summaryrefslogtreecommitdiff
path: root/mali_kbase/mmu/mali_kbase_mmu.c
blob: d6b4eb77ee024de5e10ded18ada3f2f23a1f0456 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
/*
 *
 * (C) COPYRIGHT 2010-2023 ARM Limited. All rights reserved.
 *
 * This program is free software and is provided to you under the terms of the
 * GNU General Public License version 2 as published by the Free Software
 * Foundation, and any use by you of this program is subject to the terms
 * of such GNU license.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
 *
 */

/**
 * DOC: Base kernel MMU management.
 */

#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/migrate.h>
#include <mali_kbase.h>
#include <gpu/mali_kbase_gpu_fault.h>
#include <gpu/mali_kbase_gpu_regmap.h>
#include <tl/mali_kbase_tracepoints.h>
#include <backend/gpu/mali_kbase_instr_defs.h>
#include <mali_kbase_ctx_sched.h>
#include <mali_kbase_debug.h>
#include <mali_kbase_defs.h>
#include <mali_kbase_hw.h>
#include <mmu/mali_kbase_mmu_hw.h>
#include <mali_kbase_mem.h>
#include <mali_kbase_reset_gpu.h>
#include <mmu/mali_kbase_mmu.h>
#include <mmu/mali_kbase_mmu_internal.h>
#include <mali_kbase_cs_experimental.h>
#include <device/mali_kbase_device.h>
#include <uapi/gpu/arm/midgard/gpu/mali_kbase_gpu_id.h>
#if !MALI_USE_CSF
#include <mali_kbase_hwaccess_jm.h>
#endif
#include <linux/version_compat_defs.h>

#include <mali_kbase_trace_gpu_mem.h>
#include <backend/gpu/mali_kbase_pm_internal.h>

/* Threshold used to decide whether to flush full caches or just a physical range */
#define KBASE_PA_RANGE_THRESHOLD_NR_PAGES 20
#define MGM_DEFAULT_PTE_GROUP (0)

/* Macro to convert updated PDGs to flags indicating levels skip in flush */
#define pgd_level_to_skip_flush(dirty_pgds) (~(dirty_pgds) & 0xF)

static int mmu_insert_pages_no_flush(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
				     const u64 start_vpfn, struct tagged_addr *phys, size_t nr,
				     unsigned long flags, int const group_id, u64 *dirty_pgds,
				     struct kbase_va_region *reg, bool ignore_page_migration);

/* Small wrapper function to factor out GPU-dependent context releasing */
static void release_ctx(struct kbase_device *kbdev,
		struct kbase_context *kctx)
{
#if MALI_USE_CSF
	CSTD_UNUSED(kbdev);
	kbase_ctx_sched_release_ctx_lock(kctx);
#else /* MALI_USE_CSF */
	kbasep_js_runpool_release_ctx(kbdev, kctx);
#endif /* MALI_USE_CSF */
}

static void mmu_hw_operation_begin(struct kbase_device *kbdev)
{
#if !IS_ENABLED(CONFIG_MALI_NO_MALI)
#if MALI_USE_CSF
	if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_GPU2019_3878)) {
		unsigned long flags;

		lockdep_assert_held(&kbdev->mmu_hw_mutex);

		spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
		WARN_ON_ONCE(kbdev->mmu_hw_operation_in_progress);
		kbdev->mmu_hw_operation_in_progress = true;
		spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
	}
#endif /* MALI_USE_CSF */
#endif /* !CONFIG_MALI_NO_MALI */
}

static void mmu_hw_operation_end(struct kbase_device *kbdev)
{
#if !IS_ENABLED(CONFIG_MALI_NO_MALI)
#if MALI_USE_CSF
	if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_GPU2019_3878)) {
		unsigned long flags;

		lockdep_assert_held(&kbdev->mmu_hw_mutex);

		spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
		WARN_ON_ONCE(!kbdev->mmu_hw_operation_in_progress);
		kbdev->mmu_hw_operation_in_progress = false;
		/* Invoke the PM state machine, the L2 power off may have been
		 * skipped due to the MMU command.
		 */
		kbase_pm_update_state(kbdev);
		spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
	}
#endif /* MALI_USE_CSF */
#endif /* !CONFIG_MALI_NO_MALI */
}

/**
 * mmu_flush_cache_on_gpu_ctrl() - Check if cache flush needs to be done
 * through GPU_CONTROL interface.
 *
 * @kbdev:         kbase device to check GPU model ID on.
 *
 * This function returns whether a cache flush for page table update should
 * run through GPU_CONTROL interface or MMU_AS_CONTROL interface.
 *
 * Return: True if cache flush should be done on GPU command.
 */
static bool mmu_flush_cache_on_gpu_ctrl(struct kbase_device *kbdev)
{
	uint32_t const arch_maj_cur = (kbdev->gpu_props.props.raw_props.gpu_id &
				       GPU_ID2_ARCH_MAJOR) >>
				      GPU_ID2_ARCH_MAJOR_SHIFT;

	return arch_maj_cur > 11;
}

/**
 * mmu_flush_pa_range() - Flush physical address range
 *
 * @kbdev:    kbase device to issue the MMU operation on.
 * @phys:     Starting address of the physical range to start the operation on.
 * @nr_bytes: Number of bytes to work on.
 * @op:       Type of cache flush operation to perform.
 *
 * Issue a cache flush physical range command.
 */
#if MALI_USE_CSF
static void mmu_flush_pa_range(struct kbase_device *kbdev, phys_addr_t phys, size_t nr_bytes,
			       enum kbase_mmu_op_type op)
{
	u32 flush_op;

	lockdep_assert_held(&kbdev->hwaccess_lock);

	/* Translate operation to command */
	if (op == KBASE_MMU_OP_FLUSH_PT)
		flush_op = GPU_COMMAND_FLUSH_PA_RANGE_CLN_INV_L2;
	else if (op == KBASE_MMU_OP_FLUSH_MEM)
		flush_op = GPU_COMMAND_FLUSH_PA_RANGE_CLN_INV_L2_LSC;
	else {
		dev_warn(kbdev->dev, "Invalid flush request (op = %d)", op);
		return;
	}

	if (kbase_gpu_cache_flush_pa_range_and_busy_wait(kbdev, phys, nr_bytes, flush_op))
		dev_err(kbdev->dev, "Flush for physical address range did not complete");
}
#endif

/**
 * mmu_invalidate() - Perform an invalidate operation on MMU caches.
 * @kbdev:      The Kbase device.
 * @kctx:       The Kbase context.
 * @as_nr:      GPU address space number for which invalidate is required.
 * @op_param: Non-NULL pointer to struct containing information about the MMU
 *            operation to perform.
 *
 * Perform an MMU invalidate operation on a particual address space
 * by issuing a UNLOCK command.
 */
static void mmu_invalidate(struct kbase_device *kbdev, struct kbase_context *kctx, int as_nr,
			   const struct kbase_mmu_hw_op_param *op_param)
{
	unsigned long flags;

	spin_lock_irqsave(&kbdev->hwaccess_lock, flags);

	if (kbdev->pm.backend.gpu_ready && (!kctx || kctx->as_nr >= 0)) {
		as_nr = kctx ? kctx->as_nr : as_nr;
		if (kbase_mmu_hw_do_unlock(kbdev, &kbdev->as[as_nr], op_param))
			dev_err(kbdev->dev,
				"Invalidate after GPU page table update did not complete");
	}

	spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
}

/* Perform a flush/invalidate on a particular address space
 */
static void mmu_flush_invalidate_as(struct kbase_device *kbdev, struct kbase_as *as,
				    const struct kbase_mmu_hw_op_param *op_param)
{
	unsigned long flags;

