
                              "invalid-elf-header_section-headers-enforced-for-api-level-26",
                              "\"%s\" has invalid e_shstrndx", name_.c_str());
    add_dlwarning(name_.c_str(), "has invalid ELF header");
  }

  return true;
}

bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size, size_t alignment) {
  off64_t range_start;
  off64_t range_end;

  // Only header can be located at the 0 offset... This function called to
  // check DYNSYM and DYNAMIC sections and phdr/shdr - none of them can be
  // at offset 0.

  return offset > 0 &&
         safe_add(&range_start, file_offset_, offset) &&
         safe_add(&range_end, range_start, size) &&
         (range_start < file_size_) &&
         (range_end <= file_size_) &&
         ((offset % alignment) == 0);
}

// Loads the program header table from an ELF file into a read-only private
// anonymous mmap-ed block.
bool ElfReader::ReadProgramHeaders() {
  phdr_num_ = header_.e_phnum;

  // Like the kernel, we only accept program header tables that
  // are smaller than 64KiB.
  if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
    DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_);
    return false;
  }

  // Boundary checks
  size_t size = phdr_num_ * sizeof(ElfW(Phdr));
  if (!CheckFileRange(header_.e_phoff, size, alignof(ElfW(Phdr)))) {
    DL_ERR_AND_LOG("\"%s\" has invalid phdr offset/size: %zu/%zu",
                   name_.c_str(),
                   static_cast<size_t>(header_.e_phoff),
                   size);
    return false;
  }

  if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) {
    DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno));
    return false;
  }

  phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data());
  return true;
}

bool ElfReader::ReadSectionHeaders() {
  shdr_num_ = header_.e_shnum;

  if (shdr_num_ == 0) {
    DL_ERR_AND_LOG("\"%s\" has no section headers", name_.c_str());
    return false;
  }

  size_t size = shdr_num_ * sizeof(ElfW(Shdr));
  if (!CheckFileRange(header_.e_shoff, size, alignof(const ElfW(Shdr)))) {
    DL_ERR_AND_LOG("\"%s\" has invalid shdr offset/size: %zu/%zu",
                   name_.c_str(),
                   static_cast<size_t>(header_.e_shoff),
                   size);
    return false;
  }

  if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) {
    DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno));
    return false;
  }

  shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data());
  return true;
}

bool ElfReader::ReadDynamicSection() {
  // 1. Find .dynamic section (in section headers)
  const ElfW(Shdr)* dynamic_shdr = nullptr;
  for (size_t i = 0; i < shdr_num_; ++i) {
    if (shdr_table_[i].sh_type == SHT_DYNAMIC) {
      dynamic_shdr = &shdr_table_ [i];
      break;
    }
  }

  if (dynamic_shdr == nullptr) {
    DL_ERR_AND_LOG("\"%s\" .dynamic section header was not found", name_.c_str());
    return false;
  }

  // Make sure dynamic_shdr offset and size matches PT_DYNAMIC phdr
  size_t pt_dynamic_offset = 0;
  size_t pt_dynamic_filesz = 0;
  for (size_t i = 0; i < phdr_num_; ++i) {
    const ElfW(Phdr)* phdr = &phdr_table_[i];
    if (phdr->p_type == PT_DYNAMIC) {
      pt_dynamic_offset = phdr->p_offset;
      pt_dynamic_filesz = phdr->p_filesz;
    }
  }

  if (pt_dynamic_offset != dynamic_shdr->sh_offset) {
    if (get_application_target_sdk_version() >= 26) {
      DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid offset: 0x%zx, "
                     "expected to match PT_DYNAMIC offset: 0x%zx",
                     name_.c_str(),
                     static_cast<size_t>(dynamic_shdr->sh_offset),
                     pt_dynamic_offset);
      return false;
    }
    DL_WARN_documented_change(26,
                              "invalid-elf-header_section-headers-enforced-for-api-level-26",
                              "\"%s\" .dynamic section has invalid offset: 0x%zx "
                              "(expected to match PT_DYNAMIC offset 0x%zx)",
                              name_.c_str(),
                              static_cast<size_t>(dynamic_shdr->sh_offset),
                              pt_dynamic_offset);
    add_dlwarning(name_.c_str(), "invalid .dynamic section");
  }

  if (pt_dynamic_filesz != dynamic_shdr->sh_size) {
    if (get_application_target_sdk_version() >= 26) {
      DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid size: 0x%zx, "
                     "expected to match PT_DYNAMIC filesz: 0x%zx",
                     name_.c_str(),
                     static_cast<size_t>(dynamic_shdr->sh_size),
                     pt_dynamic_filesz);
      return false;
    }
    DL_WARN_documented_change(26,
                              "invalid-elf-header_section-headers-enforced-for-api-level-26",
                              "\"%s\" .dynamic section has invalid size: 0x%zx "
                              "(expected to match PT_DYNAMIC filesz 0x%zx)",
                              name_.c_str(),
                              static_cast<size_t>(dynamic_shdr->sh_size),
                              pt_dynamic_filesz);
    add_dlwarning(name_.c_str(), "invalid .dynamic section");
  }

