summaryrefslogtreecommitdiff
path: root/runtime/gc/heap-inl.h
blob: 9d4b4a0986f14cf35658dcb39f66f94ce8843af3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_GC_HEAP_INL_H_
#define ART_RUNTIME_GC_HEAP_INL_H_

#include "heap.h"

#include "allocation_listener.h"
#include "base/quasi_atomic.h"
#include "base/time_utils.h"
#include "gc/accounting/atomic_stack.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/allocation_record.h"
#include "gc/collector/semi_space.h"
#include "gc/space/bump_pointer_space-inl.h"
#include "gc/space/dlmalloc_space-inl.h"
#include "gc/space/large_object_space.h"
#include "gc/space/region_space-inl.h"
#include "gc/space/rosalloc_space-inl.h"
#include "handle_scope-inl.h"
#include "obj_ptr-inl.h"
#include "runtime.h"
#include "thread-inl.h"
#include "verify_object.h"
#include "write_barrier-inl.h"

namespace art {
namespace gc {

template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self,
                                                      ObjPtr<mirror::Class> klass,
                                                      size_t byte_count,
                                                      AllocatorType allocator,
                                                      const PreFenceVisitor& pre_fence_visitor) {
  auto no_suspend_pre_fence_visitor =
      [&pre_fence_visitor](auto... x) REQUIRES_SHARED(Locks::mutator_lock_) {
        ScopedAssertNoThreadSuspension sants("No thread suspension during pre-fence visitor");
        pre_fence_visitor(x...);
      };

  if (kIsDebugBuild) {
    CheckPreconditionsForAllocObject(klass, byte_count);
    // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
    // done in the runnable state where suspension is expected.
    CHECK_EQ(self->GetState(), ThreadState::kRunnable);
    self->AssertThreadSuspensionIsAllowable();
    self->AssertNoPendingException();
    // Make sure to preserve klass.
    StackHandleScope<1> hs(self);
    HandleWrapperObjPtr<mirror::Class> h = hs.NewHandleWrapper(&klass);
    self->PoisonObjectPointers();
  }
  auto pre_object_allocated = [&]() REQUIRES_SHARED(Locks::mutator_lock_)
      REQUIRES(!Roles::uninterruptible_ /* only suspends if kInstrumented */) {
    if constexpr (kInstrumented) {
      AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
      if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) {
        StackHandleScope<1> hs(self);
        HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(&klass));
        l->PreObjectAllocated(self, h_klass, &byte_count);
      }
    }
  };
  ObjPtr<mirror::Object> obj;
  // bytes allocated for the (individual) object.
  size_t bytes_allocated;
  size_t usable_size;
  size_t new_num_bytes_allocated = 0;
  bool need_gc = false;
  uint32_t starting_gc_num;  // o.w. GC number at which we observed need for GC.
  {
    // Bytes allocated that includes bulk thread-local buffer allocations in addition to direct
    // non-TLAB object allocations. Only set for non-thread-local allocation,
    size_t bytes_tl_bulk_allocated = 0u;
    // Do the initial pre-alloc
    // TODO: Consider what happens if the allocator is switched while suspended here.
    pre_object_allocated();

    // Need to check that we aren't the large object allocator since the large object allocation
    // code path includes this function. If we didn't check we would have an infinite loop.
    if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
      // AllocLargeObject can suspend and will recall PreObjectAllocated if needed.
      obj = AllocLargeObject<kInstrumented, PreFenceVisitor>(self, &klass, byte_count,
                                                             pre_fence_visitor);
      if (obj != nullptr) {
        return obj.Ptr();
      }
      // There should be an OOM exception, since we are retrying, clear it.
      self->ClearException();