	/* AS transaction begin */
	mutex_lock(&kbdev->mmu_hw_mutex);
	spin_lock_irqsave(&kbdev->hwaccess_lock, flags);

	if (kbdev->pm.backend.gpu_ready && (kbase_mmu_hw_do_flush_locked(kbdev, as, op_param)))
		dev_err(kbdev->dev, "Flush for GPU page table update did not complete");

	spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
	mutex_unlock(&kbdev->mmu_hw_mutex);
	/* AS transaction end */
}

/**
 * mmu_flush_invalidate() - Perform a flush operation on GPU caches.
 * @kbdev:      The Kbase device.
 * @kctx:       The Kbase context.
 * @as_nr:      GPU address space number for which flush + invalidate is required.
 * @op_param: Non-NULL pointer to struct containing information about the MMU
 *            operation to perform.
 *
 * This function performs the cache flush operation described by @op_param.
 * The function retains a reference to the given @kctx and releases it
 * after performing the flush operation.
 *
 * If operation is set to KBASE_MMU_OP_FLUSH_PT then this function will issue
 * a cache flush + invalidate to the L2 caches and invalidate the TLBs.
 *
 * If operation is set to KBASE_MMU_OP_FLUSH_MEM then this function will issue
 * a cache flush + invalidate to the L2 and GPU Load/Store caches as well as
 * invalidating the TLBs.
 */
static void mmu_flush_invalidate(struct kbase_device *kbdev, struct kbase_context *kctx, int as_nr,
				 const struct kbase_mmu_hw_op_param *op_param)
{
	bool ctx_is_in_runpool;

	/* Early out if there is nothing to do */
	if (op_param->nr == 0)
		return;

	/* If no context is provided then MMU operation is performed on address
	 * space which does not belong to user space context. Otherwise, retain
	 * refcount to context provided and release after flush operation.
	 */
	if (!kctx) {
		mmu_flush_invalidate_as(kbdev, &kbdev->as[as_nr], op_param);
	} else {
#if !MALI_USE_CSF
		rt_mutex_lock(&kbdev->js_data.queue_mutex);
		ctx_is_in_runpool = kbase_ctx_sched_inc_refcount(kctx);
		rt_mutex_unlock(&kbdev->js_data.queue_mutex);
#else
		ctx_is_in_runpool = kbase_ctx_sched_inc_refcount_if_as_valid(kctx);
#endif /* !MALI_USE_CSF */

		if (ctx_is_in_runpool) {
			KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);

			mmu_flush_invalidate_as(kbdev, &kbdev->as[kctx->as_nr], op_param);

			release_ctx(kbdev, kctx);
		}
	}
}

/**
 * mmu_flush_invalidate_on_gpu_ctrl() - Perform a flush operation on GPU caches via
 *                                    the GPU_CONTROL interface
 * @kbdev:      The Kbase device.
 * @kctx:       The Kbase context.
 * @as_nr:      GPU address space number for which flush + invalidate is required.
 * @op_param: Non-NULL pointer to struct containing information about the MMU
 *            operation to perform.
 *
 * Perform a flush/invalidate on a particular address space via the GPU_CONTROL
 * interface.
 */
static void mmu_flush_invalidate_on_gpu_ctrl(struct kbase_device *kbdev, struct kbase_context *kctx,
					int as_nr, const struct kbase_mmu_hw_op_param *op_param)
{
	unsigned long flags;

	/* AS transaction begin */
	mutex_lock(&kbdev->mmu_hw_mutex);
	spin_lock_irqsave(&kbdev->hwaccess_lock, flags);

	if (kbdev->pm.backend.gpu_ready && (!kctx || kctx->as_nr >= 0)) {
		as_nr = kctx ? kctx->as_nr : as_nr;
		if (kbase_mmu_hw_do_flush_on_gpu_ctrl(kbdev, &kbdev->as[as_nr], op_param))
			dev_err(kbdev->dev, "Flush for GPU page table update did not complete");
	}

	spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
	mutex_unlock(&kbdev->mmu_hw_mutex);
}

static void kbase_mmu_sync_pgd_gpu(struct kbase_device *kbdev, struct kbase_context *kctx,
				   phys_addr_t phys, size_t size,
				   enum kbase_mmu_op_type flush_op)
{
	kbase_mmu_flush_pa_range(kbdev, kctx, phys, size, flush_op);
}

static void kbase_mmu_sync_pgd_cpu(struct kbase_device *kbdev, dma_addr_t handle, size_t size)
{
	/* Ensure that the GPU can read the pages from memory.
	 *
	 * pixel: b/200555454 requires this sync to happen even if the system
	 * is coherent.
	 */
	dma_sync_single_for_device(kbdev->dev, handle, size,
			DMA_TO_DEVICE);
}

/**
 * kbase_mmu_sync_pgd() - sync page directory to memory when needed.
 * @kbdev:    Device pointer.
 * @kctx:     Context pointer.
 * @phys:     Starting physical address of the destination region.
 * @handle:   Address of DMA region.
 * @size:     Size of the region to sync.
 * @flush_op: MMU cache flush operation to perform on the physical address
 *            range, if GPU control is available.
 *
 * This function is called whenever the association between a virtual address
 * range and a physical address range changes, because a mapping is created or
 * destroyed.
 * One of the effects of this operation is performing an MMU cache flush
 * operation only on the physical address range affected by this function, if
 * GPU control is available.
 *
 * This should be called after each page directory update.
 */
static void kbase_mmu_sync_pgd(struct kbase_device *kbdev, struct kbase_context *kctx,
			       phys_addr_t phys, dma_addr_t handle, size_t size,
			       enum kbase_mmu_op_type flush_op)
{

	kbase_mmu_sync_pgd_cpu(kbdev, handle, size);
	kbase_mmu_sync_pgd_gpu(kbdev, kctx, phys, size, flush_op);
}

/*
 * Definitions:
 * - PGD: Page Directory.
 * - PTE: Page Table Entry. A 64bit value pointing to the next
 *        level of translation
 * - ATE: Address Translation Entry. A 64bit value pointing to
 *        a 4kB physical page.
 */

/**
 * kbase_mmu_update_and_free_parent_pgds() - Update number of valid entries and
 *                                           free memory of the page directories
 *
 * @kbdev:    Device pointer.
 * @mmut:     GPU MMU page table.
 * @pgds:     Physical addresses of page directories to be freed.
 * @vpfn:     The virtual page frame number.
 * @level:    The level of MMU page table.
 * @flush_op: The type of MMU flush operation to perform.
 * @dirty_pgds: Flags to track every level where a PGD has been updated.
 */
static void kbase_mmu_update_and_free_parent_pgds(struct kbase_device *kbdev,
						  struct kbase_mmu_table *mmut, phys_addr_t *pgds,
						  u64 vpfn, int level,
						  enum kbase_mmu_op_type flush_op, u64 *dirty_pgds);

static void kbase_mmu_account_freed_pgd(struct kbase_device *kbdev, struct kbase_mmu_table *mmut)
{
	atomic_sub(1, &kbdev->memdev.used_pages);

