summaryrefslogtreecommitdiff
path: root/compiler/optimizing/inliner.cc
blob: e0bf028138bffaff0190e6d10a3c67dd481e2cf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "inliner.h"

#include "art_method-inl.h"
#include "base/enums.h"
#include "base/logging.h"
#include "builder.h"
#include "class_linker.h"
#include "class_root-inl.h"
#include "constant_folding.h"
#include "data_type-inl.h"
#include "dead_code_elimination.h"
#include "dex/inline_method_analyser.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "instruction_simplifier.h"
#include "intrinsics.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "mirror/object_array-alloc-inl.h"
#include "mirror/object_array-inl.h"
#include "nodes.h"
#include "reference_type_propagation.h"
#include "register_allocator_linear_scan.h"
#include "scoped_thread_state_change-inl.h"
#include "sharpening.h"
#include "ssa_builder.h"
#include "ssa_phi_elimination.h"
#include "thread.h"
#include "verifier/verifier_compiler_binding.h"

namespace art HIDDEN {

// Instruction limit to control memory.
static constexpr size_t kMaximumNumberOfTotalInstructions = 1024;

// Maximum number of instructions for considering a method small,
// which we will always try to inline if the other non-instruction limits
// are not reached.
static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3;

// Limit the number of dex registers that we accumulate while inlining
// to avoid creating large amount of nested environments.
static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32;

// Limit recursive call inlining, which do not benefit from too
// much inlining compared to code locality.
static constexpr size_t kMaximumNumberOfRecursiveCalls = 4;

// Limit recursive polymorphic call inlining to prevent code bloat, since it can quickly get out of
// hand in the presence of multiple Wrapper classes. We set this to 0 to disallow polymorphic
// recursive calls at all.
static constexpr size_t kMaximumNumberOfPolymorphicRecursiveCalls = 0;

// Controls the use of inline caches in AOT mode.
static constexpr bool kUseAOTInlineCaches = true;

// Controls the use of inlining try catches.
static constexpr bool kInlineTryCatches = true;

// We check for line numbers to make sure the DepthString implementation
// aligns the output nicely.
#define LOG_INTERNAL(msg) \
  static_assert(__LINE__ > 10, "Unhandled line number"); \
  static_assert(__LINE__ < 10000, "Unhandled line number"); \
  VLOG(compiler) << DepthString(__LINE__) << msg

#define LOG_TRY() LOG_INTERNAL("Try inlinining call: ")
#define LOG_NOTE() LOG_INTERNAL("Note: ")
#define LOG_SUCCESS() LOG_INTERNAL("Success: ")
#define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ")
#define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ")

std::string HInliner::DepthString(int line) const {
  std::string value;
  // Indent according to the inlining depth.
  size_t count = depth_;
  // Line numbers get printed in the log, so add a space if the log's line is less
  // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright.
  if (!kIsTargetBuild) {
    if (line < 100) {
      value += " ";
    }
    if (line < 1000) {
      value += " ";
    }
    // Safeguard if this file reaches more than 10000 lines.
    DCHECK_LT(line, 10000);
  }
  for (size_t i = 0; i < count; ++i) {
    value += "  ";
  }
  return value;
}

static size_t CountNumberOfInstructions(HGraph* graph) {
  size_t number_of_instructions = 0;
  for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) {
    for (HInstructionIterator instr_it(block->GetInstructions());
         !instr_it.Done();
         instr_it.Advance()) {
      ++number_of_instructions;
    }
  }
  return number_of_instructions;
}

void HInliner::UpdateInliningBudget() {
  if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) {
    // Always try to inline small methods.
    inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod;
  } else {
    inlining_budget_ = std::max(
        kMaximumNumberOfInstructionsForSmallMethod,
        kMaximumNumberOfTotalInstructions - total_number_of_instructions_);
  }
}

bool HInliner::Run() {
  if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) {
    // Inlining effectively disabled.
    return false;
  } else if (graph_->IsDebuggable()) {
    // For simplicity, we currently never inline when the graph is debuggable. This avoids
    // doing some logic in the runtime to discover if a method could have been inlined.
    return false;
  }

  bool did_inline = false;

  // Initialize the number of instructions for the method being compiled. Recursive calls
  // to HInliner::Run have already updated the instruction count.
  if (outermost_graph_ == graph_) {
    total_number_of_instructions_ = CountNumberOfInstructions(graph_);
  }

  UpdateInliningBudget();
  DCHECK_NE(total_number_of_instructions_, 0u);
  DCHECK_NE(inlining_budget_, 0u);

  // If we're compiling tests, honor inlining directives in method names:
  // - if a method's name contains the substring "$noinline$", do not
  //   inline that method;
  // - if a method's name contains the substring "$inline$", ensure
  //   that this method is actually inlined.
  // We limit the latter to AOT compilation, as the JIT may or may not inline
  // depending on the state of classes at runtime.
  const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompileArtTest();
  const bool honor_inline_directives =
      honor_noinline_directives && Runtime::Current()->IsAotCompiler();

  // Keep a copy of all blocks when starting the visit.
  ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder();
  DCHECK(!blocks.empty());
  // Because we are changing the graph when inlining,
  // we just iterate over the blocks of the outer method.
  // This avoids doing the inlining work again on the inlined blocks.
  for (HBasicBlock* block : blocks) {
    for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
      HInstruction* next = instruction->GetNext();
      HInvoke* call = instruction->AsInvokeOrNull();
      // As long as the call is not intrinsified, it is worth trying to inline.
      if (call != nullptr && !codegen_->IsImplementedIntrinsic(call)) {
        if (honor_noinline_directives) {
          // Debugging case: directives in method names control or assert on inlining.
          std::string callee_name =
              call->GetMethodReference().PrettyMethod(/* with_signature= */ false);
          // Tests prevent inlining by having $noinline$ in their method names.
          if (callee_name.find("$noinline$") == std::string::npos) {
            if (TryInline(call)) {
              did_inline = true;
            } else if (honor_inline_directives) {
              bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos);
              CHECK(!should_have_inlined) << "Could not inline " << callee_name;
            }
          }
        } else {
          DCHECK(!honor_inline_directives);
          // Normal case: try to inline.
          if (TryInline(call)) {
            did_inline = true;
          }
        }
      }
      instruction = next;
    }
  }

  if (run_extra_type_propagation_) {
    ReferenceTypePropagation rtp_fixup(graph_,
                                       outer_compilation_unit_.GetDexCache(),
                                       /* is_first_run= */ false);
    rtp_fixup.Run();
  }

  // We return true if we either inlined at least one method, or we marked one of our methods as
  // always throwing.
  // To check if we added an always throwing method we can either:
  //   1) Pass a boolean throughout the pipeline and get an accurate result, or
  //   2) Just check that the `HasAlwaysThrowingInvokes()` flag is true now. This is not 100%
  //     accurate but the only other part where we set `HasAlwaysThrowingInvokes` is constant
  //     folding the DivideUnsigned intrinsics for when the divisor is known to be 0. This case is
  //     rare enough that changing the pipeline for this is not worth it. In the case of the false
  //     positive (i.e. A) we didn't inline at all, B) the graph already had an always throwing
  //     invoke, and C) we didn't set any new always throwing invokes), we will be running constant
  //     folding, instruction simplifier, and dead code elimination one more time even though it
  //     shouldn't change things. There's no false negative case.
  return did_inline || graph_->HasAlwaysThrowingInvokes();
}

static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
}

/**
 * Given the `resolved_method` looked up in the dex cache, try to find
 * the actual runtime target of an interface or virtual call.
 * Return nullptr if the runtime target cannot be proven.
 */
static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ReferenceTypeInfo info)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ArtMethod* resolved_method = invoke->GetResolvedMethod();
  if (IsMethodOrDeclaringClassFinal(resolved_method)) {
    // No need to lookup further, the resolved method will be the target.
    return resolved_method;
  }

  if (info.GetTypeHandle()->IsInterface()) {
    // Statically knowing that the receiver has an interface type cannot
    // help us find what is the target method.
    return nullptr;
  } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
    // The method that we're trying to call is not in the receiver's class or super classes.
    return nullptr;
  } else if (info.GetTypeHandle()->IsErroneous()) {
    // If the type is erroneous, do not go further, as we are going to query the vtable or
    // imt table, that we can only safely do on non-erroneous classes.
    return nullptr;
  }

  ClassLinker* cl = Runtime::Current()->GetClassLinker();
  PointerSize pointer_size = cl->GetImagePointerSize();
  if (invoke->IsInvokeInterface()) {
    resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
        resolved_method, pointer_size);
  } else {
    DCHECK(invoke->IsInvokeVirtual());
    resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
        resolved_method, pointer_size);
  }

  if (resolved_method == nullptr) {
    // The information we had on the receiver was not enough to find
    // the target method. Since we check above the exact type of the receiver,
    // the only reason this can happen is an IncompatibleClassChangeError.
    return nullptr;
  } else if (!resolved_method->IsInvokable()) {
    // The information we had on the receiver was not enough to find
    // the target method. Since we check above the exact type of the receiver,
    // the only reason this can happen is an IncompatibleClassChangeError.
    return nullptr;
  } else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
    // A final method has to be the target method.
    return resolved_method;
  } else if (info.IsExact()) {
    // If we found a method and the receiver's concrete type is statically
    // known, we know for sure the target.
    return resolved_method;
  } else {
    // Even if we did find a method, the receiver type was not enough to
    // statically find the runtime target.
    return nullptr;
  }
}

static uint32_t FindMethodIndexIn(ArtMethod* method,
                                  const DexFile& dex_file,
                                  uint32_t name_and_signature_index)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
    return method->GetDexMethodIndex();
  } else {
    return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
  }
}

static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls,
                                       const DexCompilationUnit& compilation_unit)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const DexFile& dex_file = *compilation_unit.GetDexFile();
  dex::TypeIndex index;
  if (cls->GetDexCache() == nullptr) {
    DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
    index = cls->FindTypeIndexInOtherDexFile(dex_file);
  } else if (!cls->GetDexTypeIndex().IsValid()) {
    DCHECK(cls->IsProxyClass()) << cls->PrettyClass();
    // TODO: deal with proxy classes.
  } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
    DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get());
    index = cls->GetDexTypeIndex();
  } else {
    index = cls->FindTypeIndexInOtherDexFile(dex_file);
    // We cannot guarantee the entry will resolve to the same class,
    // as there may be different class loaders. So only return the index if it's
    // the right class already resolved with the class loader.
    if (index.IsValid()) {
      ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType(
          index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
      if (resolved != cls) {
        index = dex::TypeIndex::Invalid();
      }
    }
  }

  return index;
}

HInliner::InlineCacheType HInliner::GetInlineCacheType(
    const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
  DCHECK_EQ(classes.Capacity(), InlineCache::kIndividualCacheSize);
  uint8_t number_of_types = classes.Size();
  if (number_of_types == 0) {
    return kInlineCacheUninitialized;
  } else if (number_of_types == 1) {
    return kInlineCacheMonomorphic;
  } else if (number_of_types == InlineCache::kIndividualCacheSize) {
    return kInlineCacheMegamorphic;
  } else {
    return kInlineCachePolymorphic;
  }
}

static inline ObjPtr<mirror::Class> GetMonomorphicType(
    const StackHandleScope<InlineCache::kIndividualCacheSize>& classes)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  DCHECK(classes.GetReference(0) != nullptr);
  return classes.GetReference(0)->AsClass();
}

