summaryrefslogtreecommitdiff
path: root/runtime/gc/task_processor_test.cc
blob: 5ee49415a52420fbebefae55f877b39ca0a54dfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "task_processor.h"
#include "base/time_utils.h"
#include "common_runtime_test.h"
#include "thread-current-inl.h"
#include "thread_pool.h"

namespace art HIDDEN {
namespace gc {

class TaskProcessorTest : public CommonRuntimeTest {
 public:
};

class RecursiveTask : public HeapTask {
 public:
  RecursiveTask(TaskProcessor* task_processor, Atomic<size_t>* counter, size_t max_recursion)
     : HeapTask(NanoTime() + MsToNs(10)), task_processor_(task_processor), counter_(counter),
       max_recursion_(max_recursion) {
  }
  void Run(Thread* self) override {
    if (max_recursion_ > 0) {
      task_processor_->AddTask(self,
                               new RecursiveTask(task_processor_, counter_, max_recursion_ - 1));
      counter_->fetch_add(1U, std::memory_order_seq_cst);
    }
  }

 private:
  TaskProcessor* const task_processor_;
  Atomic<size_t>* const counter_;
  const size_t max_recursion_;
};

class WorkUntilDoneTask : public SelfDeletingTask {
 public:
  WorkUntilDoneTask(TaskProcessor* task_processor, Atomic<bool>* done_running)
      : task_processor_(task_processor), done_running_(done_running) {
  }
  void Run(Thread* self) override {
    task_processor_->RunAllTasks(self);
    done_running_->store(true, std::memory_order_seq_cst);
  }

 private:
  TaskProcessor* const task_processor_;
  Atomic<bool>* done_running_;
};

TEST_F(TaskProcessorTest, Interrupt) {
  std::unique_ptr<ThreadPool> thread_pool(ThreadPool::Create("task processor test", 1U));
  Thread* const self = Thread::Current();
  TaskProcessor task_processor;
  static constexpr size_t kRecursion = 10;
  Atomic<bool> done_running(false);
  Atomic<size_t> counter(0);
  task_processor.AddTask(self, new RecursiveTask(&task_processor, &counter, kRecursion));
  task_processor.Start(self);
  // Add a task which will wait until interrupted to the thread pool.
  thread_pool->AddTask(self, new WorkUntilDoneTask(&task_processor, &done_running));
  thread_pool->StartWorkers(self);
  ASSERT_FALSE(done_running);
  // Wait until all the tasks are done, but since we didn't interrupt, done_running should be 0.
  while (counter.load(std::memory_order_seq_cst) != kRecursion) {
    usleep(10);
  }
  ASSERT_FALSE(done_running);
  task_processor.Stop(self);
  thread_pool->Wait(self, true, false);
  // After the interrupt and wait, the WorkUntilInterruptedTasktask should have terminated and
  // set done_running_ to true.
  ASSERT_TRUE(done_running.load(std::memory_order_seq_cst));

  // Test that we finish remaining tasks before returning from RunTasksUntilInterrupted.
  counter.store(0, std::memory_order_seq_cst);
  done_running.store(false, std::memory_order_seq_cst);
  // Self interrupt before any of the other tasks run, but since we added them we should keep on
  // working until all the tasks are completed.
  task_processor.Stop(self);
  task_processor.AddTask(self, new RecursiveTask(&task_processor, &counter, kRecursion));
  thread_pool->AddTask(self, new WorkUntilDoneTask(&task_processor, &done_running));
  thread_pool->StartWorkers(self);
  thread_pool->Wait(self, true, false);
  ASSERT_TRUE(done_running.load(std::memory_order_seq_cst));
  ASSERT_EQ(counter.load(std::memory_order_seq_cst), kRecursion);
}

class TestOrderTask : public HeapTask {
 public:
  TestOrderTask(uint64_t expected_time, size_t expected_counter, size_t* counter)
     : HeapTask(expected_time), expected_counter_(expected_counter), counter_(counter) {
  }
  void Run([[maybe_unused]] Thread* thread) override {
    ASSERT_EQ(*counter_, expected_counter_);
    ++*counter_;
  }

 private:
  const size_t expected_counter_;
  size_t* const counter_;
};

TEST_F(TaskProcessorTest, Ordering) {
  static const size_t kNumTasks = 25;
  const uint64_t current_time = NanoTime();
  Thread* const self = Thread::Current();
  TaskProcessor task_processor;
  task_processor.Stop(self);
  size_t counter = 0;
  std::vector<std::pair<uint64_t, size_t>> orderings;
  for (size_t i = 0; i < kNumTasks; ++i) {
    orderings.push_back(std::make_pair(current_time + MsToNs(10U * i), i));
  }
  for (size_t i = 0; i < kNumTasks; ++i) {
    std::swap(orderings[i], orderings[(i * 87654231 + 12345) % orderings.size()]);
  }
  for (const auto& pair : orderings) {
    auto* task = new TestOrderTask(pair.first, pair.second, &counter);
    task_processor.AddTask(self, task);
  }
  std::unique_ptr<ThreadPool> thread_pool(ThreadPool::Create("task processor test", 1U));
  Atomic<bool> done_running(false);
  // Add a task which will wait until interrupted to the thread pool.
  thread_pool->AddTask(self, new WorkUntilDoneTask(&task_processor, &done_running));
  ASSERT_FALSE(done_running.load(std::memory_order_seq_cst));
  thread_pool->StartWorkers(self);
  thread_pool->Wait(self, true, false);
  ASSERT_TRUE(done_running.load(std::memory_order_seq_cst));
  ASSERT_EQ(counter, kNumTasks);
}

}  // namespace gc
}  // namespace art