	/* If MMU tables belong to a context then pages will have been accounted
	 * against it, so we must decrement the usage counts here.
	 */
	if (mmut->kctx) {
		kbase_process_page_usage_dec(mmut->kctx, 1);
		atomic_sub(1, &mmut->kctx->used_pages);
	}

	kbase_trace_gpu_mem_usage_dec(kbdev, mmut->kctx, 1);
}

static bool kbase_mmu_handle_isolated_pgd_page(struct kbase_device *kbdev,
					       struct kbase_mmu_table *mmut,
					       struct page *p)
{
	struct kbase_page_metadata *page_md = kbase_page_private(p);
	bool page_is_isolated = false;

	lockdep_assert_held(&mmut->mmu_lock);

	if (!kbase_is_page_migration_enabled())
		return false;

	spin_lock(&page_md->migrate_lock);
	if (PAGE_STATUS_GET(page_md->status) == PT_MAPPED) {
		WARN_ON_ONCE(!mmut->kctx);
		if (IS_PAGE_ISOLATED(page_md->status)) {
			page_md->status = PAGE_STATUS_SET(page_md->status,
							  FREE_PT_ISOLATED_IN_PROGRESS);
			page_md->data.free_pt_isolated.kbdev = kbdev;
			page_is_isolated = true;
		} else {
			page_md->status =
				PAGE_STATUS_SET(page_md->status, FREE_IN_PROGRESS);
		}
	} else if ((PAGE_STATUS_GET(page_md->status) == FREE_IN_PROGRESS) ||
		   (PAGE_STATUS_GET(page_md->status) == ALLOCATE_IN_PROGRESS)) {
		/* Nothing to do - fall through */
	} else {
		WARN_ON_ONCE(PAGE_STATUS_GET(page_md->status) != NOT_MOVABLE);
	}
	spin_unlock(&page_md->migrate_lock);

	if (unlikely(page_is_isolated)) {
		/* Do the CPU cache flush and accounting here for the isolated
		 * PGD page, which is done inside kbase_mmu_free_pgd() for the
		 * PGD page that did not get isolated.
		 */
		dma_sync_single_for_device(kbdev->dev, kbase_dma_addr(p), PAGE_SIZE,
					   DMA_BIDIRECTIONAL);
		kbase_mmu_account_freed_pgd(kbdev, mmut);
	}

	return page_is_isolated;
}

/**
 * kbase_mmu_free_pgd() - Free memory of the page directory
 *
 * @kbdev:   Device pointer.
 * @mmut:    GPU MMU page table.
 * @pgd:     Physical address of page directory to be freed.
 *
 * This function is supposed to be called with mmu_lock held and after
 * ensuring that the GPU won't be able to access the page.
 */
static void kbase_mmu_free_pgd(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
			       phys_addr_t pgd)
{
	struct page *p;
	bool page_is_isolated = false;

	lockdep_assert_held(&mmut->mmu_lock);

	p = pfn_to_page(PFN_DOWN(pgd));
	page_is_isolated = kbase_mmu_handle_isolated_pgd_page(kbdev, mmut, p);

	if (likely(!page_is_isolated)) {
		kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id], p, true);
		kbase_mmu_account_freed_pgd(kbdev, mmut);
	}
}

/**
 * kbase_mmu_free_pgds_list() - Free the PGD pages present in the list
 *
 * @kbdev:          Device pointer.
 * @mmut:           GPU MMU page table.
 *
 * This function will call kbase_mmu_free_pgd() on each page directory page
 * present in the list of free PGDs inside @mmut.
 *
 * The function is supposed to be called after the GPU cache and MMU TLB has
 * been invalidated post the teardown loop.
 *
 * The mmu_lock shall be held prior to calling the function.
 */
static void kbase_mmu_free_pgds_list(struct kbase_device *kbdev, struct kbase_mmu_table *mmut)
{
	size_t i;

	lockdep_assert_held(&mmut->mmu_lock);

	for (i = 0; i < mmut->scratch_mem.free_pgds.head_index; i++)
		kbase_mmu_free_pgd(kbdev, mmut, page_to_phys(mmut->scratch_mem.free_pgds.pgds[i]));

	mmut->scratch_mem.free_pgds.head_index = 0;
}

static void kbase_mmu_add_to_free_pgds_list(struct kbase_mmu_table *mmut, struct page *p)
{
	lockdep_assert_held(&mmut->mmu_lock);

	if (WARN_ON_ONCE(mmut->scratch_mem.free_pgds.head_index > (MAX_FREE_PGDS - 1)))
		return;

	mmut->scratch_mem.free_pgds.pgds[mmut->scratch_mem.free_pgds.head_index++] = p;
}

static inline void kbase_mmu_reset_free_pgds_list(struct kbase_mmu_table *mmut)
{
	lockdep_assert_held(&mmut->mmu_lock);

	mmut->scratch_mem.free_pgds.head_index = 0;
}

/**
 * reg_grow_calc_extra_pages() - Calculate the number of backed pages to add to
 *                               a region on a GPU page fault
 * @kbdev:         KBase device
 * @reg:           The region that will be backed with more pages
 * @fault_rel_pfn: PFN of the fault relative to the start of the region
 *
 * This calculates how much to increase the backing of a region by, based on
 * where a GPU page fault occurred and the flags in the region.
 *
 * This can be more than the minimum number of pages that would reach
 * @fault_rel_pfn, for example to reduce the overall rate of page fault
 * interrupts on a region, or to ensure that the end address is aligned.
 *
 * Return: the number of backed pages to increase by
 */
static size_t reg_grow_calc_extra_pages(struct kbase_device *kbdev,
		struct kbase_va_region *reg, size_t fault_rel_pfn)
{
	size_t multiple = reg->extension;
	size_t reg_current_size = kbase_reg_current_backed_size(reg);
	size_t minimum_extra = fault_rel_pfn - reg_current_size + 1;
	size_t remainder;

	if (!multiple) {
		dev_warn(
			kbdev->dev,
			"VA Region 0x%llx extension was 0, allocator needs to set this properly for KBASE_REG_PF_GROW",
			((unsigned long long)reg->start_pfn) << PAGE_SHIFT);
		return minimum_extra;
	}

	/* Calculate the remainder to subtract from minimum_extra to make it
	 * the desired (rounded down) multiple of the extension.
	 * Depending on reg's flags, the base used for calculating multiples is
	 * different
	 */

	/* multiple is based from the current backed size, even if the
	 * current backed size/pfn for end of committed memory are not
	 * themselves aligned to multiple
	 */
	remainder = minimum_extra % multiple;

#if !MALI_USE_CSF
	if (reg->flags & KBASE_REG_TILER_ALIGN_TOP) {
		/* multiple is based from the top of the initial commit, which
		 * has been allocated in such a way that (start_pfn +
		 * initial_commit) is already aligned to multiple. Hence the
		 * pfn for the end of committed memory will also be aligned to
		 * multiple
		 */
		size_t initial_commit = reg->initial_commit;

		if (fault_rel_pfn < initial_commit) {
			/* this case is just to catch in case it's been
			 * recommitted by userspace to be smaller than the
			 * initial commit
			 */
			minimum_extra = initial_commit - reg_current_size;
			remainder = 0;
		} else {
			/* same as calculating
			 * (fault_rel_pfn - initial_commit + 1)
			 */
			size_t pages_after_initial = minimum_extra +
				reg_current_size - initial_commit;

			remainder = pages_after_initial % multiple;
		}
	}
#endif /* !MALI_USE_CSF */

	if (remainder == 0)
		return minimum_extra;

	return minimum_extra + multiple - remainder;
}

#ifdef CONFIG_MALI_CINSTR_GWT
static void kbase_gpu_mmu_handle_write_faulting_as(struct kbase_device *kbdev,
						   struct kbase_as *faulting_as,
						   u64 start_pfn, size_t nr,
						   u32 kctx_id, u64 dirty_pgds)
{
	/* Calls to this function are inherently synchronous, with respect to
	 * MMU operations.
	 */
	const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_SYNC;
	struct kbase_mmu_hw_op_param op_param;
	int ret = 0;

	mutex_lock(&kbdev->mmu_hw_mutex);

	kbase_mmu_hw_clear_fault(kbdev, faulting_as,
			KBASE_MMU_FAULT_TYPE_PAGE);