  if (dynamic_shdr->sh_link >= shdr_num_) {
    DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid sh_link: %d",
                   name_.c_str(),
                   dynamic_shdr->sh_link);
    return false;
  }

  const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link];

  if (strtab_shdr->sh_type != SHT_STRTAB) {
    DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)",
                   name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type);
    return false;
  }

  if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size, alignof(const ElfW(Dyn)))) {
    DL_ERR_AND_LOG("\"%s\" has invalid offset/size of .dynamic section", name_.c_str());
    return false;
  }

  if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) {
    DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno));
    return false;
  }

  dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data());

  if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size, alignof(const char))) {
    DL_ERR_AND_LOG("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section",
                   name_.c_str());
    return false;
  }

  if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) {
    DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno));
    return false;
  }

  strtab_ = static_cast<const char*>(strtab_fragment_.data());
  strtab_size_ = strtab_fragment_.size();
  return true;
}

/* Returns the size of the extent of all the possibly non-contiguous
 * loadable segments in an ELF program header table. This corresponds
 * to the page-aligned size in bytes that needs to be reserved in the
 * process' address space. If there are no loadable segments, 0 is
 * returned.
 *
 * If out_min_vaddr or out_max_vaddr are not null, they will be
 * set to the minimum and maximum addresses of pages to be reserved,
 * or 0 if there is nothing to load.
 */
size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                                ElfW(Addr)* out_min_vaddr,
                                ElfW(Addr)* out_max_vaddr) {
  ElfW(Addr) min_vaddr = UINTPTR_MAX;
  ElfW(Addr) max_vaddr = 0;

  bool found_pt_load = false;
  for (size_t i = 0; i < phdr_count; ++i) {
    const ElfW(Phdr)* phdr = &phdr_table[i];

    if (phdr->p_type != PT_LOAD) {
      continue;
    }
    found_pt_load = true;

    if (phdr->p_vaddr < min_vaddr) {
      min_vaddr = phdr->p_vaddr;
    }

    if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
      max_vaddr = phdr->p_vaddr + phdr->p_memsz;
    }
  }
  if (!found_pt_load) {
    min_vaddr = 0;
  }

  min_vaddr = page_start(min_vaddr);
  max_vaddr = page_end(max_vaddr);

  if (out_min_vaddr != nullptr) {
    *out_min_vaddr = min_vaddr;
  }
  if (out_max_vaddr != nullptr) {
    *out_max_vaddr = max_vaddr;
  }
  return max_vaddr - min_vaddr;
}

// Returns the maximum p_align associated with a loadable segment in the ELF
// program header table. Used to determine whether the file should be loaded at
// a specific virtual address alignment for use with huge pages.
size_t phdr_table_get_maximum_alignment(const ElfW(Phdr)* phdr_table, size_t phdr_count) {
  size_t maximum_alignment = page_size();

  for (size_t i = 0; i < phdr_count; ++i) {
    const ElfW(Phdr)* phdr = &phdr_table[i];

    // p_align must be 0, 1, or a positive, integral power of two.
    if (phdr->p_type != PT_LOAD || ((phdr->p_align & (phdr->p_align - 1)) != 0)) {
      continue;
    }

    if (phdr->p_align > maximum_alignment) {
      maximum_alignment = phdr->p_align;
    }
  }

#if defined(__LP64__)
  return maximum_alignment;
#else
  return page_size();
#endif
}

// Reserve a virtual address range such that if it's limits were extended to the next 2**align
// boundary, it would not overlap with any existing mappings.
static void* ReserveWithAlignmentPadding(size_t size, size_t mapping_align, size_t start_align,
                                         void** out_gap_start, size_t* out_gap_size) {
  int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  // Reserve enough space to properly align the library's start address.
  mapping_align = std::max(mapping_align, start_align);
  if (mapping_align == page_size()) {
    void* mmap_ptr = mmap(nullptr, size, PROT_NONE, mmap_flags, -1, 0);
    if (mmap_ptr == MAP_FAILED) {
      return nullptr;
    }
    return mmap_ptr;
  }