ArtMethod* HInliner::FindMethodFromCHA(ArtMethod* resolved_method) {
  if (!resolved_method->HasSingleImplementation()) {
    return nullptr;
  }
  if (Runtime::Current()->IsAotCompiler()) {
    // No CHA-based devirtulization for AOT compiler (yet).
    return nullptr;
  }
  if (Runtime::Current()->IsZygote()) {
    // No CHA-based devirtulization for Zygote, as it compiles with
    // offline information.
    return nullptr;
  }
  if (outermost_graph_->IsCompilingOsr()) {
    // We do not support HDeoptimize in OSR methods.
    return nullptr;
  }
  PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize();
  ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size);
  if (single_impl == nullptr) {
    return nullptr;
  }
  if (single_impl->IsProxyMethod()) {
    // Proxy method is a generic invoker that's not worth
    // devirtualizing/inlining. It also causes issues when the proxy
    // method is in another dex file if we try to rewrite invoke-interface to
    // invoke-virtual because a proxy method doesn't have a real dex file.
    return nullptr;
  }
  if (!single_impl->GetDeclaringClass()->IsResolved()) {
    // There's a race with the class loading, which updates the CHA info
    // before setting the class to resolved. So we just bail for this
    // rare occurence.
    return nullptr;
  }
  return single_impl;
}

static bool IsMethodVerified(ArtMethod* method)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  if (method->GetDeclaringClass()->IsVerified()) {
    return true;
  }
  // For AOT, we check if the class has a verification status that allows us to
  // inline / analyze.
  // At runtime, we know this is cold code if the class is not verified, so don't
  // bother analyzing.
  if (Runtime::Current()->IsAotCompiler()) {
    if (method->GetDeclaringClass()->IsVerifiedNeedsAccessChecks() ||
        method->GetDeclaringClass()->ShouldVerifyAtRuntime()) {
      return true;
    }
  }
  return false;
}

static bool AlwaysThrows(ArtMethod* method)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  DCHECK(method != nullptr);
  // Skip non-compilable and unverified methods.
  if (!method->IsCompilable() || !IsMethodVerified(method)) {
    return false;
  }
  // Skip native methods, methods with try blocks, and methods that are too large.
  CodeItemDataAccessor accessor(method->DexInstructionData());
  if (!accessor.HasCodeItem() ||
      accessor.TriesSize() != 0 ||
      accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) {
    return false;
  }
  // Scan for exits.
  bool throw_seen = false;
  for (const DexInstructionPcPair& pair : accessor) {
    switch (pair.Inst().Opcode()) {
      case Instruction::RETURN:
      case Instruction::RETURN_VOID:
      case Instruction::RETURN_WIDE:
      case Instruction::RETURN_OBJECT:
        return false;  // found regular control flow back
      case Instruction::THROW:
        throw_seen = true;
        break;
      default:
        break;
    }
  }
  return throw_seen;
}

bool HInliner::TryInline(HInvoke* invoke_instruction) {
  MaybeRecordStat(stats_, MethodCompilationStat::kTryInline);

  // Don't bother to move further if we know the method is unresolved or the invocation is
  // polymorphic (invoke-{polymorphic,custom}).
  if (invoke_instruction->IsInvokeUnresolved()) {
    MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedUnresolved);
    return false;
  } else if (invoke_instruction->IsInvokePolymorphic()) {
    MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedPolymorphic);
    return false;
  } else if (invoke_instruction->IsInvokeCustom()) {
    MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedCustom);
    return false;
  }

  ScopedObjectAccess soa(Thread::Current());
  LOG_TRY() << invoke_instruction->GetMethodReference().PrettyMethod();

  ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
  if (resolved_method == nullptr) {
    DCHECK(invoke_instruction->IsInvokeStaticOrDirect());
    DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit());
    LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method";
    return false;
  }

  ArtMethod* actual_method = nullptr;
  ReferenceTypeInfo receiver_info = ReferenceTypeInfo::CreateInvalid();
  if (invoke_instruction->GetInvokeType() == kStatic) {
    actual_method = invoke_instruction->GetResolvedMethod();
  } else {
    HInstruction* receiver = invoke_instruction->InputAt(0);
    while (receiver->IsNullCheck()) {
      // Due to multiple levels of inlining within the same pass, it might be that
      // null check does not have the reference type of the actual receiver.
      receiver = receiver->InputAt(0);
    }
    receiver_info = receiver->GetReferenceTypeInfo();
    if (!receiver_info.IsValid()) {
      // We have to run the extra type propagation now as we are requiring the RTI.
      DCHECK(run_extra_type_propagation_);
      run_extra_type_propagation_ = false;
      ReferenceTypePropagation rtp_fixup(graph_,
                                         outer_compilation_unit_.GetDexCache(),
                                         /* is_first_run= */ false);
      rtp_fixup.Run();
      receiver_info = receiver->GetReferenceTypeInfo();
    }

    DCHECK(receiver_info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
    if (invoke_instruction->IsInvokeStaticOrDirect()) {
      actual_method = invoke_instruction->GetResolvedMethod();
    } else {
      actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, receiver_info);
    }
  }

  if (actual_method != nullptr) {
    // Single target.
    bool result = TryInlineAndReplace(invoke_instruction,
                                      actual_method,
                                      receiver_info,
                                      /* do_rtp= */ true,
                                      /* is_speculative= */ false);
    if (result) {
      MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface);
      if (outermost_graph_ == graph_) {
        MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvokeVirtualOrInterface);
      }
    } else {
      HInvoke* invoke_to_analyze = nullptr;
      if (TryDevirtualize(invoke_instruction, actual_method, &invoke_to_analyze)) {
        // Consider devirtualization as inlining.
        result = true;
        MaybeRecordStat(stats_, MethodCompilationStat::kDevirtualized);
      } else {
        invoke_to_analyze = invoke_instruction;
      }
      // Set always throws property for non-inlined method call with single target.
      if (invoke_instruction->AlwaysThrows() || AlwaysThrows(actual_method)) {
        invoke_to_analyze->SetAlwaysThrows(/* always_throws= */ true);
        graph_->SetHasAlwaysThrowingInvokes(/* value= */ true);
      }
    }
    return result;
  }

  DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());

  // No try catch inlining allowed here, or recursively. For try catch inlining we are banking on
  // the fact that we have a unique dex pc list. We cannot guarantee that for some TryInline methods
  // e.g. `TryInlinePolymorphicCall`.
  // TODO(solanes): Setting `try_catch_inlining_allowed_` to false here covers all cases from
  // `TryInlineFromCHA` and from `TryInlineFromInlineCache` as well (e.g.
  // `TryInlinePolymorphicCall`). Reassess to see if we can inline inline catch blocks in
  // `TryInlineFromCHA`, `TryInlineMonomorphicCall` and `TryInlinePolymorphicCallToSameTarget`.

  // We store the value to restore it since we will use the same HInliner instance for other inlinee
  // candidates.
  const bool previous_value = try_catch_inlining_allowed_;
  try_catch_inlining_allowed_ = false;

  if (TryInlineFromCHA(invoke_instruction)) {
    try_catch_inlining_allowed_ = previous_value;
    return true;
  }

  const bool result = TryInlineFromInlineCache(invoke_instruction);
  try_catch_inlining_allowed_ = previous_value;
  return result;
}

bool HInliner::TryInlineFromCHA(HInvoke* invoke_instruction) {
  ArtMethod* method = FindMethodFromCHA(invoke_instruction->GetResolvedMethod());
  if (method == nullptr) {
    return false;
  }
  LOG_NOTE() << "Try CHA-based inlining of " << method->PrettyMethod();

  uint32_t dex_pc = invoke_instruction->GetDexPc();
  HInstruction* cursor = invoke_instruction->GetPrevious();
  HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
  Handle<mirror::Class> cls = graph_->GetHandleCache()->NewHandle(method->GetDeclaringClass());
  if (!TryInlineAndReplace(invoke_instruction,
                           method,
                           ReferenceTypeInfo::Create(cls),
                           /* do_rtp= */ true,
                           /* is_speculative= */ true)) {
    return false;
  }
  AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor);
  // Add dependency due to devirtualization: we are assuming the resolved method
  // has a single implementation.
  outermost_graph_->AddCHASingleImplementationDependency(invoke_instruction->GetResolvedMethod());
  MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline);
  return true;
}

bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() {
  // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and
  // do not generate a deopt.
  //
  // For AOT:
  //    Generating a deopt does not ensure that we will actually capture the new types;
  //    and the danger is that we could be stuck in a loop with "forever" deoptimizations.
  //    Take for example the following scenario:
  //      - we capture the inline cache in one run
  //      - the next run, we deoptimize because we miss a type check, but the method
  //        never becomes hot again
  //    In this case, the inline cache will not be updated in the profile and the AOT code
  //    will keep deoptimizing.
  //    Another scenario is if we use profile compilation for a process which is not allowed
  //    to JIT (e.g. system server). If we deoptimize we will run interpreted code for the
  //    rest of the lifetime.
  // TODO(calin):
  //    This is a compromise because we will most likely never update the inline cache
  //    in the profile (unless there's another reason to deopt). So we might be stuck with
  //    a sub-optimal inline cache.
  //    We could be smarter when capturing inline caches to mitigate this.
  //    (e.g. by having different thresholds for new and old methods).
  //
  // For OSR:
  //     We may come from the interpreter and it may have seen different receiver types.
  return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr();
}
bool HInliner::TryInlineFromInlineCache(HInvoke* invoke_instruction)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) {
    return false;
  }