	/* flush L2 and unlock the VA (resumes the MMU) */
	op_param.vpfn = start_pfn;
	op_param.nr = nr;
	op_param.op = KBASE_MMU_OP_FLUSH_PT;
	op_param.kctx_id = kctx_id;
	op_param.mmu_sync_info = mmu_sync_info;
	if (mmu_flush_cache_on_gpu_ctrl(kbdev)) {
		unsigned long irq_flags;

		spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
		op_param.flush_skip_levels =
				pgd_level_to_skip_flush(dirty_pgds);
		ret = kbase_mmu_hw_do_flush_on_gpu_ctrl(kbdev, faulting_as, &op_param);
		spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
	} else {
		mmu_hw_operation_begin(kbdev);
		ret = kbase_mmu_hw_do_flush(kbdev, faulting_as, &op_param);
		mmu_hw_operation_end(kbdev);
	}

	mutex_unlock(&kbdev->mmu_hw_mutex);

	if (ret)
		dev_err(kbdev->dev,
			"Flush for GPU page fault due to write access did not complete");

	kbase_mmu_hw_enable_fault(kbdev, faulting_as,
			KBASE_MMU_FAULT_TYPE_PAGE);
}

static void set_gwt_element_page_addr_and_size(
		struct kbasep_gwt_list_element *element,
		u64 fault_page_addr, struct tagged_addr fault_phys)
{
	u64 fault_pfn = fault_page_addr >> PAGE_SHIFT;
	unsigned int vindex = fault_pfn & (NUM_4K_PAGES_IN_2MB_PAGE - 1);

	/* If the fault address lies within a 2MB page, then consider
	 * the whole 2MB page for dumping to avoid incomplete dumps.
	 */
	if (is_huge(fault_phys) && (vindex == index_in_large_page(fault_phys))) {
		element->page_addr = fault_page_addr & ~(SZ_2M - 1);
		element->num_pages = NUM_4K_PAGES_IN_2MB_PAGE;
	} else {
		element->page_addr = fault_page_addr;
		element->num_pages = 1;
	}
}

static void kbase_gpu_mmu_handle_write_fault(struct kbase_context *kctx,
			struct kbase_as *faulting_as)
{
	struct kbasep_gwt_list_element *pos;
	struct kbase_va_region *region;
	struct kbase_device *kbdev;
	struct tagged_addr *fault_phys_addr;
	struct kbase_fault *fault;
	u64 fault_pfn, pfn_offset;
	int as_no;
	u64 dirty_pgds = 0;

	as_no = faulting_as->number;
	kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
	fault = &faulting_as->pf_data;
	fault_pfn = fault->addr >> PAGE_SHIFT;

	kbase_gpu_vm_lock(kctx);

	/* Find region and check if it should be writable. */
	region = kbase_region_tracker_find_region_enclosing_address(kctx,
			fault->addr);
	if (kbase_is_region_invalid_or_free(region)) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Memory is not mapped on the GPU",
				&faulting_as->pf_data);
		return;
	}

	if (!(region->flags & KBASE_REG_GPU_WR)) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Region does not have write permissions",
				&faulting_as->pf_data);
		return;
	}

	pfn_offset = fault_pfn - region->start_pfn;
	fault_phys_addr = &kbase_get_gpu_phy_pages(region)[pfn_offset];

	/* Capture addresses of faulting write location
	 * for job dumping if write tracking is enabled.
	 */
	if (kctx->gwt_enabled) {
		u64 fault_page_addr = fault->addr & PAGE_MASK;
		bool found = false;
		/* Check if this write was already handled. */
		list_for_each_entry(pos, &kctx->gwt_current_list, link) {
			if (fault_page_addr == pos->page_addr) {
				found = true;
				break;
			}
		}

		if (!found) {
			pos = kmalloc(sizeof(*pos), GFP_KERNEL);
			if (pos) {
				pos->region = region;
				set_gwt_element_page_addr_and_size(pos,
					fault_page_addr, *fault_phys_addr);
				list_add(&pos->link, &kctx->gwt_current_list);
			} else {
				dev_warn(kbdev->dev, "kmalloc failure");
			}
		}
	}

	/* Now make this faulting page writable to GPU. */
	kbase_mmu_update_pages_no_flush(kbdev, &kctx->mmu, fault_pfn, fault_phys_addr, 1,
					region->flags, region->gpu_alloc->group_id, &dirty_pgds);

	kbase_gpu_mmu_handle_write_faulting_as(kbdev, faulting_as, fault_pfn, 1,
					       kctx->id, dirty_pgds);

	kbase_gpu_vm_unlock(kctx);
}

static void kbase_gpu_mmu_handle_permission_fault(struct kbase_context *kctx,
			struct kbase_as	*faulting_as)
{
	struct kbase_fault *fault = &faulting_as->pf_data;

	switch (AS_FAULTSTATUS_ACCESS_TYPE_GET(fault->status)) {
	case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
	case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
		kbase_gpu_mmu_handle_write_fault(kctx, faulting_as);
		break;
	case AS_FAULTSTATUS_ACCESS_TYPE_EXECUTE:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Execute Permission fault", fault);
		break;
	case AS_FAULTSTATUS_ACCESS_TYPE_READ:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Read Permission fault", fault);
		break;
	default:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Unknown Permission fault", fault);
		break;
	}
}
#endif

/**
 * estimate_pool_space_required - Determine how much a pool should be grown by to support a future
 * allocation
 * @pool:           The memory pool to check, including its linked pools
 * @pages_required: Number of 4KiB pages require for the pool to support a future allocation
 *
 * The value returned is accounting for the size of @pool and the size of each memory pool linked to
 * @pool. Hence, the caller should use @pool and (if not already satisfied) all its linked pools to
 * allocate from.
 *
 * Note: this is only an estimate, because even during the calculation the memory pool(s) involved
 * can be updated to be larger or smaller. Hence, the result is only a guide as to whether an
 * allocation could succeed, or an estimate of the correct amount to grow the pool by. The caller
 * should keep attempting an allocation and then re-growing with a new value queried form this
 * function until the allocation succeeds.
 *
 * Return: an estimate of the amount of extra 4KiB pages in @pool that are required to satisfy an
 * allocation, or 0 if @pool (including its linked pools) is likely to already satisfy the
 * allocation.
 */
static size_t estimate_pool_space_required(struct kbase_mem_pool *pool, const size_t pages_required)
{
	size_t pages_still_required;

	for (pages_still_required = pages_required; pool != NULL && pages_still_required;
	     pool = pool->next_pool) {
		size_t pool_size_4k;

		kbase_mem_pool_lock(pool);

		pool_size_4k = kbase_mem_pool_size(pool) << pool->order;
		if (pool_size_4k >= pages_still_required)
			pages_still_required = 0;
		else
			pages_still_required -= pool_size_4k;

		kbase_mem_pool_unlock(pool);
	}
	return pages_still_required;
}

/**
 * page_fault_try_alloc - Try to allocate memory from a context pool
 * @kctx:          Context pointer
 * @region:        Region to grow
 * @new_pages:     Number of 4 KiB pages to allocate
 * @pages_to_grow: Pointer to variable to store number of outstanding pages on failure. This can be
 *                 either 4 KiB or 2 MiB pages, depending on the number of pages requested.
 * @grow_2mb_pool: Pointer to variable to store which pool needs to grow - true for 2 MiB, false for
 *                 4 KiB.
 * @prealloc_sas:  Pointer to kbase_sub_alloc structures
 *
 * This function will try to allocate as many pages as possible from the context pool, then if
 * required will try to allocate the remaining pages from the device pool.
 *
 * This function will not allocate any new memory beyond that is already present in the context or
 * device pools. This is because it is intended to be called whilst the thread has acquired the
 * region list lock with kbase_gpu_vm_lock(), and a large enough memory allocation whilst that is
 * held could invoke the OoM killer and cause an effective deadlock with kbase_cpu_vm_close().
 *
 * If 2 MiB pages are enabled and new_pages is >= 2 MiB then pages_to_grow will be a count of 2 MiB
 * pages, otherwise it will be a count of 4 KiB pages.
 *
 * Return: true if successful, false on failure
 */
static bool page_fault_try_alloc(struct kbase_context *kctx,
		struct kbase_va_region *region, size_t new_pages,
		int *pages_to_grow, bool *grow_2mb_pool,
		struct kbase_sub_alloc **prealloc_sas)
{
	size_t total_gpu_pages_alloced = 0;
	size_t total_cpu_pages_alloced = 0;
	struct kbase_mem_pool *pool, *root_pool;
	bool alloc_failed = false;
	size_t pages_still_required;
	size_t total_mempools_free_4k = 0;