      // If the large object allocation failed, try to use the normal spaces (main space,
      // non moving space). This can happen if there is significant virtual address space
      // fragmentation.
      // kInstrumented may be out of date, so recurse without large object checking, rather than
      // continue.
      return AllocObjectWithAllocator</*kInstrumented=*/ true, /*kCheckLargeObject=*/ false>
          (self, klass, byte_count, GetUpdatedAllocator(allocator), pre_fence_visitor);
    }
    ScopedAssertNoThreadSuspension ants("Called PreObjectAllocated, no suspend until alloc");
    if (IsTLABAllocator(allocator)) {
      byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
    }
    // If we have a thread local allocation we don't need to update bytes allocated.
    if (IsTLABAllocator(allocator) && byte_count <= self->TlabSize()) {
      obj = self->AllocTlab(byte_count);
      DCHECK(obj != nullptr) << "AllocTlab can't fail";
      obj->SetClass(klass);
      if (kUseBakerReadBarrier) {
        obj->AssertReadBarrierState();
      }
      bytes_allocated = byte_count;
      usable_size = bytes_allocated;
      no_suspend_pre_fence_visitor(obj, usable_size);
      QuasiAtomic::ThreadFenceForConstructor();
    } else if (
        !kInstrumented && allocator == kAllocatorTypeRosAlloc &&
        (obj = rosalloc_space_->AllocThreadLocal(self, byte_count, &bytes_allocated)) != nullptr &&
        LIKELY(obj != nullptr)) {
      DCHECK(!is_running_on_memory_tool_);
      obj->SetClass(klass);
      if (kUseBakerReadBarrier) {
        obj->AssertReadBarrierState();
      }
      usable_size = bytes_allocated;
      no_suspend_pre_fence_visitor(obj, usable_size);
      QuasiAtomic::ThreadFenceForConstructor();
    } else {
      obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
                                                &usable_size, &bytes_tl_bulk_allocated);
      if (UNLIKELY(obj == nullptr)) {
        // AllocateInternalWithGc internally re-allows, and can cause, thread suspension, if
        // someone instruments the entrypoints or changes the allocator in a suspend point here,
        // we need to retry the allocation. It will send the pre-alloc event again.
        obj = AllocateInternalWithGc(self,
                                     allocator,
                                     kInstrumented,
                                     byte_count,
                                     &bytes_allocated,
                                     &usable_size,
                                     &bytes_tl_bulk_allocated,
                                     &klass);
        if (obj == nullptr) {
          // The only way that we can get a null return if there is no pending exception is if the
          // allocator or instrumentation changed.
          if (!self->IsExceptionPending()) {
            // Since we are restarting, allow thread suspension.
            ScopedAllowThreadSuspension ats;
            // Get the new class size in case class redefinition changed the class size since alloc
            // started.
            int new_byte_count = klass->IsVariableSize()? byte_count : klass->GetObjectSize();
            // AllocObject will pick up the new allocator type, and instrumented as true is the safe
            // default.
            return AllocObjectWithAllocator</*kInstrumented=*/true>(self,
                                                                    klass,
                                                                    new_byte_count,
                                                                    GetUpdatedAllocator(allocator),
                                                                    pre_fence_visitor);
          }
          return nullptr;
        }
        // Non-null result implies neither instrumentation nor allocator changed.
      }
      DCHECK_GT(bytes_allocated, 0u);
      DCHECK_GT(usable_size, 0u);
      obj->SetClass(klass);
      if (kUseBakerReadBarrier) {
        obj->AssertReadBarrierState();
      }
      if (collector::SemiSpace::kUseRememberedSet &&
          UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
        // (Note this if statement will be constant folded away for the fast-path quick entry
        // points.) Because SetClass() has no write barrier, the GC may need a write barrier in the
        // case the object is non movable and points to a recently allocated movable class.
        WriteBarrier::ForFieldWrite(obj, mirror::Object::ClassOffset(), klass);
      }
      no_suspend_pre_fence_visitor(obj, usable_size);
      QuasiAtomic::ThreadFenceForConstructor();
    }
    if (bytes_tl_bulk_allocated > 0) {
      starting_gc_num = GetCurrentGcNum();
      size_t num_bytes_allocated_before = AddBytesAllocated(bytes_tl_bulk_allocated);
      new_num_bytes_allocated = num_bytes_allocated_before + bytes_tl_bulk_allocated;
      // Only trace when we get an increase in the number of bytes allocated. This happens when
      // obtaining a new TLAB and isn't often enough to hurt performance according to golem.
      if (region_space_) {
        // With CC collector, during a GC cycle, the heap usage increases as
        // there are two copies of evacuated objects. Therefore, add evac-bytes
        // to the heap size. When the GC cycle is not running, evac-bytes
        // are 0, as required.
        TraceHeapSize(new_num_bytes_allocated + region_space_->EvacBytes());
      } else {
        TraceHeapSize(new_num_bytes_allocated);
      }
      // IsGcConcurrent() isn't known at compile time so we can optimize by not checking it for the
      // BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
      // optimized out.
      if (IsGcConcurrent() && UNLIKELY(ShouldConcurrentGCForJava(new_num_bytes_allocated))) {
        need_gc = true;
      }
      GetMetrics()->TotalBytesAllocated()->Add(bytes_tl_bulk_allocated);
      GetMetrics()->TotalBytesAllocatedDelta()->Add(bytes_tl_bulk_allocated);
    }
  }
  if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
    CHECK_LE(obj->SizeOf(), usable_size);
  }
  // TODO: Deprecate.
  if (kInstrumented) {
    if (Runtime::Current()->HasStatsEnabled()) {
      RuntimeStats* thread_stats = self->GetStats();
      ++thread_stats->allocated_objects;
      thread_stats->allocated_bytes += bytes_allocated;
      RuntimeStats* global_stats = Runtime::Current()->GetStats();
      ++global_stats->allocated_objects;
      global_stats->allocated_bytes += bytes_allocated;
    }
  } else {
    DCHECK(!Runtime::Current()->HasStatsEnabled());
  }
  if (kInstrumented) {
    if (IsAllocTrackingEnabled()) {
      // allocation_records_ is not null since it never becomes null after allocation tracking is
      // enabled.
      DCHECK(allocation_records_ != nullptr);
      allocation_records_->RecordAllocation(self, &obj, bytes_allocated);
    }
    AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
    if (l != nullptr) {
      // Same as above. We assume that a listener that was once stored will never be deleted.
      // Otherwise we'd have to perform this under a lock.
      l->ObjectAllocated(self, &obj, bytes_allocated);
    }
  } else {
    DCHECK(!IsAllocTrackingEnabled());
  }
  if (AllocatorHasAllocationStack(allocator)) {
    PushOnAllocationStack(self, &obj);
  }
  if (kInstrumented) {
    if (gc_stress_mode_) {
      CheckGcStressMode(self, &obj);
    }
  } else {
    DCHECK(!gc_stress_mode_);
  }
  if (need_gc) {
    // Do this only once thread suspension is allowed again, and we're done with kInstrumented.
    RequestConcurrentGCAndSaveObject(self, /*force_full=*/ false, starting_gc_num, &obj);
  }
  VerifyObject(obj);
  self->VerifyStack();
  return obj.Ptr();
}