  StackHandleScope<InlineCache::kIndividualCacheSize> classes(Thread::Current());
  // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches
  // for it.
  InlineCacheType inline_cache_type =
      (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote())
          ? GetInlineCacheAOT(invoke_instruction, &classes)
          : GetInlineCacheJIT(invoke_instruction, &classes);

  switch (inline_cache_type) {
    case kInlineCacheNoData: {
      LOG_FAIL_NO_STAT()
          << "No inline cache information for call to "
          << invoke_instruction->GetMethodReference().PrettyMethod();
      return false;
    }

    case kInlineCacheUninitialized: {
      LOG_FAIL_NO_STAT()
          << "Interface or virtual call to "
          << invoke_instruction->GetMethodReference().PrettyMethod()
          << " is not hit and not inlined";
      return false;
    }

    case kInlineCacheMonomorphic: {
      MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall);
      if (UseOnlyPolymorphicInliningWithNoDeopt()) {
        return TryInlinePolymorphicCall(invoke_instruction, classes);
      } else {
        return TryInlineMonomorphicCall(invoke_instruction, classes);
      }
    }

    case kInlineCachePolymorphic: {
      MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall);
      return TryInlinePolymorphicCall(invoke_instruction, classes);
    }

    case kInlineCacheMegamorphic: {
      LOG_FAIL_NO_STAT()
          << "Interface or virtual call to "
          << invoke_instruction->GetMethodReference().PrettyMethod()
          << " is megamorphic and not inlined";
      MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall);
      return false;
    }

    case kInlineCacheMissingTypes: {
      LOG_FAIL_NO_STAT()
          << "Interface or virtual call to "
          << invoke_instruction->GetMethodReference().PrettyMethod()
          << " is missing types and not inlined";
      return false;
    }
  }
  UNREACHABLE();
}

HInliner::InlineCacheType HInliner::GetInlineCacheJIT(
    HInvoke* invoke_instruction,
    /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) {
  DCHECK(codegen_->GetCompilerOptions().IsJitCompiler());

  ArtMethod* caller = graph_->GetArtMethod();
  // Under JIT, we should always know the caller.
  DCHECK(caller != nullptr);
  ProfilingInfo* profiling_info = graph_->GetProfilingInfo();
  if (profiling_info == nullptr) {
    return kInlineCacheNoData;
  }

  InlineCache* cache = profiling_info->GetInlineCache(invoke_instruction->GetDexPc());
  if (cache == nullptr) {
    // This shouldn't happen, but we don't guarantee that method resolution
    // between baseline compilation and optimizing compilation is identical. Be robust,
    // warn about it, and return that we don't have any inline cache data.
    LOG(WARNING) << "No inline cache found for " << caller->PrettyMethod();
    return kInlineCacheNoData;
  }
  Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto(*cache, classes);
  return GetInlineCacheType(*classes);
}

HInliner::InlineCacheType HInliner::GetInlineCacheAOT(
    HInvoke* invoke_instruction,
    /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) {
  DCHECK_EQ(classes->Capacity(), InlineCache::kIndividualCacheSize);
  DCHECK_EQ(classes->Size(), 0u);

  const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo();
  if (pci == nullptr) {
    return kInlineCacheNoData;
  }

  ProfileCompilationInfo::MethodHotness hotness = pci->GetMethodHotness(MethodReference(
      caller_compilation_unit_.GetDexFile(), caller_compilation_unit_.GetDexMethodIndex()));
  if (!hotness.IsHot()) {
    return kInlineCacheNoData;  // no profile information for this invocation.
  }

  const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap();
  DCHECK(inline_caches != nullptr);
  const auto it = inline_caches->find(invoke_instruction->GetDexPc());
  if (it == inline_caches->end()) {
    return kInlineCacheUninitialized;
  }

  const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second;
  if (dex_pc_data.is_missing_types) {
    return kInlineCacheMissingTypes;
  }
  if (dex_pc_data.is_megamorphic) {
    return kInlineCacheMegamorphic;
  }
  DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize);

  // Walk over the class descriptors and look up the actual classes.
  // If we cannot find a type we return kInlineCacheMissingTypes.
  ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
  Thread* self = Thread::Current();
  for (const dex::TypeIndex& type_index : dex_pc_data.classes) {
    const DexFile* dex_file = caller_compilation_unit_.GetDexFile();
    const char* descriptor = pci->GetTypeDescriptor(dex_file, type_index);
    ObjPtr<mirror::Class> clazz =
        class_linker->FindClass(self, descriptor, caller_compilation_unit_.GetClassLoader());
    if (clazz == nullptr) {
      self->ClearException();  // Clean up the exception left by type resolution.
      VLOG(compiler) << "Could not find class from inline cache in AOT mode "
          << invoke_instruction->GetMethodReference().PrettyMethod()
          << " : "
          << descriptor;
      return kInlineCacheMissingTypes;
    }
    DCHECK_LT(classes->Size(), classes->Capacity());
    classes->NewHandle(clazz);
  }

  return GetInlineCacheType(*classes);
}

HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
                                                   HInstruction* receiver,
                                                   uint32_t dex_pc) const {
  ArtField* field = GetClassRoot<mirror::Object>(class_linker)->GetInstanceField(0);
  DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
  HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet(
      receiver,
      field,
      DataType::Type::kReference,
      field->GetOffset(),
      field->IsVolatile(),
      field->GetDexFieldIndex(),
      field->GetDeclaringClass()->GetDexClassDefIndex(),
      *field->GetDexFile(),
      dex_pc);
  // The class of a field is effectively final, and does not have any memory dependencies.
  result->SetSideEffects(SideEffects::None());
  return result;
}

static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass,
                                               HInvoke* invoke_instruction,
                                               PointerSize pointer_size)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
  if (Runtime::Current()->IsAotCompiler()) {
    // We can get unrelated types when working with profiles (corruption,
    // systme updates, or anyone can write to it). So first check if the class
    // actually implements the declaring class of the method that is being
    // called in bytecode.
    // Note: the lookup methods used below require to have assignable types.
    if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) {
      return nullptr;
    }

    // Also check whether the type in the inline cache is an interface or an
    // abstract class. We only expect concrete classes in inline caches, so this
    // means the class was changed.
    if (klass->IsAbstract() || klass->IsInterface()) {
      return nullptr;
    }
  }

  if (invoke_instruction->IsInvokeInterface()) {
    resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size);
  } else {
    DCHECK(invoke_instruction->IsInvokeVirtual());
    resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size);
  }
  // Even if the class exists we can still not have the function the
  // inline-cache targets if the profile is from far enough in the past/future.
  // We need to allow this since we don't update boot-profiles very often. This
  // can occur in boot-profiles with inline-caches.
  DCHECK(Runtime::Current()->IsAotCompiler() || resolved_method != nullptr);
  return resolved_method;
}

bool HInliner::TryInlineMonomorphicCall(
    HInvoke* invoke_instruction,
    const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
  DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
      << invoke_instruction->DebugName();

  dex::TypeIndex class_index = FindClassIndexIn(
      GetMonomorphicType(classes), caller_compilation_unit_);
  if (!class_index.IsValid()) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheInaccessibleToCaller)
        << "Call to " << ArtMethod::PrettyMethod(invoke_instruction->GetResolvedMethod())
        << " from inline cache is not inlined because its class is not"
        << " accessible to the caller";
    return false;
  }

  ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
  PointerSize pointer_size = class_linker->GetImagePointerSize();
  Handle<mirror::Class> monomorphic_type =
      graph_->GetHandleCache()->NewHandle(GetMonomorphicType(classes));
  ArtMethod* resolved_method = ResolveMethodFromInlineCache(
      monomorphic_type, invoke_instruction, pointer_size);
  if (resolved_method == nullptr) {
    // Bogus AOT profile, bail.
    DCHECK(Runtime::Current()->IsAotCompiler());
    return false;
  }

  LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod();
  HInstruction* receiver = invoke_instruction->InputAt(0);
  HInstruction* cursor = invoke_instruction->GetPrevious();
  HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
  if (!TryInlineAndReplace(invoke_instruction,
                           resolved_method,
                           ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true),
                           /* do_rtp= */ false,
                           /* is_speculative= */ true)) {
    return false;
  }

  // We successfully inlined, now add a guard.
  AddTypeGuard(receiver,
               cursor,
               bb_cursor,
               class_index,
               monomorphic_type,
               invoke_instruction,
               /* with_deoptimization= */ true);

  // Lazily run type propagation to get the guard typed, and eventually propagate the
  // type of the receiver.
  run_extra_type_propagation_ = true;

  MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall);
  return true;
}

void HInliner::AddCHAGuard(HInstruction* invoke_instruction,
                           uint32_t dex_pc,
                           HInstruction* cursor,
                           HBasicBlock* bb_cursor) {
  HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator())
      HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc);
  // ShouldDeoptimizeFlag is used to perform a deoptimization because of a CHA
  // invalidation or for debugging reasons. It is OK to just check for non-zero
  // value here instead of the specific CHA value. When a debugging deopt is
  // requested we deoptimize before we execute any code and hence we shouldn't
  // see that case here.
  HInstruction* compare = new (graph_->GetAllocator()) HNotEqual(
      deopt_flag, graph_->GetIntConstant(0, dex_pc));
  HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize(
      graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc);

  if (cursor != nullptr) {
    bb_cursor->InsertInstructionAfter(deopt_flag, cursor);
  } else {
    bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction());
  }
  bb_cursor->InsertInstructionAfter(compare, deopt_flag);
  bb_cursor->InsertInstructionAfter(deopt, compare);