	lockdep_assert_held(&kctx->reg_lock);
	lockdep_assert_held(&kctx->mem_partials_lock);

	if (WARN_ON(region->gpu_alloc->group_id >=
		MEMORY_GROUP_MANAGER_NR_GROUPS)) {
		/* Do not try to grow the memory pool */
		*pages_to_grow = 0;
		return false;
	}

	if (kctx->kbdev->pagesize_2mb && new_pages >= (SZ_2M / SZ_4K)) {
		root_pool = &kctx->mem_pools.large[region->gpu_alloc->group_id];
		*grow_2mb_pool = true;
	} else {
		root_pool = &kctx->mem_pools.small[region->gpu_alloc->group_id];
		*grow_2mb_pool = false;
	}

	if (region->gpu_alloc != region->cpu_alloc)
		new_pages *= 2;

	/* Determine how many pages are in the pools before trying to allocate.
	 * Don't attempt to allocate & free if the allocation can't succeed.
	 */
	pages_still_required = estimate_pool_space_required(root_pool, new_pages);

	if (pages_still_required) {
		/* Insufficient pages in pools. Don't try to allocate - just
		 * request a grow.
		 */
		*pages_to_grow = pages_still_required;

		return false;
	}

	/* Since we're not holding any of the mempool locks, the amount of memory in the pools may
	 * change between the above estimate and the actual allocation.
	 */
	pages_still_required = new_pages;
	for (pool = root_pool; pool != NULL && pages_still_required; pool = pool->next_pool) {
		size_t pool_size_4k;
		size_t pages_to_alloc_4k;
		size_t pages_to_alloc_4k_per_alloc;

		kbase_mem_pool_lock(pool);

		/* Allocate as much as possible from this pool*/
		pool_size_4k = kbase_mem_pool_size(pool) << pool->order;
		total_mempools_free_4k += pool_size_4k;
		pages_to_alloc_4k = MIN(pages_still_required, pool_size_4k);
		if (region->gpu_alloc == region->cpu_alloc)
			pages_to_alloc_4k_per_alloc = pages_to_alloc_4k;
		else
			pages_to_alloc_4k_per_alloc = pages_to_alloc_4k >> 1;

		if (pages_to_alloc_4k) {
			struct tagged_addr *gpu_pages =
				kbase_alloc_phy_pages_helper_locked(region->gpu_alloc, pool,
								    pages_to_alloc_4k_per_alloc,
								    &prealloc_sas[0]);

			if (!gpu_pages)
				alloc_failed = true;
			else
				total_gpu_pages_alloced += pages_to_alloc_4k_per_alloc;

			if (!alloc_failed && region->gpu_alloc != region->cpu_alloc) {
				struct tagged_addr *cpu_pages = kbase_alloc_phy_pages_helper_locked(
					region->cpu_alloc, pool, pages_to_alloc_4k_per_alloc,
					&prealloc_sas[1]);

				if (!cpu_pages)
					alloc_failed = true;
				else
					total_cpu_pages_alloced += pages_to_alloc_4k_per_alloc;
			}
		}

		kbase_mem_pool_unlock(pool);

		if (alloc_failed) {
			WARN_ON(!pages_still_required);
			WARN_ON(pages_to_alloc_4k >= pages_still_required);
			WARN_ON(pages_to_alloc_4k_per_alloc >= pages_still_required);
			break;
		}

		pages_still_required -= pages_to_alloc_4k;
	}

	if (pages_still_required) {
		/* Allocation was unsuccessful. We have dropped the mem_pool lock after allocation,
		 * so must in any case use kbase_free_phy_pages_helper() rather than
		 * kbase_free_phy_pages_helper_locked()
		 */
		if (total_gpu_pages_alloced > 0)
			kbase_free_phy_pages_helper(region->gpu_alloc, total_gpu_pages_alloced);
		if (region->gpu_alloc != region->cpu_alloc && total_cpu_pages_alloced > 0)
			kbase_free_phy_pages_helper(region->cpu_alloc, total_cpu_pages_alloced);

		if (alloc_failed) {
			/* Note that in allocating from the above memory pools, we always ensure
			 * never to request more than is available in each pool with the pool's
			 * lock held. Hence failing to allocate in such situations would be unusual
			 * and we should cancel the growth instead (as re-growing the memory pool
			 * might not fix the situation)
			 */
			dev_warn(
				kctx->kbdev->dev,
				"Page allocation failure of %zu pages: managed %zu pages, mempool (inc linked pools) had %zu pages available",
				new_pages, total_gpu_pages_alloced + total_cpu_pages_alloced,
				total_mempools_free_4k);
			*pages_to_grow = 0;
		} else {
			/* Tell the caller to try to grow the memory pool
			 *
			 * Freeing pages above may have spilled or returned them to the OS, so we
			 * have to take into account how many are still in the pool before giving a
			 * new estimate for growth required of the pool. We can just re-estimate a
			 * new value.
			 */
			pages_still_required = estimate_pool_space_required(root_pool, new_pages);
			if (pages_still_required) {
				*pages_to_grow = pages_still_required;
			} else {
				/* It's possible another thread could've grown the pool to be just
				 * big enough after we rolled back the allocation. Request at least
				 * one more page to ensure the caller doesn't fail the growth by
				 * conflating it with the alloc_failed case above
				 */
				*pages_to_grow = 1u;
			}
		}

		return false;
	}

	/* Allocation was successful. No pages to grow, return success. */
	*pages_to_grow = 0;

	return true;
}

void kbase_mmu_page_fault_worker(struct work_struct *data)
{
	u64 fault_pfn;
	u32 fault_status;
	size_t new_pages;
	size_t fault_rel_pfn;
	struct kbase_as *faulting_as;
	int as_no;
	struct kbase_context *kctx;
	struct kbase_device *kbdev;
	struct kbase_va_region *region;
	struct kbase_fault *fault;
	int err;
	bool grown = false;
	int pages_to_grow;
	bool grow_2mb_pool;
	struct kbase_sub_alloc *prealloc_sas[2] = { NULL, NULL };
	int i;
	size_t current_backed_size;
#if MALI_JIT_PRESSURE_LIMIT_BASE
	size_t pages_trimmed = 0;
#endif

	/* Calls to this function are inherently synchronous, with respect to
	 * MMU operations.
	 */
	const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_SYNC;

	faulting_as = container_of(data, struct kbase_as, work_pagefault);
	fault = &faulting_as->pf_data;
	fault_pfn = fault->addr >> PAGE_SHIFT;
	as_no = faulting_as->number;

	kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
	dev_dbg(kbdev->dev, "Entering %s %pK, fault_pfn %lld, as_no %d", __func__, (void *)data,
		fault_pfn, as_no);

	/* Grab the context that was already refcounted in kbase_mmu_interrupt()
	 * Therefore, it cannot be scheduled out of this AS until we explicitly
	 * release it
	 */
	kctx = kbase_ctx_sched_as_to_ctx(kbdev, as_no);
	if (!kctx) {
		atomic_dec(&kbdev->faults_pending);
		return;
	}