// The size of a thread-local allocation stack in the number of references.
static constexpr size_t kThreadLocalAllocationStackSize = 128;

inline void Heap::PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) {
  if (kUseThreadLocalAllocationStack) {
    if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(obj->Ptr()))) {
      PushOnThreadLocalAllocationStackWithInternalGC(self, obj);
    }
  } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(obj->Ptr()))) {
    PushOnAllocationStackWithInternalGC(self, obj);
  }
}

template <bool kInstrumented, typename PreFenceVisitor>
inline mirror::Object* Heap::AllocLargeObject(Thread* self,
                                              ObjPtr<mirror::Class>* klass,
                                              size_t byte_count,
                                              const PreFenceVisitor& pre_fence_visitor) {
  // Save and restore the class in case it moves.
  StackHandleScope<1> hs(self);
  auto klass_wrapper = hs.NewHandleWrapper(klass);
  mirror::Object* obj = AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>
                        (self, *klass, byte_count, kAllocatorTypeLOS, pre_fence_visitor);
  // Java Heap Profiler check and sample allocation.
  if (GetHeapSampler().IsEnabled()) {
    JHPCheckNonTlabSampleAllocation(self, obj, byte_count);
  }
  return obj;
}

template <const bool kInstrumented, const bool kGrow>
inline mirror::Object* Heap::TryToAllocate(Thread* self,
                                           AllocatorType allocator_type,
                                           size_t alloc_size,
                                           size_t* bytes_allocated,
                                           size_t* usable_size,
                                           size_t* bytes_tl_bulk_allocated) {
  if (allocator_type != kAllocatorTypeRegionTLAB &&
      allocator_type != kAllocatorTypeTLAB &&
      allocator_type != kAllocatorTypeRosAlloc &&
      UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, alloc_size, kGrow))) {
    return nullptr;
  }
  mirror::Object* ret;
  switch (allocator_type) {
    case kAllocatorTypeBumpPointer: {
      DCHECK(bump_pointer_space_ != nullptr);
      alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
      ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
      if (LIKELY(ret != nullptr)) {
        *bytes_allocated = alloc_size;
        *usable_size = alloc_size;
        *bytes_tl_bulk_allocated = alloc_size;
      }
      break;
    }
    case kAllocatorTypeRosAlloc: {
      if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
        // If running on ASan, we should be using the instrumented path.
        size_t max_bytes_tl_bulk_allocated = rosalloc_space_->MaxBytesBulkAllocatedFor(alloc_size);
        if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type,
                                               max_bytes_tl_bulk_allocated,
                                               kGrow))) {
          return nullptr;
        }
        ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
                                     bytes_tl_bulk_allocated);
      } else {
        DCHECK(!is_running_on_memory_tool_);
        size_t max_bytes_tl_bulk_allocated =
            rosalloc_space_->MaxBytesBulkAllocatedForNonvirtual(alloc_size);
        if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type,
                                               max_bytes_tl_bulk_allocated,
                                               kGrow))) {
          return nullptr;
        }
        if (!kInstrumented) {
          DCHECK(!rosalloc_space_->CanAllocThreadLocal(self, alloc_size));
        }
        ret = rosalloc_space_->AllocNonvirtual(self,
                                               alloc_size,
                                               bytes_allocated,
                                               usable_size,
                                               bytes_tl_bulk_allocated);
      }
      break;
    }
    case kAllocatorTypeDlMalloc: {
      if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
        // If running on ASan, we should be using the instrumented path.
        ret = dlmalloc_space_->Alloc(self,
                                     alloc_size,
                                     bytes_allocated,
                                     usable_size,
                                     bytes_tl_bulk_allocated);
      } else {
        DCHECK(!is_running_on_memory_tool_);
        ret = dlmalloc_space_->AllocNonvirtual(self,
                                               alloc_size,
                                               bytes_allocated,
                                               usable_size,