  // Add receiver as input to aid CHA guard optimization later.
  deopt_flag->AddInput(invoke_instruction->InputAt(0));
  DCHECK_EQ(deopt_flag->InputCount(), 1u);
  deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
  outermost_graph_->IncrementNumberOfCHAGuards();
}

HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
                                     HInstruction* cursor,
                                     HBasicBlock* bb_cursor,
                                     dex::TypeIndex class_index,
                                     Handle<mirror::Class> klass,
                                     HInstruction* invoke_instruction,
                                     bool with_deoptimization) {
  ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
  HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
      class_linker, receiver, invoke_instruction->GetDexPc());
  if (cursor != nullptr) {
    bb_cursor->InsertInstructionAfter(receiver_class, cursor);
  } else {
    bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
  }

  const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
  bool is_referrer;
  ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod();
  if (outermost_art_method == nullptr) {
    DCHECK(Runtime::Current()->IsAotCompiler());
    // We are in AOT mode and we don't have an ART method to determine
    // if the inlined method belongs to the referrer. Assume it doesn't.
    is_referrer = false;
  } else {
    is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass();
  }

  // Note that we will just compare the classes, so we don't need Java semantics access checks.
  // Note that the type index and the dex file are relative to the method this type guard is
  // inlined into.
  HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
                                                                   class_index,
                                                                   caller_dex_file,
                                                                   klass,
                                                                   is_referrer,
                                                                   invoke_instruction->GetDexPc(),
                                                                   /* needs_access_check= */ false);
  HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind(
      load_class, codegen_, caller_compilation_unit_);
  DCHECK(kind != HLoadClass::LoadKind::kInvalid)
      << "We should always be able to reference a class for inline caches";
  // Load kind must be set before inserting the instruction into the graph.
  load_class->SetLoadKind(kind);
  bb_cursor->InsertInstructionAfter(load_class, receiver_class);
  // In AOT mode, we will most likely load the class from BSS, which will involve a call
  // to the runtime. In this case, the load instruction will need an environment so copy
  // it from the invoke instruction.
  if (load_class->NeedsEnvironment()) {
    DCHECK(Runtime::Current()->IsAotCompiler());
    load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
  }

  HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class);
  bb_cursor->InsertInstructionAfter(compare, load_class);
  if (with_deoptimization) {
    HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
        graph_->GetAllocator(),
        compare,
        receiver,
        Runtime::Current()->IsAotCompiler()
            ? DeoptimizationKind::kAotInlineCache
            : DeoptimizationKind::kJitInlineCache,
        invoke_instruction->GetDexPc());
    bb_cursor->InsertInstructionAfter(deoptimize, compare);
    deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    DCHECK_EQ(invoke_instruction->InputAt(0), receiver);
    receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
    deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
  }
  return compare;
}

static void MaybeReplaceAndRemove(HInstruction* new_instruction, HInstruction* old_instruction) {
  DCHECK(new_instruction != old_instruction);
  if (new_instruction != nullptr) {
    old_instruction->ReplaceWith(new_instruction);
  }
  old_instruction->GetBlock()->RemoveInstruction(old_instruction);
}

bool HInliner::TryInlinePolymorphicCall(
    HInvoke* invoke_instruction,
    const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
  DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
      << invoke_instruction->DebugName();

  if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, classes)) {
    return true;
  }

  ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
  PointerSize pointer_size = class_linker->GetImagePointerSize();

  bool all_targets_inlined = true;
  bool one_target_inlined = false;
  DCHECK_EQ(classes.Capacity(), InlineCache::kIndividualCacheSize);
  uint8_t number_of_types = classes.Size();
  for (size_t i = 0; i != number_of_types; ++i) {
    DCHECK(classes.GetReference(i) != nullptr);
    Handle<mirror::Class> handle =
        graph_->GetHandleCache()->NewHandle(classes.GetReference(i)->AsClass());
    ArtMethod* method = ResolveMethodFromInlineCache(handle, invoke_instruction, pointer_size);
    if (method == nullptr) {
      DCHECK(Runtime::Current()->IsAotCompiler());
      // AOT profile is bogus. This loop expects to iterate over all entries,
      // so just just continue.
      all_targets_inlined = false;
      continue;
    }

    HInstruction* receiver = invoke_instruction->InputAt(0);
    HInstruction* cursor = invoke_instruction->GetPrevious();
    HBasicBlock* bb_cursor = invoke_instruction->GetBlock();

    dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_);
    HInstruction* return_replacement = nullptr;

    // In monomorphic cases when UseOnlyPolymorphicInliningWithNoDeopt() is true, we call
    // `TryInlinePolymorphicCall` even though we are monomorphic.
    const bool actually_monomorphic = number_of_types == 1;
    DCHECK_IMPLIES(actually_monomorphic, UseOnlyPolymorphicInliningWithNoDeopt());

    // We only want to limit recursive polymorphic cases, not monomorphic ones.
    const bool too_many_polymorphic_recursive_calls =
        !actually_monomorphic &&
        CountRecursiveCallsOf(method) > kMaximumNumberOfPolymorphicRecursiveCalls;
    if (too_many_polymorphic_recursive_calls) {
      LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedPolymorphicRecursiveBudget)
          << "Method " << method->PrettyMethod()
          << " is not inlined because it has reached its polymorphic recursive call budget.";
    } else if (class_index.IsValid()) {
      LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod();
    }

    if (too_many_polymorphic_recursive_calls ||
        !class_index.IsValid() ||
        !TryBuildAndInline(invoke_instruction,
                           method,
                           ReferenceTypeInfo::Create(handle, /* is_exact= */ true),
                           &return_replacement,
                           /* is_speculative= */ true)) {
      all_targets_inlined = false;
    } else {
      one_target_inlined = true;

      LOG_SUCCESS() << "Polymorphic call to "
                    << invoke_instruction->GetMethodReference().PrettyMethod()
                    << " has inlined " << ArtMethod::PrettyMethod(method);

      // If we have inlined all targets before, and this receiver is the last seen,
      // we deoptimize instead of keeping the original invoke instruction.
      bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() &&
          all_targets_inlined &&
          (i + 1 == number_of_types);

      HInstruction* compare = AddTypeGuard(receiver,
                                           cursor,
                                           bb_cursor,
                                           class_index,
                                           handle,
                                           invoke_instruction,
                                           deoptimize);
      if (deoptimize) {
        MaybeReplaceAndRemove(return_replacement, invoke_instruction);
      } else {
        CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
      }
    }
  }

  if (!one_target_inlined) {
    LOG_FAIL_NO_STAT()
        << "Call to " << invoke_instruction->GetMethodReference().PrettyMethod()
        << " from inline cache is not inlined because none"
        << " of its targets could be inlined";
    return false;
  }

  MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);

  // Lazily run type propagation to get the guards typed.
  run_extra_type_propagation_ = true;
  return true;
}

void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
                                                        HInstruction* return_replacement,
                                                        HInstruction* invoke_instruction) {
  uint32_t dex_pc = invoke_instruction->GetDexPc();
  HBasicBlock* cursor_block = compare->GetBlock();
  HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
  ArenaAllocator* allocator = graph_->GetAllocator();

  // Spit the block after the compare: `cursor_block` will now be the start of the diamond,
  // and the returned block is the start of the then branch (that could contain multiple blocks).
  HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);

  // Split the block containing the invoke before and after the invoke. The returned block
  // of the split before will contain the invoke and will be the otherwise branch of
  // the diamond. The returned block of the split after will be the merge block
  // of the diamond.
  HBasicBlock* end_then = invoke_instruction->GetBlock();
  HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
  HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);

  // If the methods we are inlining return a value, we create a phi in the merge block
  // that will have the `invoke_instruction and the `return_replacement` as inputs.
  if (return_replacement != nullptr) {
    HPhi* phi = new (allocator) HPhi(
        allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
    merge->AddPhi(phi);
    invoke_instruction->ReplaceWith(phi);
    phi->AddInput(return_replacement);
    phi->AddInput(invoke_instruction);
  }

  // Add the control flow instructions.
  otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
  end_then->AddInstruction(new (allocator) HGoto(dex_pc));
  cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));

  // Add the newly created blocks to the graph.
  graph_->AddBlock(then);
  graph_->AddBlock(otherwise);
  graph_->AddBlock(merge);

  // Set up successor (and implictly predecessor) relations.
  cursor_block->AddSuccessor(otherwise);
  cursor_block->AddSuccessor(then);
  end_then->AddSuccessor(merge);
  otherwise->AddSuccessor(merge);

  // Set up dominance information.
  then->SetDominator(cursor_block);
  cursor_block->AddDominatedBlock(then);
  otherwise->SetDominator(cursor_block);
  cursor_block->AddDominatedBlock(otherwise);
  merge->SetDominator(cursor_block);
  cursor_block->AddDominatedBlock(merge);

  // Update the revert post order.
  size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
  MakeRoomFor(&graph_->reverse_post_order_, 1, index);
  graph_->reverse_post_order_[++index] = then;
  index = IndexOfElement(graph_->reverse_post_order_, end_then);
  MakeRoomFor(&graph_->reverse_post_order_, 2, index);
  graph_->reverse_post_order_[++index] = otherwise;
  graph_->reverse_post_order_[++index] = merge;


  graph_->UpdateLoopAndTryInformationOfNewBlock(
      then, original_invoke_block, /* replace_if_back_edge= */ false);
  graph_->UpdateLoopAndTryInformationOfNewBlock(
      otherwise, original_invoke_block, /* replace_if_back_edge= */ false);

  // In case the original invoke location was a back edge, we need to update
  // the loop to now have the merge block as a back edge.
  graph_->UpdateLoopAndTryInformationOfNewBlock(
      merge, original_invoke_block, /* replace_if_back_edge= */ true);
}

bool HInliner::TryInlinePolymorphicCallToSameTarget(
    HInvoke* invoke_instruction,
    const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
  // This optimization only works under JIT for now.
  if (!codegen_->GetCompilerOptions().IsJitCompiler()) {
    return false;
  }

  ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
  PointerSize pointer_size = class_linker->GetImagePointerSize();