  // Minimum alignment of shared library gap. For efficiency, this should match the second level
  // page size of the platform.
#if defined(__LP64__)
  constexpr size_t kGapAlignment = 1ul << 21;  // 2MB
#else
  constexpr size_t kGapAlignment = 0;
#endif
  // Maximum gap size, in the units of kGapAlignment.
  constexpr size_t kMaxGapUnits = 32;
  // Allocate enough space so that the end of the desired region aligned up is still inside the
  // mapping.
  size_t mmap_size = align_up(size, mapping_align) + mapping_align - page_size();
  uint8_t* mmap_ptr =
      reinterpret_cast<uint8_t*>(mmap(nullptr, mmap_size, PROT_NONE, mmap_flags, -1, 0));
  if (mmap_ptr == MAP_FAILED) {
    return nullptr;
  }
  size_t gap_size = 0;
  size_t first_byte = reinterpret_cast<size_t>(align_up(mmap_ptr, mapping_align));
  size_t last_byte = reinterpret_cast<size_t>(align_down(mmap_ptr + mmap_size, mapping_align) - 1);
  if (kGapAlignment && first_byte / kGapAlignment != last_byte / kGapAlignment) {
    // This library crosses a 2MB boundary and will fragment a new huge page.
    // Lets take advantage of that and insert a random number of inaccessible huge pages before that
    // to improve address randomization and make it harder to locate this library code by probing.
    munmap(mmap_ptr, mmap_size);
    mapping_align = std::max(mapping_align, kGapAlignment);
    gap_size =
        kGapAlignment * (is_first_stage_init() ? 1 : arc4random_uniform(kMaxGapUnits - 1) + 1);
    mmap_size = align_up(size + gap_size, mapping_align) + mapping_align - page_size();
    mmap_ptr = reinterpret_cast<uint8_t*>(mmap(nullptr, mmap_size, PROT_NONE, mmap_flags, -1, 0));
    if (mmap_ptr == MAP_FAILED) {
      return nullptr;
    }
  }

  uint8_t *gap_end, *gap_start;
  if (gap_size) {
    gap_end = align_down(mmap_ptr + mmap_size, kGapAlignment);
    gap_start = gap_end - gap_size;
  } else {
    gap_start = gap_end = mmap_ptr + mmap_size;
  }

  uint8_t* first = align_up(mmap_ptr, mapping_align);
  uint8_t* last = align_down(gap_start, mapping_align) - size;

  // arc4random* is not available in first stage init because /dev/urandom hasn't yet been
  // created. Don't randomize then.
  size_t n = is_first_stage_init() ? 0 : arc4random_uniform((last - first) / start_align + 1);
  uint8_t* start = first + n * start_align;
  // Unmap the extra space around the allocation.
  // Keep it mapped PROT_NONE on 64-bit targets where address space is plentiful to make it harder
  // to defeat ASLR by probing for readable memory mappings.
  munmap(mmap_ptr, start - mmap_ptr);
  munmap(start + size, gap_start - (start + size));
  if (gap_end != mmap_ptr + mmap_size) {
    munmap(gap_end, mmap_ptr + mmap_size - gap_end);
  }
  *out_gap_start = gap_start;
  *out_gap_size = gap_size;
  return start;
}

// Reserve a virtual address range big enough to hold all loadable
// segments of a program header table. This is done by creating a
// private anonymous mmap() with PROT_NONE.
bool ElfReader::ReserveAddressSpace(address_space_params* address_space) {
  ElfW(Addr) min_vaddr;
  load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
  if (load_size_ == 0) {
    DL_ERR("\"%s\" has no loadable segments", name_.c_str());
    return false;
  }

  uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
  void* start;

  if (load_size_ > address_space->reserved_size) {
    if (address_space->must_use_address) {
      DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
             load_size_ - address_space->reserved_size, load_size_, name_.c_str());
      return false;
    }
    size_t start_alignment = page_size();
    if (get_transparent_hugepages_supported() && get_application_target_sdk_version() >= 31) {
      size_t maximum_alignment = phdr_table_get_maximum_alignment(phdr_table_, phdr_num_);
      // Limit alignment to PMD size as other alignments reduce the number of
      // bits available for ASLR for no benefit.
      start_alignment = maximum_alignment == kPmdSize ? kPmdSize : page_size();
    }
    start = ReserveWithAlignmentPadding(load_size_, kLibraryAlignment, start_alignment, &gap_start_,
                                        &gap_size_);
    if (start == nullptr) {
      DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str());
      return false;
    }
  } else {
    start = address_space->start_addr;
    gap_start_ = nullptr;
    gap_size_ = 0;
    mapped_by_caller_ = true;

    // Update the reserved address space to subtract the space used by this library.
    address_space->start_addr = reinterpret_cast<uint8_t*>(address_space->start_addr) + load_size_;
    address_space->reserved_size -= load_size_;
  }

  load_start_ = start;
  load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
  return true;
}

// Find the ELF note of type NT_ANDROID_TYPE_PAD_SEGMENT and check that the desc value is 1.
bool ElfReader::ReadPadSegmentNote() {
  // The ELF can have multiple PT_NOTE's, check them all
  for (size_t i = 0; i < phdr_num_; ++i) {
    const ElfW(Phdr)* phdr = &phdr_table_[i];

    if (phdr->p_type != PT_NOTE) {
      continue;
    }

    // Some obfuscated ELFs may contain "empty" PT_NOTE program headers that don't
    // point to any part of the ELF (p_memsz == 0). Skip these since there is
    // nothing to decode. See: b/324468126
    if (phdr->p_memsz == 0) {
      continue;
    }