	KBASE_DEBUG_ASSERT(kctx->kbdev == kbdev);

#if MALI_JIT_PRESSURE_LIMIT_BASE
#if !MALI_USE_CSF
	rt_mutex_lock(&kctx->jctx.lock);
#endif
#endif

#ifdef CONFIG_MALI_ARBITER_SUPPORT
	/* check if we still have GPU */
	if (unlikely(kbase_is_gpu_removed(kbdev))) {
		dev_dbg(kbdev->dev, "%s: GPU has been removed", __func__);
		goto fault_done;
	}
#endif

	if (unlikely(fault->protected_mode)) {
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Protected mode fault", fault);
		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);

		goto fault_done;
	}

	fault_status = fault->status;
	switch (fault_status & AS_FAULTSTATUS_EXCEPTION_CODE_MASK) {

	case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSLATION_FAULT:
		/* need to check against the region to handle this one */
		break;

	case AS_FAULTSTATUS_EXCEPTION_CODE_PERMISSION_FAULT:
#ifdef CONFIG_MALI_CINSTR_GWT
		/* If GWT was ever enabled then we need to handle
		 * write fault pages even if the feature was disabled later.
		 */
		if (kctx->gwt_was_enabled) {
			kbase_gpu_mmu_handle_permission_fault(kctx,
							faulting_as);
			goto fault_done;
		}
#endif

		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Permission failure", fault);
		goto fault_done;

	case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSTAB_BUS_FAULT:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Translation table bus fault", fault);
		goto fault_done;

	case AS_FAULTSTATUS_EXCEPTION_CODE_ACCESS_FLAG:
		/* nothing to do, but we don't expect this fault currently */
		dev_warn(kbdev->dev, "Access flag unexpectedly set");
		goto fault_done;

	case AS_FAULTSTATUS_EXCEPTION_CODE_ADDRESS_SIZE_FAULT:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Address size fault", fault);
		goto fault_done;

	case AS_FAULTSTATUS_EXCEPTION_CODE_MEMORY_ATTRIBUTES_FAULT:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Memory attributes fault", fault);
		goto fault_done;

	default:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Unknown fault code", fault);
		goto fault_done;
	}

page_fault_retry:
	if (kbdev->pagesize_2mb) {
		/* Preallocate (or re-allocate) memory for the sub-allocation structs if necessary */
		for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i) {
			if (!prealloc_sas[i]) {
				prealloc_sas[i] = kmalloc(sizeof(*prealloc_sas[i]), GFP_KERNEL);

				if (!prealloc_sas[i]) {
					kbase_mmu_report_fault_and_kill(
						kctx, faulting_as,
						"Failed pre-allocating memory for sub-allocations' metadata",
						fault);
					goto fault_done;
				}
			}
		}
	}

	/* so we have a translation fault,
	 * let's see if it is for growable memory
	 */
	kbase_gpu_vm_lock(kctx);

	region = kbase_region_tracker_find_region_enclosing_address(kctx,
			fault->addr);
	if (kbase_is_region_invalid_or_free(region)) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Memory is not mapped on the GPU", fault);
		goto fault_done;
	}

	if (region->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"DMA-BUF is not mapped on the GPU", fault);
		goto fault_done;
	}

	if (region->gpu_alloc->group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Bad physical memory group ID", fault);
		goto fault_done;
	}

	if ((region->flags & GROWABLE_FLAGS_REQUIRED)
			!= GROWABLE_FLAGS_REQUIRED) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Memory is not growable", fault);
		goto fault_done;
	}

	if ((region->flags & KBASE_REG_DONT_NEED)) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Don't need memory can't be grown", fault);
		goto fault_done;
	}

	if (AS_FAULTSTATUS_ACCESS_TYPE_GET(fault_status) ==
		AS_FAULTSTATUS_ACCESS_TYPE_READ)
		dev_warn(kbdev->dev, "Grow on pagefault while reading");

	/* find the size we need to grow it by
	 * we know the result fit in a size_t due to
	 * kbase_region_tracker_find_region_enclosing_address
	 * validating the fault_address to be within a size_t from the start_pfn
	 */
	fault_rel_pfn = fault_pfn - region->start_pfn;

	current_backed_size = kbase_reg_current_backed_size(region);

	if (fault_rel_pfn < current_backed_size) {
		struct kbase_mmu_hw_op_param op_param;

		dev_dbg(kbdev->dev,
			"Page fault @ 0x%llx in allocated region 0x%llx-0x%llx of growable TMEM: Ignoring",
				fault->addr, region->start_pfn,
				region->start_pfn +
				current_backed_size);

		mutex_lock(&kbdev->mmu_hw_mutex);

		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);
		/* [1] in case another page fault occurred while we were
		 * handling the (duplicate) page fault we need to ensure we
		 * don't loose the other page fault as result of us clearing
		 * the MMU IRQ. Therefore, after we clear the MMU IRQ we send
		 * an UNLOCK command that will retry any stalled memory
		 * transaction (which should cause the other page fault to be
		 * raised again).
		 */
		op_param.mmu_sync_info = mmu_sync_info;
		op_param.kctx_id = kctx->id;
		if (!mmu_flush_cache_on_gpu_ctrl(kbdev)) {
			mmu_hw_operation_begin(kbdev);
			err = kbase_mmu_hw_do_unlock_no_addr(kbdev, faulting_as,
							     &op_param);
			mmu_hw_operation_end(kbdev);
		} else {
			/* Can safely skip the invalidate for all levels in case
			 * of duplicate page faults.
			 */
			op_param.flush_skip_levels = 0xF;
			op_param.vpfn = fault_pfn;
			op_param.nr = 1;
			err = kbase_mmu_hw_do_unlock(kbdev, faulting_as,
						     &op_param);
		}

		if (err) {
			dev_err(kbdev->dev,
				"Invalidation for MMU did not complete on handling page fault @ 0x%llx",
				fault->addr);
		}

		mutex_unlock(&kbdev->mmu_hw_mutex);

		kbase_mmu_hw_enable_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);
		kbase_gpu_vm_unlock(kctx);

		goto fault_done;
	}

	new_pages = reg_grow_calc_extra_pages(kbdev, region, fault_rel_pfn);

	/* cap to max vsize */
	new_pages = min(new_pages, region->nr_pages - current_backed_size);
	dev_dbg(kctx->kbdev->dev, "Allocate %zu pages on page fault", new_pages);

	if (new_pages == 0) {
		struct kbase_mmu_hw_op_param op_param;

		mutex_lock(&kbdev->mmu_hw_mutex);

		/* Duplicate of a fault we've already handled, nothing to do */
		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);

		/* See comment [1] about UNLOCK usage */
		op_param.mmu_sync_info = mmu_sync_info;
		op_param.kctx_id = kctx->id;
		if (!mmu_flush_cache_on_gpu_ctrl(kbdev)) {
			mmu_hw_operation_begin(kbdev);
			err = kbase_mmu_hw_do_unlock_no_addr(kbdev, faulting_as,
							     &op_param);
			mmu_hw_operation_end(kbdev);
		} else {
			/* Can safely skip the invalidate for all levels in case
			 * of duplicate page faults.
			 */
			op_param.flush_skip_levels = 0xF;
			op_param.vpfn = fault_pfn;
			op_param.nr = 1;
			err = kbase_mmu_hw_do_unlock(kbdev, faulting_as,
						     &op_param);
		}

		if (err) {
			dev_err(kbdev->dev,
				"Invalidation for MMU did not complete on handling page fault @ 0x%llx",
				fault->addr);
		}

		mutex_unlock(&kbdev->mmu_hw_mutex);

		kbase_mmu_hw_enable_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);
		kbase_gpu_vm_unlock(kctx);
		goto fault_done;
	}

	pages_to_grow = 0;