  ArtMethod* actual_method = nullptr;
  size_t method_index = invoke_instruction->IsInvokeVirtual()
      ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
      : invoke_instruction->AsInvokeInterface()->GetImtIndex();

  // Check whether we are actually calling the same method among
  // the different types seen.
  DCHECK_EQ(classes.Capacity(), InlineCache::kIndividualCacheSize);
  uint8_t number_of_types = classes.Size();
  for (size_t i = 0; i != number_of_types; ++i) {
    DCHECK(classes.GetReference(i) != nullptr);
    ArtMethod* new_method = nullptr;
    if (invoke_instruction->IsInvokeInterface()) {
      new_method = classes.GetReference(i)->AsClass()->GetImt(pointer_size)->Get(
          method_index, pointer_size);
      if (new_method->IsRuntimeMethod()) {
        // Bail out as soon as we see a conflict trampoline in one of the target's
        // interface table.
        return false;
      }
    } else {
      DCHECK(invoke_instruction->IsInvokeVirtual());
      new_method =
          classes.GetReference(i)->AsClass()->GetEmbeddedVTableEntry(method_index, pointer_size);
    }
    DCHECK(new_method != nullptr);
    if (actual_method == nullptr) {
      actual_method = new_method;
    } else if (actual_method != new_method) {
      // Different methods, bailout.
      return false;
    }
  }

  HInstruction* receiver = invoke_instruction->InputAt(0);
  HInstruction* cursor = invoke_instruction->GetPrevious();
  HBasicBlock* bb_cursor = invoke_instruction->GetBlock();

  HInstruction* return_replacement = nullptr;
  Handle<mirror::Class> cls =
      graph_->GetHandleCache()->NewHandle(actual_method->GetDeclaringClass());
  if (!TryBuildAndInline(invoke_instruction,
                         actual_method,
                         ReferenceTypeInfo::Create(cls),
                         &return_replacement,
                         /* is_speculative= */ true)) {
    return false;
  }

  // We successfully inlined, now add a guard.
  HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
      class_linker, receiver, invoke_instruction->GetDexPc());

  DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
      ? DataType::Type::kInt64
      : DataType::Type::kInt32;
  HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet(
      receiver_class,
      type,
      invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
                                            : HClassTableGet::TableKind::kIMTable,
      method_index,
      invoke_instruction->GetDexPc());

  HConstant* constant;
  if (type == DataType::Type::kInt64) {
    constant = graph_->GetLongConstant(
        reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
  } else {
    constant = graph_->GetIntConstant(
        reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
  }

  HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant);
  if (cursor != nullptr) {
    bb_cursor->InsertInstructionAfter(receiver_class, cursor);
  } else {
    bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
  }
  bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
  bb_cursor->InsertInstructionAfter(compare, class_table_get);

  if (outermost_graph_->IsCompilingOsr()) {
    CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
  } else {
    HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
        graph_->GetAllocator(),
        compare,
        receiver,
        DeoptimizationKind::kJitSameTarget,
        invoke_instruction->GetDexPc());
    bb_cursor->InsertInstructionAfter(deoptimize, compare);
    deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    MaybeReplaceAndRemove(return_replacement, invoke_instruction);
    receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
    deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
  }

  // Lazily run type propagation to get the guard typed.
  run_extra_type_propagation_ = true;
  MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);

  LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod();
  return true;
}

void HInliner::MaybeRunReferenceTypePropagation(HInstruction* replacement,
                                                HInvoke* invoke_instruction) {
  if (ReturnTypeMoreSpecific(replacement, invoke_instruction)) {
    // Actual return value has a more specific type than the method's declared
    // return type. Run RTP again on the outer graph to propagate it.
    ReferenceTypePropagation(graph_,
                             outer_compilation_unit_.GetDexCache(),
                             /* is_first_run= */ false).Run();
  }
}

bool HInliner::TryDevirtualize(HInvoke* invoke_instruction,
                               ArtMethod* method,
                               HInvoke** replacement) {
  DCHECK(invoke_instruction != *replacement);
  if (!invoke_instruction->IsInvokeInterface() && !invoke_instruction->IsInvokeVirtual()) {
    return false;
  }

  // Don't try to devirtualize intrinsics as it breaks pattern matching from later phases.
  // TODO(solanes): This `if` could be removed if we update optimizations like
  // TryReplaceStringBuilderAppend.
  if (invoke_instruction->IsIntrinsic()) {
    return false;
  }

  // Don't bother trying to call directly a default conflict method. It
  // doesn't have a proper MethodReference, but also `GetCanonicalMethod`
  // will return an actual default implementation.
  if (method->IsDefaultConflicting()) {
    return false;
  }
  DCHECK(!method->IsProxyMethod());
  ClassLinker* cl = Runtime::Current()->GetClassLinker();
  PointerSize pointer_size = cl->GetImagePointerSize();
  // The sharpening logic assumes the caller isn't passing a copied method.
  method = method->GetCanonicalMethod(pointer_size);
  uint32_t dex_method_index = FindMethodIndexIn(
      method,
      *invoke_instruction->GetMethodReference().dex_file,
      invoke_instruction->GetMethodReference().index);
  if (dex_method_index == dex::kDexNoIndex) {
    return false;
  }
  HInvokeStaticOrDirect::DispatchInfo dispatch_info =
      HSharpening::SharpenLoadMethod(method,
                                     /* has_method_id= */ true,
                                     /* for_interface_call= */ false,
                                     codegen_);
  DCHECK_NE(dispatch_info.code_ptr_location, CodePtrLocation::kCallCriticalNative);
  if (dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall) {
    // If sharpening returns that we need to load the method at runtime, keep
    // the virtual/interface call which will be faster.
    // Also, the entrypoints for runtime calls do not handle devirtualized
    // calls.
    return false;
  }

  HInvokeStaticOrDirect* new_invoke = new (graph_->GetAllocator()) HInvokeStaticOrDirect(
      graph_->GetAllocator(),
      invoke_instruction->GetNumberOfArguments(),
      invoke_instruction->GetType(),
      invoke_instruction->GetDexPc(),
      MethodReference(invoke_instruction->GetMethodReference().dex_file, dex_method_index),
      method,
      dispatch_info,
      kDirect,
      MethodReference(method->GetDexFile(), method->GetDexMethodIndex()),
      HInvokeStaticOrDirect::ClinitCheckRequirement::kNone,
      !graph_->IsDebuggable());
  HInputsRef inputs = invoke_instruction->GetInputs();
  DCHECK_EQ(inputs.size(), invoke_instruction->GetNumberOfArguments());
  for (size_t index = 0; index != inputs.size(); ++index) {
    new_invoke->SetArgumentAt(index, inputs[index]);
  }
  if (HInvokeStaticOrDirect::NeedsCurrentMethodInput(dispatch_info)) {
    new_invoke->SetRawInputAt(new_invoke->GetCurrentMethodIndexUnchecked(),
                              graph_->GetCurrentMethod());
  }
  invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
  new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
  if (invoke_instruction->GetType() == DataType::Type::kReference) {
    new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo());
  }
  *replacement = new_invoke;

  MaybeReplaceAndRemove(*replacement, invoke_instruction);
  // No need to call MaybeRunReferenceTypePropagation, as we know the return type
  // cannot be more specific.
  DCHECK(!ReturnTypeMoreSpecific(*replacement, invoke_instruction));
  return true;
}


bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction,
                                   ArtMethod* method,
                                   ReferenceTypeInfo receiver_type,
                                   bool do_rtp,
                                   bool is_speculative) {
  DCHECK(!codegen_->IsImplementedIntrinsic(invoke_instruction));
  HInstruction* return_replacement = nullptr;

  if (!TryBuildAndInline(
          invoke_instruction, method, receiver_type, &return_replacement, is_speculative)) {
    return false;
  }

  MaybeReplaceAndRemove(return_replacement, invoke_instruction);
  FixUpReturnReferenceType(method, return_replacement);
  if (do_rtp) {
    MaybeRunReferenceTypePropagation(return_replacement, invoke_instruction);
  }
  return true;
}

size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const {
  const HInliner* current = this;
  size_t count = 0;
  do {
    if (current->graph_->GetArtMethod() == method) {
      ++count;
    }
    current = current->parent_;
  } while (current != nullptr);
  return count;
}

static inline bool MayInline(const CompilerOptions& compiler_options,
                             const DexFile& inlined_from,
                             const DexFile& inlined_into) {
  // We're not allowed to inline across dex files if we're the no-inline-from dex file.
  if (!IsSameDexFile(inlined_from, inlined_into) &&
      ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) {
    return false;
  }

  return true;
}

// Returns whether inlining is allowed based on ART semantics.
bool HInliner::IsInliningAllowed(ArtMethod* method, const CodeItemDataAccessor& accessor) const {
  if (!accessor.HasCodeItem()) {
    LOG_FAIL_NO_STAT()
        << "Method " << method->PrettyMethod() << " is not inlined because it is native";
    return false;
  }

  if (!method->IsCompilable()) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotCompilable)
        << "Method " << method->PrettyMethod()
        << " has soft failures un-handled by the compiler, so it cannot be inlined";
    return false;
  }

  if (!IsMethodVerified(method)) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
        << "Method " << method->PrettyMethod()
        << " couldn't be verified, so it cannot be inlined";
    return false;
  }

  if (annotations::MethodIsNeverInline(*method->GetDexFile(),
                                       method->GetClassDef(),
                                       method->GetDexMethodIndex())) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNeverInlineAnnotation)
        << "Method " << method->PrettyMethod()
        << " has the @NeverInline annotation so it won't be inlined";
    return false;
  }

  return true;
}

// Returns whether ART supports inlining this method.
//
// Some methods are not supported because they have features for which inlining
// is not implemented. For example, we do not currently support inlining throw
// instructions into a try block.
bool HInliner::IsInliningSupported(const HInvoke* invoke_instruction,
                                   ArtMethod* method,
                                   const CodeItemDataAccessor& accessor) const {
  if (method->IsProxyMethod()) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy)
        << "Method " << method->PrettyMethod()
        << " is not inlined because of unimplemented inline support for proxy methods.";
    return false;
  }