    // If the PT_NOTE extends beyond the file. The ELF is doing something
    // strange -- obfuscation, embedding hidden loaders, ...
    //
    // It doesn't contain the pad_segment note. Skip it to avoid SIGBUS
    // by accesses beyond the file.
    off64_t note_end_off = file_offset_ + phdr->p_offset + phdr->p_filesz;
    if (note_end_off > file_size_) {
      continue;
    }

    // note_fragment is scoped to within the loop so that there is
    // at most 1 PT_NOTE mapped at anytime during this search.
    MappedFileFragment note_fragment;
    if (!note_fragment.Map(fd_, file_offset_, phdr->p_offset, phdr->p_memsz)) {
      DL_ERR("\"%s\": PT_NOTE mmap(nullptr, %p, PROT_READ, MAP_PRIVATE, %d, %p) failed: %m",
             name_.c_str(), reinterpret_cast<void*>(phdr->p_memsz), fd_,
             reinterpret_cast<void*>(page_start(file_offset_ + phdr->p_offset)));
      return false;
    }

    const ElfW(Nhdr)* note_hdr = nullptr;
    const char* note_desc = nullptr;
    if (!__get_elf_note(NT_ANDROID_TYPE_PAD_SEGMENT, "Android",
                        reinterpret_cast<ElfW(Addr)>(note_fragment.data()),
                        phdr, &note_hdr, &note_desc)) {
      continue;
    }

    if (note_hdr->n_descsz != sizeof(ElfW(Word))) {
      DL_ERR("\"%s\" NT_ANDROID_TYPE_PAD_SEGMENT note has unexpected n_descsz: %u",
             name_.c_str(), reinterpret_cast<unsigned int>(note_hdr->n_descsz));
      return false;
    }

    // 1 == enabled, 0 == disabled
    should_pad_segments_ = *reinterpret_cast<const ElfW(Word)*>(note_desc) == 1;
    return true;
  }

  return true;
}

static inline void _extend_load_segment_vma(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                                             size_t phdr_idx, ElfW(Addr)* p_memsz,
                                             ElfW(Addr)* p_filesz, bool should_pad_segments) {
  const ElfW(Phdr)* phdr = &phdr_table[phdr_idx];
  const ElfW(Phdr)* next = nullptr;
  size_t next_idx = phdr_idx + 1;

  if (phdr->p_align == kPageSize || !should_pad_segments) {
    return;
  }

  if (next_idx < phdr_count && phdr_table[next_idx].p_type == PT_LOAD) {
    next = &phdr_table[next_idx];
  }

  // If this is the last LOAD segment, no extension is needed
  if (!next || *p_memsz != *p_filesz) {
    return;
  }

  ElfW(Addr) next_start = page_start(next->p_vaddr);
  ElfW(Addr) curr_end = page_end(phdr->p_vaddr + *p_memsz);

  // If adjacent segment mappings overlap, no extension is needed.
  if (curr_end >= next_start) {
    return;
  }

  // Extend the LOAD segment mapping to be contiguous with that of
  // the next LOAD segment.
  ElfW(Addr) extend = next_start - curr_end;
  *p_memsz += extend;
  *p_filesz += extend;
}

bool ElfReader::LoadSegments() {
  for (size_t i = 0; i < phdr_num_; ++i) {
    const ElfW(Phdr)* phdr = &phdr_table_[i];

    if (phdr->p_type != PT_LOAD) {
      continue;
    }

    ElfW(Addr) p_memsz = phdr->p_memsz;
    ElfW(Addr) p_filesz = phdr->p_filesz;
    _extend_load_segment_vma(phdr_table_, phdr_num_, i, &p_memsz, &p_filesz, should_pad_segments_);

    // Segment addresses in memory.
    ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
    ElfW(Addr) seg_end = seg_start + p_memsz;

    ElfW(Addr) seg_page_start = page_start(seg_start);
    ElfW(Addr) seg_page_end = page_end(seg_end);

    ElfW(Addr) seg_file_end = seg_start + p_filesz;

    // File offsets.
    ElfW(Addr) file_start = phdr->p_offset;
    ElfW(Addr) file_end = file_start + p_filesz;