#if MALI_JIT_PRESSURE_LIMIT_BASE
	if ((region->flags & KBASE_REG_ACTIVE_JIT_ALLOC) && !pages_trimmed) {
		kbase_jit_request_phys_increase(kctx, new_pages);
		pages_trimmed = new_pages;
	}
#endif

	spin_lock(&kctx->mem_partials_lock);
	grown = page_fault_try_alloc(kctx, region, new_pages, &pages_to_grow,
			&grow_2mb_pool, prealloc_sas);
	spin_unlock(&kctx->mem_partials_lock);

	if (grown) {
		u64 dirty_pgds = 0;
		u64 pfn_offset;
		struct kbase_mmu_hw_op_param op_param;

		/* alloc success */
		WARN_ON(kbase_reg_current_backed_size(region) >
			region->nr_pages);

		/* set up the new pages */
		pfn_offset = kbase_reg_current_backed_size(region) - new_pages;
		/*
		 * Note:
		 * Issuing an MMU operation will unlock the MMU and cause the
		 * translation to be replayed. If the page insertion fails then
		 * rather then trying to continue the context should be killed
		 * so the no_flush version of insert_pages is used which allows
		 * us to unlock the MMU as we see fit.
		 */
		err = mmu_insert_pages_no_flush(kbdev, &kctx->mmu, region->start_pfn + pfn_offset,
						&kbase_get_gpu_phy_pages(region)[pfn_offset],
						new_pages, region->flags,
						region->gpu_alloc->group_id, &dirty_pgds, region,
						false);
		if (err) {
			kbase_free_phy_pages_helper(region->gpu_alloc,
					new_pages);
			if (region->gpu_alloc != region->cpu_alloc)
				kbase_free_phy_pages_helper(region->cpu_alloc,
						new_pages);
			kbase_gpu_vm_unlock(kctx);
			/* The locked VA region will be unlocked and the cache
			 * invalidated in here
			 */
			kbase_mmu_report_fault_and_kill(kctx, faulting_as,
					"Page table update failure", fault);
			goto fault_done;
		}
		KBASE_TLSTREAM_AUX_PAGEFAULT(kbdev, kctx->id, as_no,
				(u64)new_pages);
		trace_mali_mmu_page_fault_grow(region, fault, new_pages);

#if MALI_INCREMENTAL_RENDERING_JM
		/* Switch to incremental rendering if we have nearly run out of
		 * memory in a JIT memory allocation.
		 */
		if (region->threshold_pages &&
			kbase_reg_current_backed_size(region) >
				region->threshold_pages) {
			dev_dbg(kctx->kbdev->dev, "%zu pages exceeded IR threshold %zu",
				new_pages + current_backed_size, region->threshold_pages);

			if (kbase_mmu_switch_to_ir(kctx, region) >= 0) {
				dev_dbg(kctx->kbdev->dev, "Get region %pK for IR", (void *)region);
				kbase_va_region_alloc_get(kctx, region);
			}
		}
#endif

		/* AS transaction begin */
		mutex_lock(&kbdev->mmu_hw_mutex);

		/* clear MMU interrupt - this needs to be done after updating
		 * the page tables but before issuing a FLUSH command. The
		 * FLUSH cmd has a side effect that it restarts stalled memory
		 * transactions in other address spaces which may cause
		 * another fault to occur. If we didn't clear the interrupt at
		 * this stage a new IRQ might not be raised when the GPU finds
		 * a MMU IRQ is already pending.
		 */
		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
					 KBASE_MMU_FAULT_TYPE_PAGE);

		op_param.vpfn = region->start_pfn + pfn_offset;
		op_param.nr = new_pages;
		op_param.op = KBASE_MMU_OP_FLUSH_PT;
		op_param.kctx_id = kctx->id;
		op_param.mmu_sync_info = mmu_sync_info;
		if (mmu_flush_cache_on_gpu_ctrl(kbdev)) {
			/* Unlock to invalidate the TLB (and resume the MMU) */
			op_param.flush_skip_levels =
				pgd_level_to_skip_flush(dirty_pgds);
			err = kbase_mmu_hw_do_unlock(kbdev, faulting_as,
						     &op_param);
		} else {
			/* flush L2 and unlock the VA (resumes the MMU) */
			mmu_hw_operation_begin(kbdev);
			err = kbase_mmu_hw_do_flush(kbdev, faulting_as,
						    &op_param);
			mmu_hw_operation_end(kbdev);
		}

		if (err) {
			dev_err(kbdev->dev,
				"Flush for GPU page table update did not complete on handling page fault @ 0x%llx",
				fault->addr);
		}

		mutex_unlock(&kbdev->mmu_hw_mutex);
		/* AS transaction end */

		/* reenable this in the mask */
		kbase_mmu_hw_enable_fault(kbdev, faulting_as,
					 KBASE_MMU_FAULT_TYPE_PAGE);

#ifdef CONFIG_MALI_CINSTR_GWT
		if (kctx->gwt_enabled) {
			/* GWT also tracks growable regions. */
			struct kbasep_gwt_list_element *pos;

			pos = kmalloc(sizeof(*pos), GFP_KERNEL);
			if (pos) {
				pos->region = region;
				pos->page_addr = (region->start_pfn +
							pfn_offset) <<
							 PAGE_SHIFT;
				pos->num_pages = new_pages;
				list_add(&pos->link,
					&kctx->gwt_current_list);
			} else {
				dev_warn(kbdev->dev, "kmalloc failure");
			}
		}
#endif

#if MALI_JIT_PRESSURE_LIMIT_BASE
		if (pages_trimmed) {
			kbase_jit_done_phys_increase(kctx, pages_trimmed);
			pages_trimmed = 0;
		}
#endif
		kbase_gpu_vm_unlock(kctx);
	} else {
		int ret = -ENOMEM;
		const u8 group_id = region->gpu_alloc->group_id;

		kbase_gpu_vm_unlock(kctx);

		/* If the memory pool was insufficient then grow it and retry.
		 * Otherwise fail the allocation.
		 */
		if (pages_to_grow > 0) {
			if (kbdev->pagesize_2mb && grow_2mb_pool) {
				/* Round page requirement up to nearest 2 MB */
				struct kbase_mem_pool *const lp_mem_pool =
					&kctx->mem_pools.large[group_id];

				pages_to_grow = (pages_to_grow +
					((1 << lp_mem_pool->order) - 1))
						>> lp_mem_pool->order;

				ret = kbase_mem_pool_grow(lp_mem_pool,
					pages_to_grow, kctx->task);
			} else {
				struct kbase_mem_pool *const mem_pool =
					&kctx->mem_pools.small[group_id];

				ret = kbase_mem_pool_grow(mem_pool,
					pages_to_grow, kctx->task);
			}
		}
		if (ret < 0) {
			/* failed to extend, handle as a normal PF */
			kbase_mmu_report_fault_and_kill(kctx, faulting_as,
					"Page allocation failure", fault);
		} else {
			dev_dbg(kbdev->dev, "Try again after pool_grow");
			goto page_fault_retry;
		}
	}

fault_done:
#if MALI_JIT_PRESSURE_LIMIT_BASE
	if (pages_trimmed) {
		kbase_gpu_vm_lock(kctx);
		kbase_jit_done_phys_increase(kctx, pages_trimmed);
		kbase_gpu_vm_unlock(kctx);
	}
#if !MALI_USE_CSF
	rt_mutex_unlock(&kctx->jctx.lock);
#endif
#endif

	for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i)
		kfree(prealloc_sas[i]);