  if (accessor.TriesSize() != 0) {
    if (!kInlineTryCatches) {
      LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchDisabled)
          << "Method " << method->PrettyMethod()
          << " is not inlined because inlining try catches is disabled globally";
      return false;
    }
    const bool disallowed_try_catch_inlining =
        // Direct parent is a try block.
        invoke_instruction->GetBlock()->IsTryBlock() ||
        // Indirect parent disallows try catch inlining.
        !try_catch_inlining_allowed_;
    if (disallowed_try_catch_inlining) {
      LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchCallee)
          << "Method " << method->PrettyMethod()
          << " is not inlined because it has a try catch and we are not supporting it for this"
          << " particular call. This is could be because e.g. it would be inlined inside another"
          << " try block, we arrived here from TryInlinePolymorphicCall, etc.";
      return false;
    }
  }

  if (invoke_instruction->IsInvokeStaticOrDirect() &&
      invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
    // Case of a static method that cannot be inlined because it implicitly
    // requires an initialization check of its declaring class.
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheClinitCheck)
        << "Method " << method->PrettyMethod()
        << " is not inlined because it is static and requires a clinit"
        << " check that cannot be emitted due to Dex cache limitations";
    return false;
  }

  return true;
}

bool HInliner::IsInliningEncouraged(const HInvoke* invoke_instruction,
                                    ArtMethod* method,
                                    const CodeItemDataAccessor& accessor) const {
  if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget)
        << "Method "
        << method->PrettyMethod()
        << " is not inlined because it has reached its recursive call budget.";
    return false;
  }

  size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits();
  if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem)
        << "Method " << method->PrettyMethod()
        << " is not inlined because its code item is too big: "
        << accessor.InsnsSizeInCodeUnits()
        << " > "
        << inline_max_code_units;
    return false;
  }

  if (invoke_instruction->GetBlock()->GetLastInstruction()->IsThrow()) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEndsWithThrow)
        << "Method " << method->PrettyMethod()
        << " is not inlined because its block ends with a throw";
    return false;
  }

  return true;
}

bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
                                 ArtMethod* method,
                                 ReferenceTypeInfo receiver_type,
                                 HInstruction** return_replacement,
                                 bool is_speculative) {
  // If invoke_instruction is devirtualized to a different method, give intrinsics
  // another chance before we try to inline it.
  if (invoke_instruction->GetResolvedMethod() != method && method->IsIntrinsic()) {
    MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized);
    // For simplicity, always create a new instruction to replace the existing
    // invoke.
    HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
        graph_->GetAllocator(),
        invoke_instruction->GetNumberOfArguments(),
        invoke_instruction->GetType(),
        invoke_instruction->GetDexPc(),
        invoke_instruction->GetMethodReference(),  // Use existing invoke's method's reference.
        method,
        MethodReference(method->GetDexFile(), method->GetDexMethodIndex()),
        method->GetMethodIndex(),
        !graph_->IsDebuggable());
    DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone);
    HInputsRef inputs = invoke_instruction->GetInputs();
    for (size_t index = 0; index != inputs.size(); ++index) {
      new_invoke->SetArgumentAt(index, inputs[index]);
    }
    invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
    new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    if (invoke_instruction->GetType() == DataType::Type::kReference) {
      new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo());
    }
    *return_replacement = new_invoke;
    return true;
  }

  // Check whether we're allowed to inline. The outermost compilation unit is the relevant
  // dex file here (though the transitivity of an inline chain would allow checking the caller).
  if (!MayInline(codegen_->GetCompilerOptions(),
                 *method->GetDexFile(),
                 *outer_compilation_unit_.GetDexFile())) {
    if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) {
      LOG_SUCCESS() << "Successfully replaced pattern of invoke "
                    << method->PrettyMethod();
      MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern);
      return true;
    }
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont)
        << "Won't inline " << method->PrettyMethod() << " in "
        << outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
        << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
        << method->GetDexFile()->GetLocation();
    return false;
  }

  CodeItemDataAccessor accessor(method->DexInstructionData());

  if (!IsInliningAllowed(method, accessor)) {
    return false;
  }

  if (!IsInliningSupported(invoke_instruction, method, accessor)) {
    return false;
  }

  if (!IsInliningEncouraged(invoke_instruction, method, accessor)) {
    return false;
  }

  if (!TryBuildAndInlineHelper(
          invoke_instruction, method, receiver_type, return_replacement, is_speculative)) {
    return false;
  }

  LOG_SUCCESS() << method->PrettyMethod();
  MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke);
  if (outermost_graph_ == graph_) {
    MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvoke);
  }
  return true;
}

static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
                                                   size_t arg_vreg_index)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  size_t input_index = 0;
  for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
    DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
    if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
      ++i;
      DCHECK_NE(i, arg_vreg_index);
    }
  }
  DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
  return invoke_instruction->InputAt(input_index);
}

// Try to recognize known simple patterns and replace invoke call with appropriate instructions.
bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
                                      ArtMethod* method,
                                      HInstruction** return_replacement) {
  InlineMethod inline_method;
  if (!InlineMethodAnalyser::AnalyseMethodCode(method, &inline_method)) {
    return false;
  }

  switch (inline_method.opcode) {
    case kInlineOpNop:
      DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid);
      *return_replacement = nullptr;
      break;
    case kInlineOpReturnArg:
      *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
                                                          inline_method.d.return_data.arg);
      break;
    case kInlineOpNonWideConst: {
      char shorty0 = method->GetShorty()[0];
      if (shorty0 == 'L') {
        DCHECK_EQ(inline_method.d.data, 0u);
        *return_replacement = graph_->GetNullConstant();
      } else if (shorty0 == 'F') {
        *return_replacement = graph_->GetFloatConstant(
            bit_cast<float, int32_t>(static_cast<int32_t>(inline_method.d.data)));
      } else {
        *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
      }
      break;
    }
    case kInlineOpIGet: {
      const InlineIGetIPutData& data = inline_method.d.ifield_data;
      if (data.method_is_static || data.object_arg != 0u) {
        // TODO: Needs null check.
        return false;
      }
      HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
      HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, method, obj);
      DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
      DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
      invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
      *return_replacement = iget;
      break;
    }
    case kInlineOpIPut: {
      const InlineIGetIPutData& data = inline_method.d.ifield_data;
      if (data.method_is_static || data.object_arg != 0u) {
        // TODO: Needs null check.
        return false;
      }
      HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
      HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
      HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, method, obj, value);
      DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
      DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
      invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
      if (data.return_arg_plus1 != 0u) {
        size_t return_arg = data.return_arg_plus1 - 1u;
        *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
      }
      break;
    }
    case kInlineOpConstructor: {
      const InlineConstructorData& data = inline_method.d.constructor_data;
      // Get the indexes to arrays for easier processing.
      uint16_t iput_field_indexes[] = {
          data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
      };
      uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
      static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
      // Count valid field indexes.
      size_t number_of_iputs = 0u;
      while (number_of_iputs != arraysize(iput_field_indexes) &&
          iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) {
        // Check that there are no duplicate valid field indexes.
        DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1,
                                iput_field_indexes + arraysize(iput_field_indexes),
                                iput_field_indexes[number_of_iputs]));
        ++number_of_iputs;
      }
      // Check that there are no valid field indexes in the rest of the array.
      DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs,
                                 iput_field_indexes + arraysize(iput_field_indexes),
                                 [](uint16_t index) { return index != DexFile::kDexNoIndex16; }));

      // Create HInstanceFieldSet for each IPUT that stores non-zero data.
      HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction,
                                                        /* arg_vreg_index= */ 0u);
      bool needs_constructor_barrier = false;
      for (size_t i = 0; i != number_of_iputs; ++i) {
        HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
        if (!IsZeroBitPattern(value)) {
          uint16_t field_index = iput_field_indexes[i];
          bool is_final;
          HInstanceFieldSet* iput =
              CreateInstanceFieldSet(field_index, method, obj, value, &is_final);
          invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);

          // Check whether the field is final. If it is, we need to add a barrier.
          if (is_final) {
            needs_constructor_barrier = true;
          }
        }
      }
      if (needs_constructor_barrier) {
        // See DexCompilationUnit::RequiresConstructorBarrier for more details.
        DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence";

        HConstructorFence* constructor_fence =
            new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator());
        invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence,
                                                                invoke_instruction);
      }
      *return_replacement = nullptr;
      break;
    }
    default:
      LOG(FATAL) << "UNREACHABLE";
      UNREACHABLE();
  }
  return true;
}

HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index,
                                                    ArtMethod* referrer,
                                                    HInstruction* obj)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  ArtField* resolved_field =
      class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
  DCHECK(resolved_field != nullptr);
  HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet(
      obj,
      resolved_field,
      DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
      resolved_field->GetOffset(),
      resolved_field->IsVolatile(),
      field_index,
      resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
      *referrer->GetDexFile(),
      // Read barrier generates a runtime call in slow path and we need a valid
      // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
      /* dex_pc= */ 0);
  if (iget->GetType() == DataType::Type::kReference) {
    // Use the same dex_cache that we used for field lookup as the hint_dex_cache.
    Handle<mirror::DexCache> dex_cache =
        graph_->GetHandleCache()->NewHandle(referrer->GetDexCache());
    ReferenceTypePropagation rtp(graph_,
                                 dex_cache,
                                 /* is_first_run= */ false);
    rtp.Visit(iget);
  }
  return iget;
}

HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index,
                                                    ArtMethod* referrer,
                                                    HInstruction* obj,
                                                    HInstruction* value,
                                                    bool* is_final)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  ArtField* resolved_field =
      class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
  DCHECK(resolved_field != nullptr);
  if (is_final != nullptr) {
    // This information is needed only for constructors.
    DCHECK(referrer->IsConstructor());
    *is_final = resolved_field->IsFinal();
  }
  HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet(
      obj,
      value,
      resolved_field,
      DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
      resolved_field->GetOffset(),
      resolved_field->IsVolatile(),
      field_index,
      resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
      *referrer->GetDexFile(),
      // Read barrier generates a runtime call in slow path and we need a valid
      // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
      /* dex_pc= */ 0);
  return iput;
}

template <typename T>
static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object, Handle<T> hint, HGraph* graph)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  return (object != hint.Get()) ? graph->GetHandleCache()->NewHandle(object) : hint;
}

static bool CanEncodeInlinedMethodInStackMap(const DexFile& outer_dex_file,
                                             ArtMethod* callee,
                                             const CodeGenerator* codegen,
                                             bool* out_needs_bss_check)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  if (!Runtime::Current()->IsAotCompiler()) {
    // JIT can always encode methods in stack maps.
    return true;
  }

  const DexFile* dex_file = callee->GetDexFile();
  if (IsSameDexFile(outer_dex_file, *dex_file)) {
    return true;
  }