    ElfW(Addr) file_page_start = page_start(file_start);
    ElfW(Addr) file_length = file_end - file_page_start;

    if (file_size_ <= 0) {
      DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_);
      return false;
    }

    if (file_start + phdr->p_filesz > static_cast<size_t>(file_size_)) {
      DL_ERR("invalid ELF file \"%s\" load segment[%zd]:"
          " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")",
          name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset),
          reinterpret_cast<void*>(phdr->p_filesz),
          reinterpret_cast<void*>(file_start + phdr->p_filesz), file_size_);
      return false;
    }

    if (file_length != 0) {
      int prot = PFLAGS_TO_PROT(phdr->p_flags);
      if ((prot & (PROT_EXEC | PROT_WRITE)) == (PROT_EXEC | PROT_WRITE)) {
        // W + E PT_LOAD segments are not allowed in O.
        if (get_application_target_sdk_version() >= 26) {
          DL_ERR_AND_LOG("\"%s\": W+E load segments are not allowed", name_.c_str());
          return false;
        }
        DL_WARN_documented_change(26,
                                  "writable-and-executable-segments-enforced-for-api-level-26",
                                  "\"%s\" has load segments that are both writable and executable",
                                  name_.c_str());
        add_dlwarning(name_.c_str(), "W+E load segments");
      }

      void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start),
                            file_length,
                            prot,
                            MAP_FIXED|MAP_PRIVATE,
                            fd_,
                            file_offset_ + file_page_start);
      if (seg_addr == MAP_FAILED) {
        DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno));
        return false;
      }

      // Mark segments as huge page eligible if they meet the requirements
      // (executable and PMD aligned).
      if ((phdr->p_flags & PF_X) && phdr->p_align == kPmdSize &&
          get_transparent_hugepages_supported()) {
        madvise(seg_addr, file_length, MADV_HUGEPAGE);
      }
    }

    // if the segment is writable, and does not end on a page boundary,
    // zero-fill it until the page limit.
    //
    // Do not attempt to zero the extended region past the first partial page,
    // since doing so may:
    //   1) Result in a SIGBUS, as the region is not backed by the underlying
    //      file.
    //   2) Break the COW backing, faulting in new anon pages for a region
    //      that will not be used.

    // _seg_file_end = unextended seg_file_end
    uint64_t _seg_file_end = seg_start + phdr->p_filesz;
    if ((phdr->p_flags & PF_W) != 0 && page_offset(_seg_file_end) > 0) {
      memset(reinterpret_cast<void*>(_seg_file_end), 0, kPageSize - page_offset(_seg_file_end));
    }

    seg_file_end = page_end(seg_file_end);

    // seg_file_end is now the first page address after the file
    // content. If seg_end is larger, we need to zero anything
    // between them. This is done by using a private anonymous
    // map for all extra pages.
    if (seg_page_end > seg_file_end) {
      size_t zeromap_size = seg_page_end - seg_file_end;
      void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
                           zeromap_size,
                           PFLAGS_TO_PROT(phdr->p_flags),
                           MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
                           -1,
                           0);
      if (zeromap == MAP_FAILED) {
        DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno));
        return false;
      }

      prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss");
    }
  }
  return true;
}

/* Used internally. Used to set the protection bits of all loaded segments
 * with optional extra flags (i.e. really PROT_WRITE). Used by
 * phdr_table_protect_segments and phdr_table_unprotect_segments.
 */
static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                                     ElfW(Addr) load_bias, int extra_prot_flags,
                                     bool should_pad_segments) {
  for (size_t i = 0; i < phdr_count; ++i) {
    const ElfW(Phdr)* phdr = &phdr_table[i];

    if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
      continue;
    }

    ElfW(Addr) p_memsz = phdr->p_memsz;
    ElfW(Addr) p_filesz = phdr->p_filesz;
    _extend_load_segment_vma(phdr_table, phdr_count, i, &p_memsz, &p_filesz, should_pad_segments);

    ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr + load_bias);
    ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + p_memsz + load_bias);

    int prot = PFLAGS_TO_PROT(phdr->p_flags) | extra_prot_flags;
    if ((prot & PROT_WRITE) != 0) {
      // make sure we're never simultaneously writable / executable
      prot &= ~PROT_EXEC;
    }
#if defined(__aarch64__)
    if ((prot & PROT_EXEC) == 0) {
      // Though it is not specified don't add PROT_BTI if segment is not
      // executable.
      prot &= ~PROT_BTI;
    }
#endif

    int ret =
        mprotect(reinterpret_cast<void*>(seg_page_start), seg_page_end - seg_page_start, prot);
    if (ret < 0) {
      return -1;
    }
  }
  return 0;
}

/* Restore the original protection modes for all loadable segments.
 * You should only call this after phdr_table_unprotect_segments and
 * applying all relocations.
 *
 * AArch64: also called from linker_main and ElfReader::Load to apply
 *     PROT_BTI for loaded main so and other so-s.
 *
 * Input:
 *   phdr_table  -> program header table
 *   phdr_count  -> number of entries in tables
 *   load_bias   -> load bias
 *   should_pad_segments -> Are segments extended to avoid gaps in the memory map
 *   prop        -> GnuPropertySection or nullptr
 * Return:
 *   0 on success, -1 on failure (error code in errno).
 */
int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                                ElfW(Addr) load_bias, bool should_pad_segments,
                                const GnuPropertySection* prop __unused) {
  int prot = 0;
#if defined(__aarch64__)
  if ((prop != nullptr) && prop->IsBTICompatible()) {
    prot |= PROT_BTI;
  }
#endif
  return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, prot, should_pad_segments);
}