                                               bytes_tl_bulk_allocated);
      }
      break;
    }
    case kAllocatorTypeNonMoving: {
      ret = non_moving_space_->Alloc(self,
                                     alloc_size,
                                     bytes_allocated,
                                     usable_size,
                                     bytes_tl_bulk_allocated);
      break;
    }
    case kAllocatorTypeLOS: {
      ret = large_object_space_->Alloc(self,
                                       alloc_size,
                                       bytes_allocated,
                                       usable_size,
                                       bytes_tl_bulk_allocated);
      // Note that the bump pointer spaces aren't necessarily next to
      // the other continuous spaces like the non-moving alloc space or
      // the zygote space.
      DCHECK(ret == nullptr || large_object_space_->Contains(ret));
      break;
    }
    case kAllocatorTypeRegion: {
      DCHECK(region_space_ != nullptr);
      alloc_size = RoundUp(alloc_size, space::RegionSpace::kAlignment);
      ret = region_space_->AllocNonvirtual<false>(alloc_size,
                                                  bytes_allocated,
                                                  usable_size,
                                                  bytes_tl_bulk_allocated);
      break;
    }
    case kAllocatorTypeTLAB:
      FALLTHROUGH_INTENDED;
    case kAllocatorTypeRegionTLAB: {
      DCHECK_ALIGNED(alloc_size, kObjectAlignment);
      static_assert(space::RegionSpace::kAlignment == space::BumpPointerSpace::kAlignment,
                    "mismatched alignments");
      static_assert(kObjectAlignment == space::BumpPointerSpace::kAlignment,
                    "mismatched alignments");
      if (UNLIKELY(self->TlabSize() < alloc_size)) {
        return AllocWithNewTLAB(self,
                                allocator_type,
                                alloc_size,
                                kGrow,
                                bytes_allocated,
                                usable_size,
                                bytes_tl_bulk_allocated);
      }
      // The allocation can't fail.
      ret = self->AllocTlab(alloc_size);
      DCHECK(ret != nullptr);
      *bytes_allocated = alloc_size;
      *bytes_tl_bulk_allocated = 0;  // Allocated in an existing buffer.
      *usable_size = alloc_size;
      break;
    }
    default: {
      LOG(FATAL) << "Invalid allocator type";
      ret = nullptr;
    }
  }
  return ret;
}

inline bool Heap::ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const {
  // We need to have a zygote space or else our newly allocated large object can end up in the
  // Zygote resulting in it being prematurely freed.
  // We can only do this for primitive objects since large objects will not be within the card table
  // range. This also means that we rely on SetClass not dirtying the object's card.
  return byte_count >= large_object_threshold_ && (c->IsPrimitiveArray() || c->IsStringClass());
}

inline bool Heap::IsOutOfMemoryOnAllocation([[maybe_unused]] AllocatorType allocator_type,
                                            size_t alloc_size,
                                            bool grow) {
  size_t old_target = target_footprint_.load(std::memory_order_relaxed);
  while (true) {
    size_t old_allocated = num_bytes_allocated_.load(std::memory_order_relaxed);
    size_t new_footprint = old_allocated + alloc_size;
    // Tests against heap limits are inherently approximate, since multiple allocations may
    // race, and this is not atomic with the allocation.
    if (UNLIKELY(new_footprint <= old_target)) {
      return false;
    } else if (UNLIKELY(new_footprint > growth_limit_)) {
      return true;
    }
    // We are between target_footprint_ and growth_limit_ .
    if (IsGcConcurrent()) {
      return false;
    } else {
      if (grow) {
        if (target_footprint_.compare_exchange_weak(/*inout ref*/old_target, new_footprint,
                                                    std::memory_order_relaxed)) {
          VlogHeapGrowth(old_target, new_footprint, alloc_size);
          return false;
        }  // else try again.
      } else {
        return true;
      }
    }
  }
}

inline bool Heap::ShouldConcurrentGCForJava(size_t new_num_bytes_allocated) {
  // For a Java allocation, we only check whether the number of Java allocated bytes excceeds a
  // threshold. By not considering native allocation here, we (a) ensure that Java heap bounds are
  // maintained, and (b) reduce the cost of the check here.
  return new_num_bytes_allocated >= concurrent_start_bytes_;
}

}  // namespace gc
}  // namespace art

#endif  // ART_RUNTIME_GC_HEAP_INL_H_