  // Inline across dexfiles if the callee's DexFile is:
  // 1) in the bootclasspath, or
  if (callee->GetDeclaringClass()->IsBootStrapClassLoaded()) {
    // In multi-image, each BCP DexFile has their own OatWriter. Since they don't cooperate with
    // each other, we request the BSS check for them.
    // TODO(solanes, 154012332): Add .bss support for BCP multi-image.
    *out_needs_bss_check = codegen->GetCompilerOptions().IsMultiImage();
    return true;
  }

  // 2) is a non-BCP dexfile with the OatFile we are compiling.
  if (codegen->GetCompilerOptions().WithinOatFile(dex_file)) {
    return true;
  }

  // TODO(solanes): Support more AOT cases for inlining:
  // - methods in class loader context's DexFiles
  return false;
}

  // Substitutes parameters in the callee graph with their values from the caller.
void HInliner::SubstituteArguments(HGraph* callee_graph,
                                   HInvoke* invoke_instruction,
                                   ReferenceTypeInfo receiver_type,
                                   const DexCompilationUnit& dex_compilation_unit) {
  ArtMethod* const resolved_method = callee_graph->GetArtMethod();
  size_t parameter_index = 0;
  bool run_rtp = false;
  for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
       !instructions.Done();
       instructions.Advance()) {
    HInstruction* current = instructions.Current();
    if (current->IsParameterValue()) {
      HInstruction* argument = invoke_instruction->InputAt(parameter_index);
      if (argument->IsNullConstant()) {
        current->ReplaceWith(callee_graph->GetNullConstant());
      } else if (argument->IsIntConstant()) {
        current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
      } else if (argument->IsLongConstant()) {
        current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
      } else if (argument->IsFloatConstant()) {
        current->ReplaceWith(
            callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
      } else if (argument->IsDoubleConstant()) {
        current->ReplaceWith(
            callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
      } else if (argument->GetType() == DataType::Type::kReference) {
        if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) {
          run_rtp = true;
          current->SetReferenceTypeInfo(receiver_type);
        } else {
          current->SetReferenceTypeInfoIfValid(argument->GetReferenceTypeInfo());
        }
        current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
      }
      ++parameter_index;
    }
  }

  // We have replaced formal arguments with actual arguments. If actual types
  // are more specific than the declared ones, run RTP again on the inner graph.
  if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
    ReferenceTypePropagation(callee_graph,
                             dex_compilation_unit.GetDexCache(),
                             /* is_first_run= */ false).Run();
  }
}

// Returns whether we can inline the callee_graph into the target_block.
//
// This performs a combination of semantics checks, compiler support checks, and
// resource limit checks.
//
// If this function returns true, it will also set out_number_of_instructions to
// the number of instructions in the inlined body.
bool HInliner::CanInlineBody(const HGraph* callee_graph,
                             HInvoke* invoke,
                             size_t* out_number_of_instructions,
                             bool is_speculative) const {
  ArtMethod* const resolved_method = callee_graph->GetArtMethod();

  HBasicBlock* exit_block = callee_graph->GetExitBlock();
  if (exit_block == nullptr) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
        << "Method " << resolved_method->PrettyMethod()
        << " could not be inlined because it has an infinite loop";
    return false;
  }

  bool has_one_return = false;
  for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
    const HInstruction* last_instruction = predecessor->GetLastInstruction();
    // On inlinees, we can have Return/ReturnVoid/Throw -> TryBoundary -> Exit. To check for the
    // actual last instruction, we have to skip the TryBoundary instruction.
    if (last_instruction->IsTryBoundary()) {
      predecessor = predecessor->GetSinglePredecessor();
      last_instruction = predecessor->GetLastInstruction();

      // If the last instruction chain is Return/ReturnVoid -> TryBoundary -> Exit we will have to
      // split a critical edge in InlineInto and might recompute loop information, which is
      // unsupported for irreducible loops.
      if (!last_instruction->IsThrow() && graph_->HasIrreducibleLoops()) {
        DCHECK(last_instruction->IsReturn() || last_instruction->IsReturnVoid());
        // TODO(ngeoffray): Support re-computing loop information to graphs with
        // irreducible loops?
        LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller)
            << "Method " << resolved_method->PrettyMethod()
            << " could not be inlined because we will have to recompute the loop information and"
            << " the caller has irreducible loops";
        return false;
      }
    }

    if (last_instruction->IsThrow()) {
      if (graph_->GetExitBlock() == nullptr) {
        // TODO(ngeoffray): Support adding HExit in the caller graph.
        LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
            << "Method " << resolved_method->PrettyMethod()
            << " could not be inlined because one branch always throws and"
            << " caller does not have an exit block";
        return false;
      } else if (graph_->HasIrreducibleLoops()) {
        // TODO(ngeoffray): Support re-computing loop information to graphs with
        // irreducible loops?
        LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller)
            << "Method " << resolved_method->PrettyMethod()
            << " could not be inlined because one branch always throws and"
            << " the caller has irreducible loops";
        return false;
      }
    } else {
      has_one_return = true;
    }
  }

  if (!has_one_return) {
    if (!is_speculative) {
      // If we know that the method always throws with the particular parameters, set it as such.
      // This is better than using the dex instructions as we have more information about this
      // particular call. We don't mark speculative inlines (e.g. the ones from the inline cache) as
      // always throwing since they might not throw when executed.
      invoke->SetAlwaysThrows(/* always_throws= */ true);
      graph_->SetHasAlwaysThrowingInvokes(/* value= */ true);
    }

    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows)
        << "Method " << resolved_method->PrettyMethod()
        << " could not be inlined because it always throws";
    return false;
  }

  const bool too_many_registers =
      total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters;
  bool needs_bss_check = false;
  const bool can_encode_in_stack_map = CanEncodeInlinedMethodInStackMap(
      *outer_compilation_unit_.GetDexFile(), resolved_method, codegen_, &needs_bss_check);
  size_t number_of_instructions = 0;
  // Skip the entry block, it does not contain instructions that prevent inlining.
  for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) {
    if (block->IsLoopHeader()) {
      if (block->GetLoopInformation()->IsIrreducible()) {
        // Don't inline methods with irreducible loops, they could prevent some
        // optimizations to run.
        LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCallee)
            << "Method " << resolved_method->PrettyMethod()
            << " could not be inlined because it contains an irreducible loop";
        return false;
      }
      if (!block->GetLoopInformation()->HasExitEdge()) {
        // Don't inline methods with loops without exit, since they cause the
        // loop information to be computed incorrectly when updating after
        // inlining.
        LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit)
            << "Method " << resolved_method->PrettyMethod()
            << " could not be inlined because it contains a loop with no exit";
        return false;
      }
    }

    for (HInstructionIterator instr_it(block->GetInstructions());
         !instr_it.Done();
         instr_it.Advance()) {
      if (++number_of_instructions > inlining_budget_) {
        LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget)
            << "Method " << resolved_method->PrettyMethod()
            << " is not inlined because the outer method has reached"
            << " its instruction budget limit.";
        return false;
      }
      HInstruction* current = instr_it.Current();
      if (current->NeedsEnvironment()) {
        if (too_many_registers) {
          LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget)
              << "Method " << resolved_method->PrettyMethod()
              << " is not inlined because its caller has reached"
              << " its environment budget limit.";
          return false;
        }

        if (!can_encode_in_stack_map) {
          LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps)
              << "Method " << resolved_method->PrettyMethod() << " could not be inlined because "
              << current->DebugName() << " needs an environment, is in a different dex file"
              << ", and cannot be encoded in the stack maps.";
          return false;
        }
      }

      if (current->IsUnresolvedStaticFieldGet() ||
          current->IsUnresolvedInstanceFieldGet() ||
          current->IsUnresolvedStaticFieldSet() ||
          current->IsUnresolvedInstanceFieldSet() ||
          current->IsInvokeUnresolved()) {
        // Unresolved invokes / field accesses are expensive at runtime when decoding inlining info,
        // so don't inline methods that have them.
        LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint)
            << "Method " << resolved_method->PrettyMethod()
            << " could not be inlined because it is using an unresolved"
            << " entrypoint";
        return false;
      }

      // We currently don't have support for inlining across dex files if we are:
      // 1) In AoT,
      // 2) cross-dex inlining,
      // 3) the callee is a BCP DexFile,
      // 4) we are compiling multi image, and
      // 5) have an instruction that needs a bss entry, which will always be
      // 5)b) an instruction that needs an environment.
      // 1) - 4) are encoded in `needs_bss_check` (see CanEncodeInlinedMethodInStackMap).
      if (needs_bss_check && current->NeedsBss()) {
        DCHECK(current->NeedsEnvironment());
        LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedBss)
            << "Method " << resolved_method->PrettyMethod()
            << " could not be inlined because it needs a BSS check";
        return false;
      }
    }
  }

  *out_number_of_instructions = number_of_instructions;
  return true;
}

bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
                                       ArtMethod* resolved_method,
                                       ReferenceTypeInfo receiver_type,
                                       HInstruction** return_replacement,
                                       bool is_speculative) {
  DCHECK_IMPLIES(resolved_method->IsStatic(), !receiver_type.IsValid());
  DCHECK_IMPLIES(!resolved_method->IsStatic(), receiver_type.IsValid());
  const dex::CodeItem* code_item = resolved_method->GetCodeItem();
  const DexFile& callee_dex_file = *resolved_method->GetDexFile();
  uint32_t method_index = resolved_method->GetDexMethodIndex();
  CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo());
  ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
  Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(),
                                                            caller_compilation_unit_.GetDexCache(),
                                                            graph_);
  Handle<mirror::ClassLoader> class_loader =
      NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(),
                           caller_compilation_unit_.GetClassLoader(),
                           graph_);