/* Change the protection of all loaded segments in memory to writable.
 * This is useful before performing relocations. Once completed, you
 * will have to call phdr_table_protect_segments to restore the original
 * protection flags on all segments.
 *
 * Note that some writable segments can also have their content turned
 * to read-only by calling phdr_table_protect_gnu_relro. This is no
 * performed here.
 *
 * Input:
 *   phdr_table  -> program header table
 *   phdr_count  -> number of entries in tables
 *   load_bias   -> load bias
 *   should_pad_segments -> Are segments extended to avoid gaps in the memory map
 * Return:
 *   0 on success, -1 on failure (error code in errno).
 */
int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table,
                                  size_t phdr_count, ElfW(Addr) load_bias,
                                  bool should_pad_segments) {
  return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE,
                                   should_pad_segments);
}

static inline void _extend_gnu_relro_prot_end(const ElfW(Phdr)* relro_phdr,
                                              const ElfW(Phdr)* phdr_table, size_t phdr_count,
                                              ElfW(Addr) load_bias, ElfW(Addr)* seg_page_end,
                                              bool should_pad_segments) {
  // Find the index and phdr of the LOAD containing the GNU_RELRO segment
  for (size_t index = 0; index < phdr_count; ++index) {
    const ElfW(Phdr)* phdr = &phdr_table[index];

    if (phdr->p_type == PT_LOAD && phdr->p_vaddr == relro_phdr->p_vaddr) {
      // If the PT_GNU_RELRO mem size is not at least as large as the corresponding
      // LOAD segment mem size, we need to protect only a partial region of the
      // LOAD segment and therefore cannot avoid a VMA split.
      //
      // Note: Don't check the page-aligned mem sizes since the extended protection
      // may incorrectly write protect non-relocation data.
      //
      // Example:
      //
      //               |---- 3K ----|-- 1K --|---- 3K ---- |-- 1K --|
      //       ----------------------------------------------------------------
      //               |            |        |             |        |
      //        SEG X  |     RO     |   RO   |     RW      |        |   SEG Y
      //               |            |        |             |        |
      //       ----------------------------------------------------------------
      //                            |        |             |
      //                            |        |             |
      //                            |        |             |
      //                    relro_vaddr   relro_vaddr   relro_vaddr
      //                    (load_vaddr)       +            +
      //                                  relro_memsz   load_memsz
      //
      //       ----------------------------------------------------------------
      //               |         PAGE        |         PAGE         |
      //       ----------------------------------------------------------------
      //                                     |       Potential      |
      //                                     |----- Extended RO ----|
      //                                     |      Protection      |
      //
      // If the check below uses  page aligned mem sizes it will cause incorrect write
      // protection of the 3K RW part of the LOAD segment containing the GNU_RELRO.
      if (relro_phdr->p_memsz < phdr->p_memsz) {
        return;
      }

      ElfW(Addr) p_memsz = phdr->p_memsz;
      ElfW(Addr) p_filesz = phdr->p_filesz;

      // Attempt extending the VMA (mprotect range). Without extending the range,
      // mprotect will only RO protect a part of the extended RW LOAD segment, which
      // will leave an extra split RW VMA (the gap).
      _extend_load_segment_vma(phdr_table, phdr_count, index, &p_memsz, &p_filesz,
                               should_pad_segments);

      *seg_page_end = page_end(phdr->p_vaddr + p_memsz + load_bias);
      return;
    }
  }
}

/* Used internally by phdr_table_protect_gnu_relro and
 * phdr_table_unprotect_gnu_relro.
 */
static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                                          ElfW(Addr) load_bias, int prot_flags,
                                          bool should_pad_segments) {
  const ElfW(Phdr)* phdr = phdr_table;
  const ElfW(Phdr)* phdr_limit = phdr + phdr_count;

  for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    if (phdr->p_type != PT_GNU_RELRO) {
      continue;
    }

    // Tricky: what happens when the relro segment does not start
    // or end at page boundaries? We're going to be over-protective
    // here and put every page touched by the segment as read-only.

    // This seems to match Ian Lance Taylor's description of the
    // feature at http://www.airs.com/blog/archives/189.

    //    Extract:
    //       Note that the current dynamic linker code will only work
    //       correctly if the PT_GNU_RELRO segment starts on a page
    //       boundary. This is because the dynamic linker rounds the
    //       p_vaddr field down to the previous page boundary. If
    //       there is anything on the page which should not be read-only,
    //       the program is likely to fail at runtime. So in effect the
    //       linker must only emit a PT_GNU_RELRO segment if it ensures
    //       that it starts on a page boundary.
    ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr) + load_bias;
    ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias;
    _extend_gnu_relro_prot_end(phdr, phdr_table, phdr_count, load_bias, &seg_page_end,
                               should_pad_segments);

    int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
                       seg_page_end - seg_page_start,
                       prot_flags);
    if (ret < 0) {
      return -1;
    }
  }
  return 0;
}

/* Apply GNU relro protection if specified by the program header. This will
 * turn some of the pages of a writable PT_LOAD segment to read-only, as
 * specified by one or more PT_GNU_RELRO segments. This must be always
 * performed after relocations.
 *
 * The areas typically covered are .got and .data.rel.ro, these are
 * read-only from the program's POV, but contain absolute addresses
 * that need to be relocated before use.
 *
 * Input:
 *   phdr_table  -> program header table
 *   phdr_count  -> number of entries in tables
 *   load_bias   -> load bias
 *   should_pad_segments -> Were segments extended to avoid gaps in the memory map
 * Return:
 *   0 on success, -1 on failure (error code in errno).
 */
int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                                 ElfW(Addr) load_bias, bool should_pad_segments) {
  return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ,
                                        should_pad_segments);
}

/* Serialize the GNU relro segments to the given file descriptor. This can be
 * performed after relocations to allow another process to later share the
 * relocated segment, if it was loaded at the same address.
 *
 * Input:
 *   phdr_table  -> program header table
 *   phdr_count  -> number of entries in tables
 *   load_bias   -> load bias
 *   fd          -> writable file descriptor to use
 *   file_offset -> pointer to offset into file descriptor to use/update
 * Return:
 *   0 on success, -1 on failure (error code in errno).
 */
int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table,
                                   size_t phdr_count,
                                   ElfW(Addr) load_bias,
                                   int fd,
                                   size_t* file_offset) {
  const ElfW(Phdr)* phdr = phdr_table;
  const ElfW(Phdr)* phdr_limit = phdr + phdr_count;

  for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    if (phdr->p_type != PT_GNU_RELRO) {
      continue;
    }

    ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr) + load_bias;
    ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias;
    ssize_t size = seg_page_end - seg_page_start;

    ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
    if (written != size) {
      return -1;
    }
    void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
                     MAP_PRIVATE|MAP_FIXED, fd, *file_offset);
    if (map == MAP_FAILED) {
      return -1;
    }
    *file_offset += size;
  }
  return 0;
}

/* Where possible, replace the GNU relro segments with mappings of the given
 * file descriptor. This can be performed after relocations to allow a file
 * previously created by phdr_table_serialize_gnu_relro in another process to
 * replace the dirty relocated pages, saving memory, if it was loaded at the
 * same address. We have to compare the data before we map over it, since some
 * parts of the relro segment may not be identical due to other libraries in
 * the process being loaded at different addresses.
 *
 * Input:
 *   phdr_table  -> program header table
 *   phdr_count  -> number of entries in tables
 *   load_bias   -> load bias
 *   fd          -> readable file descriptor to use
 *   file_offset -> pointer to offset into file descriptor to use/update
 * Return:
 *   0 on success, -1 on failure (error code in errno).
 */
int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table,
                             size_t phdr_count,
                             ElfW(Addr) load_bias,
                             int fd,
                             size_t* file_offset) {
  // Map the file at a temporary location so we can compare its contents.
  struct stat file_stat;
  if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
    return -1;
  }
  off_t file_size = file_stat.st_size;
  void* temp_mapping = nullptr;
  if (file_size > 0) {
    temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
    if (temp_mapping == MAP_FAILED) {
      return -1;
    }
  }

  // Iterate over the relro segments and compare/remap the pages.
  const ElfW(Phdr)* phdr = phdr_table;
  const ElfW(Phdr)* phdr_limit = phdr + phdr_count;

  for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    if (phdr->p_type != PT_GNU_RELRO) {
      continue;
    }

    ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr) + load_bias;
    ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias;

    char* file_base = static_cast<char*>(temp_mapping) + *file_offset;
    char* mem_base = reinterpret_cast<char*>(seg_page_start);
    size_t match_offset = 0;
    size_t size = seg_page_end - seg_page_start;

    if (file_size - *file_offset < size) {
      // File is too short to compare to this segment. The contents are likely
      // different as well (it's probably for a different library version) so
      // just don't bother checking.
      break;
    }

    while (match_offset < size) {
      // Skip over dissimilar pages.
      while (match_offset < size &&
             memcmp(mem_base + match_offset, file_base + match_offset, page_size()) != 0) {
        match_offset += page_size();
      }