  Handle<mirror::Class> compiling_class =
      graph_->GetHandleCache()->NewHandle(resolved_method->GetDeclaringClass());
  DexCompilationUnit dex_compilation_unit(
      class_loader,
      class_linker,
      callee_dex_file,
      code_item,
      resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
      method_index,
      resolved_method->GetAccessFlags(),
      /* verified_method= */ nullptr,
      dex_cache,
      compiling_class);

  InvokeType invoke_type = invoke_instruction->GetInvokeType();
  if (invoke_type == kInterface) {
    // We have statically resolved the dispatch. To please the class linker
    // at runtime, we change this call as if it was a virtual call.
    invoke_type = kVirtual;
  }

  bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe();
  const dex::ClassDef& callee_class = resolved_method->GetClassDef();
  // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
  // is currently rarely true.
  bool callee_dead_reference_safe =
      annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class)
      && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index);

  const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
  HGraph* callee_graph = new (graph_->GetAllocator()) HGraph(
      graph_->GetAllocator(),
      graph_->GetArenaStack(),
      graph_->GetHandleCache()->GetHandles(),
      callee_dex_file,
      method_index,
      codegen_->GetCompilerOptions().GetInstructionSet(),
      invoke_type,
      callee_dead_reference_safe,
      graph_->IsDebuggable(),
      graph_->GetCompilationKind(),
      /* start_instruction_id= */ caller_instruction_counter);
  callee_graph->SetArtMethod(resolved_method);

  ScopedProfilingInfoUse spiu(Runtime::Current()->GetJit(), resolved_method, Thread::Current());
  if (Runtime::Current()->GetJit() != nullptr) {
    callee_graph->SetProfilingInfo(spiu.GetProfilingInfo());
  }

  // When they are needed, allocate `inline_stats_` on the Arena instead
  // of on the stack, as Clang might produce a stack frame too large
  // for this function, that would not fit the requirements of the
  // `-Wframe-larger-than` option.
  if (stats_ != nullptr) {
    // Reuse one object for all inline attempts from this caller to keep Arena memory usage low.
    if (inline_stats_ == nullptr) {
      void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc);
      inline_stats_ = new (storage) OptimizingCompilerStats;
    } else {
      inline_stats_->Reset();
    }
  }
  HGraphBuilder builder(callee_graph,
                        code_item_accessor,
                        &dex_compilation_unit,
                        &outer_compilation_unit_,
                        codegen_,
                        inline_stats_);

  if (builder.BuildGraph() != kAnalysisSuccess) {
    LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild)
        << "Method " << callee_dex_file.PrettyMethod(method_index)
        << " could not be built, so cannot be inlined";
    return false;
  }

  SubstituteArguments(callee_graph, invoke_instruction, receiver_type, dex_compilation_unit);

  const bool try_catch_inlining_allowed_for_recursive_inline =
      // It was allowed previously.
      try_catch_inlining_allowed_ &&
      // The current invoke is not a try block.
      !invoke_instruction->GetBlock()->IsTryBlock();
  RunOptimizations(callee_graph,
                   code_item,
                   dex_compilation_unit,
                   try_catch_inlining_allowed_for_recursive_inline);

  size_t number_of_instructions = 0;
  if (!CanInlineBody(callee_graph, invoke_instruction, &number_of_instructions, is_speculative)) {
    return false;
  }

  DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
      << "No instructions can be added to the outer graph while inner graph is being built";

  // Inline the callee graph inside the caller graph.
  const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
  graph_->SetCurrentInstructionId(callee_instruction_counter);
  *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
  // Update our budget for other inlining attempts in `caller_graph`.
  total_number_of_instructions_ += number_of_instructions;
  UpdateInliningBudget();

  DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
      << "No instructions can be added to the inner graph during inlining into the outer graph";

  if (stats_ != nullptr) {
    DCHECK(inline_stats_ != nullptr);
    inline_stats_->AddTo(stats_);
  }

  if (caller_dead_reference_safe && !callee_dead_reference_safe) {
    // Caller was dead reference safe, but is not anymore, since we inlined dead
    // reference unsafe code. Prior transformations remain valid, since they did not
    // affect the inlined code.
    graph_->MarkDeadReferenceUnsafe();
  }

  return true;
}

void HInliner::RunOptimizations(HGraph* callee_graph,
                                const dex::CodeItem* code_item,
                                const DexCompilationUnit& dex_compilation_unit,
                                bool try_catch_inlining_allowed_for_recursive_inline) {
  // Note: if the outermost_graph_ is being compiled OSR, we should not run any
  // optimization that could lead to a HDeoptimize. The following optimizations do not.
  HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner");
  HConstantFolding fold(callee_graph, inline_stats_, "constant_folding$inliner");
  InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_);

  HOptimization* optimizations[] = {
    &fold,
    &simplify,
    &dce,
  };

  for (size_t i = 0; i < arraysize(optimizations); ++i) {
    HOptimization* optimization = optimizations[i];
    optimization->Run();
  }

  // Bail early for pathological cases on the environment (for example recursive calls,
  // or too large environment).
  if (total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters) {
    LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
             << " will not be inlined because the outer method has reached"
             << " its environment budget limit.";
    return;
  }

  // Bail early if we know we already are over the limit.
  size_t number_of_instructions = CountNumberOfInstructions(callee_graph);
  if (number_of_instructions > inlining_budget_) {
    LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
             << " will not be inlined because the outer method has reached"
             << " its instruction budget limit. " << number_of_instructions;
    return;
  }

  CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item);
  HInliner inliner(callee_graph,
                   outermost_graph_,
                   codegen_,
                   outer_compilation_unit_,
                   dex_compilation_unit,
                   inline_stats_,
                   total_number_of_dex_registers_ + accessor.RegistersSize(),
                   total_number_of_instructions_ + number_of_instructions,
                   this,
                   depth_ + 1,
                   try_catch_inlining_allowed_for_recursive_inline);
  inliner.Run();
}

static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,
                                      bool declared_is_exact,
                                      bool declared_can_be_null,
                                      HInstruction* actual_obj)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  if (declared_can_be_null && !actual_obj->CanBeNull()) {
    return true;
  }

  ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
  if (!actual_rti.IsValid()) {
    return false;
  }

  ObjPtr<mirror::Class> actual_class = actual_rti.GetTypeHandle().Get();
  return (actual_rti.IsExact() && !declared_is_exact) ||
         (declared_class != actual_class && declared_class->IsAssignableFrom(actual_class));
}

static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,
                                      bool declared_can_be_null,
                                      HInstruction* actual_obj)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  bool admissible = ReferenceTypePropagation::IsAdmissible(declared_class);
  return IsReferenceTypeRefinement(
      admissible ? declared_class : GetClassRoot<mirror::Class>(),
      /*declared_is_exact=*/ admissible && declared_class->CannotBeAssignedFromOtherTypes(),
      declared_can_be_null,
      actual_obj);
}

bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
  // If this is an instance call, test whether the type of the `this` argument
  // is more specific than the class which declares the method.
  if (!resolved_method->IsStatic()) {
    if (IsReferenceTypeRefinement(resolved_method->GetDeclaringClass(),
                                  /*declared_can_be_null=*/ false,
                                  invoke_instruction->InputAt(0u))) {
      return true;
    }
  }

  // Iterate over the list of parameter types and test whether any of the
  // actual inputs has a more specific reference type than the type declared in
  // the signature.
  const dex::TypeList* param_list = resolved_method->GetParameterTypeList();
  for (size_t param_idx = 0,
              input_idx = resolved_method->IsStatic() ? 0 : 1,
              e = (param_list == nullptr ? 0 : param_list->Size());
       param_idx < e;
       ++param_idx, ++input_idx) {
    HInstruction* input = invoke_instruction->InputAt(input_idx);
    if (input->GetType() == DataType::Type::kReference) {
      ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex(
          param_list->GetTypeItem(param_idx).type_idx_);
      if (IsReferenceTypeRefinement(param_cls, /*declared_can_be_null=*/ true, input)) {
        return true;
      }
    }
  }

  return false;
}

bool HInliner::ReturnTypeMoreSpecific(HInstruction* return_replacement,
                                      HInvoke* invoke_instruction) {
  // Check the integrity of reference types and run another type propagation if needed.
  if (return_replacement != nullptr) {
    if (return_replacement->GetType() == DataType::Type::kReference) {
      // Test if the return type is a refinement of the declared return type.
      ReferenceTypeInfo invoke_rti = invoke_instruction->GetReferenceTypeInfo();
      if (IsReferenceTypeRefinement(invoke_rti.GetTypeHandle().Get(),
                                    invoke_rti.IsExact(),
                                    /*declared_can_be_null=*/ true,
                                    return_replacement)) {
        return true;
      } else if (return_replacement->IsInstanceFieldGet()) {
        HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet();
        if (field_get->GetFieldInfo().GetField() ==
                GetClassRoot<mirror::Object>()->GetInstanceField(0)) {
          return true;
        }
      }
    } else if (return_replacement->IsInstanceOf()) {
      // Inlining InstanceOf into an If may put a tighter bound on reference types.
      return true;
    }
  }

  return false;
}

void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
                                        HInstruction* return_replacement) {
  if (return_replacement != nullptr) {
    if (return_replacement->GetType() == DataType::Type::kReference) {
      if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
        // Make sure that we have a valid type for the return. We may get an invalid one when
        // we inline invokes with multiple branches and create a Phi for the result.
        // TODO: we could be more precise by merging the phi inputs but that requires
        // some functionality from the reference type propagation.
        DCHECK(return_replacement->IsPhi());
        ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType();
        ReferenceTypeInfo rti = ReferenceTypePropagation::IsAdmissible(cls)
            ? ReferenceTypeInfo::Create(graph_->GetHandleCache()->NewHandle(cls))
            : graph_->GetInexactObjectRti();
        return_replacement->SetReferenceTypeInfo(rti);
      }
    }
  }
}

}  // namespace art