      // Count similar pages.
      size_t mismatch_offset = match_offset;
      while (mismatch_offset < size &&
             memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, page_size()) == 0) {
        mismatch_offset += page_size();
      }

      // Map over similar pages.
      if (mismatch_offset > match_offset) {
        void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
                         PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, *file_offset + match_offset);
        if (map == MAP_FAILED) {
          munmap(temp_mapping, file_size);
          return -1;
        }
      }

      match_offset = mismatch_offset;
    }

    // Add to the base file offset in case there are multiple relro segments.
    *file_offset += size;
  }
  munmap(temp_mapping, file_size);
  return 0;
}


#if defined(__arm__)
/* Return the address and size of the .ARM.exidx section in memory,
 * if present.
 *
 * Input:
 *   phdr_table  -> program header table
 *   phdr_count  -> number of entries in tables
 *   load_bias   -> load bias
 * Output:
 *   arm_exidx       -> address of table in memory (null on failure).
 *   arm_exidx_count -> number of items in table (0 on failure).
 * Return:
 *   0 on success, -1 on failure (_no_ error code in errno)
 */
int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                             ElfW(Addr) load_bias,
                             ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) {
  const ElfW(Phdr)* phdr = phdr_table;
  const ElfW(Phdr)* phdr_limit = phdr + phdr_count;

  for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    if (phdr->p_type != PT_ARM_EXIDX) {
      continue;
    }

    *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
    *arm_exidx_count = phdr->p_memsz / 8;
    return 0;
  }
  *arm_exidx = nullptr;
  *arm_exidx_count = 0;
  return -1;
}
#endif

/* Return the address and size of the ELF file's .dynamic section in memory,
 * or null if missing.
 *
 * Input:
 *   phdr_table  -> program header table
 *   phdr_count  -> number of entries in tables
 *   load_bias   -> load bias
 * Output:
 *   dynamic       -> address of table in memory (null on failure).
 *   dynamic_flags -> protection flags for section (unset on failure)
 * Return:
 *   void
 */
void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                                    ElfW(Addr) load_bias, ElfW(Dyn)** dynamic,
                                    ElfW(Word)* dynamic_flags) {
  *dynamic = nullptr;
  for (size_t i = 0; i<phdr_count; ++i) {
    const ElfW(Phdr)& phdr = phdr_table[i];
    if (phdr.p_type == PT_DYNAMIC) {
      *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr);
      if (dynamic_flags) {
        *dynamic_flags = phdr.p_flags;
      }
      return;
    }
  }
}

/* Return the program interpreter string, or nullptr if missing.
 *
 * Input:
 *   phdr_table  -> program header table
 *   phdr_count  -> number of entries in tables
 *   load_bias   -> load bias
 * Return:
 *   pointer to the program interpreter string.
 */
const char* phdr_table_get_interpreter_name(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                                            ElfW(Addr) load_bias) {
  for (size_t i = 0; i<phdr_count; ++i) {
    const ElfW(Phdr)& phdr = phdr_table[i];
    if (phdr.p_type == PT_INTERP) {
      return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr);
    }
  }
  return nullptr;
}

// Sets loaded_phdr_ to the address of the program header table as it appears
// in the loaded segments in memory. This is in contrast with phdr_table_,
// which is temporary and will be released before the library is relocated.
bool ElfReader::FindPhdr() {
  const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;

  // If there is a PT_PHDR, use it directly.
  for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
    if (phdr->p_type == PT_PHDR) {
      return CheckPhdr(load_bias_ + phdr->p_vaddr);
    }
  }

  // Otherwise, check the first loadable segment. If its file offset
  // is 0, it starts with the ELF header, and we can trivially find the
  // loaded program header from it.
  for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
    if (phdr->p_type == PT_LOAD) {
      if (phdr->p_offset == 0) {
        ElfW(Addr)  elf_addr = load_bias_ + phdr->p_vaddr;
        const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
        ElfW(Addr)  offset = ehdr->e_phoff;
        return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset);
      }
      break;
    }
  }

  DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str());
  return false;
}

// Tries to find .note.gnu.property section.
// It is not considered an error if such section is missing.
bool ElfReader::FindGnuPropertySection() {
#if defined(__aarch64__)
  note_gnu_property_ = GnuPropertySection(phdr_table_, phdr_num_, load_start(), name_.c_str());
#endif
  return true;
}

// Ensures that our program header is actually within a loadable
// segment. This should help catch badly-formed ELF files that
// would cause the linker to crash later when trying to access it.
bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
  const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
  ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
  for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
    if (phdr->p_type != PT_LOAD) {
      continue;
    }
    ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
    ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
    if (seg_start <= loaded && loaded_end <= seg_end) {
      loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
      return true;
    }
  }
  DL_ERR("\"%s\" loaded phdr %p not in loadable segment",
         name_.c_str(), reinterpret_cast<void*>(loaded));
  return false;
}