	/*
	 * By this point, the fault was handled in some way,
	 * so release the ctx refcount
	 */
	release_ctx(kbdev, kctx);

	atomic_dec(&kbdev->faults_pending);
	dev_dbg(kbdev->dev, "Leaving page_fault_worker %pK", (void *)data);
}

static phys_addr_t kbase_mmu_alloc_pgd(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut)
{
	u64 *page;
	struct page *p;
	phys_addr_t pgd;

	p = kbase_mem_pool_alloc(&kbdev->mem_pools.small[mmut->group_id]);
	if (!p)
		return KBASE_MMU_INVALID_PGD_ADDRESS;

	page = kbase_kmap(p);

	if (page == NULL)
		goto alloc_free;

	pgd = page_to_phys(p);

	/* If the MMU tables belong to a context then account the memory usage
	 * to that context, otherwise the MMU tables are device wide and are
	 * only accounted to the device.
	 */
	if (mmut->kctx) {
		int new_page_count;

		new_page_count = atomic_add_return(1,
			&mmut->kctx->used_pages);
		KBASE_TLSTREAM_AUX_PAGESALLOC(
			kbdev,
			mmut->kctx->id,
			(u64)new_page_count);
		kbase_process_page_usage_inc(mmut->kctx, 1);
	}

	atomic_add(1, &kbdev->memdev.used_pages);

	kbase_trace_gpu_mem_usage_inc(kbdev, mmut->kctx, 1);

	kbdev->mmu_mode->entries_invalidate(page, KBASE_MMU_PAGE_ENTRIES);

	/* As this page is newly created, therefore there is no content to
	 * clean or invalidate in the GPU caches.
	 */
	kbase_mmu_sync_pgd_cpu(kbdev, kbase_dma_addr(p), PAGE_SIZE);

	kbase_kunmap(p, page);
	return pgd;

alloc_free:
	kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id], p, false);

	return KBASE_MMU_INVALID_PGD_ADDRESS;
}

/**
 * mmu_get_next_pgd() - Given PGD PFN for level N, return PGD PFN for level N+1
 *
 * @kbdev:    Device pointer.
 * @mmut:     GPU MMU page table.
 * @pgd:      Physical addresse of level N page directory.
 * @vpfn:     The virtual page frame number.
 * @level:    The level of MMU page table (N).
 *
 * Return:
 * * 0 - OK
 * * -EFAULT - level N+1 PGD does not exist
 * * -EINVAL - kmap() failed for level N PGD PFN
 */
static int mmu_get_next_pgd(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
			    phys_addr_t *pgd, u64 vpfn, int level)
{
	u64 *page;
	phys_addr_t target_pgd;
	struct page *p;

	lockdep_assert_held(&mmut->mmu_lock);

	/*
	 * Architecture spec defines level-0 as being the top-most.
	 * This is a bit unfortunate here, but we keep the same convention.
	 */
	vpfn >>= (3 - level) * 9;
	vpfn &= 0x1FF;

	p = pfn_to_page(PFN_DOWN(*pgd));
	page = kbase_kmap(p);
	if (page == NULL) {
		dev_err(kbdev->dev, "%s: kmap failure", __func__);
		return -EINVAL;
	}

	if (!kbdev->mmu_mode->pte_is_valid(page[vpfn], level)) {
		dev_dbg(kbdev->dev, "%s: invalid PTE at level %d vpfn 0x%llx", __func__, level,
			vpfn);
		kbase_kunmap(p, page);
		return -EFAULT;
	} else {
		target_pgd = kbdev->mmu_mode->pte_to_phy_addr(
			kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
				kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, page[vpfn]));
	}

	kbase_kunmap(p, page);
	*pgd = target_pgd;

	return 0;
}

/**
 * mmu_get_lowest_valid_pgd() - Find a valid PGD at or closest to in_level
 *
 * @kbdev:    Device pointer.
 * @mmut:     GPU MMU page table.
 * @vpfn:     The virtual page frame number.
 * @in_level:     The level of MMU page table (N).
 * @out_level:    Set to the level of the lowest valid PGD found on success.
 *                Invalid on error.
 * @out_pgd:      Set to the lowest valid PGD found on success.
 *                Invalid on error.
 *
 * Does a page table walk starting from top level (L0) to in_level to find a valid PGD at or
 * closest to in_level
 *
 * Terminology:
 * Level-0 = Top-level = highest
 * Level-3 = Bottom-level = lowest
 *
 * Return:
 * * 0 - OK
 * * -EINVAL - kmap() failed during page table walk.
 */
static int mmu_get_lowest_valid_pgd(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
				    u64 vpfn, int in_level, int *out_level, phys_addr_t *out_pgd)
{
	phys_addr_t pgd;
	int l;
	int err = 0;

	lockdep_assert_held(&mmut->mmu_lock);
	pgd = mmut->pgd;

	for (l = MIDGARD_MMU_TOPLEVEL; l < in_level; l++) {
		err = mmu_get_next_pgd(kbdev, mmut, &pgd, vpfn, l);

		/* Handle failure condition */
		if (err) {
			dev_dbg(kbdev->dev,
				"%s: mmu_get_next_pgd() failed to find a valid pgd at level %d",
				__func__, l + 1);
			break;
		}
	}

	*out_pgd = pgd;
	*out_level = l;

	/* -EFAULT indicates that pgd param was valid but the next pgd entry at vpfn was invalid.
	 * This implies that we have found the lowest valid pgd. Reset the error code.
	 */
	if (err == -EFAULT)
		err = 0;

	return err;
}

/*
 * On success, sets out_pgd to the PGD for the specified level of translation
 * Returns -EFAULT if a valid PGD is not found
 */
static int mmu_get_pgd_at_level(struct kbase_device *kbdev, struct kbase_mmu_table *mmut, u64 vpfn,
				int level, phys_addr_t *out_pgd)
{
	phys_addr_t pgd;
	int l;

	lockdep_assert_held(&mmut->mmu_lock);
	pgd = mmut->pgd;

	for (l = MIDGARD_MMU_TOPLEVEL; l < level; l++) {
		int err = mmu_get_next_pgd(kbdev, mmut, &pgd, vpfn, l);
		/* Handle failure condition */
		if (err) {
			dev_err(kbdev->dev,
				"%s: mmu_get_next_pgd() failed to find a valid pgd at level %d",
				__func__, l + 1);
			return err;
		}
	}

	*out_pgd = pgd;

	return 0;
}

static void mmu_insert_pages_failure_recovery(struct kbase_device *kbdev,
					      struct kbase_mmu_table *mmut, u64 from_vpfn,
					      u64 to_vpfn, u64 *dirty_pgds,
					      struct tagged_addr *phys, bool ignore_page_migration)
{
	u64 vpfn = from_vpfn;
	struct kbase_mmu_mode const *mmu_mode;

	/* 64-bit address range is the max */
	KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
	KBASE_DEBUG_ASSERT(from_vpfn <= to_vpfn);

	lockdep_assert_held(&mmut->mmu_lock);

	mmu_mode = kbdev->mmu_mode;
	kbase_mmu_reset_free_pgds_list(mmut);

	while (vpfn < to_vpfn) {
		unsigned int idx = vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - idx;
		unsigned int pcount = 0;
		unsigned int left = to_vpfn - vpfn;
		int level;
		u64 *page;
		phys_addr_t pgds[MIDGARD_MMU_BOTTOMLEVEL + 1];
		phys_addr_t pgd = mmut->pgd;
		struct page *p = phys_to_page(pgd);

		register unsigned int num_of_valid_entries;

		if (count > left)
			count = left;

		/* need to check if this is a 2MB page or a 4kB */
		for (level = MIDGARD_MMU_TOPLEVEL;
				level <= MIDGARD_MMU_BOTTOMLEVEL; level++) {
			idx = (vpfn >> ((3 - level) * 9)) & 0x1FF;
			pgds[level] = pgd;
			page = kbase_kmap(p);
			if (mmu_mode->ate_is_valid(page[idx], level))
				break; /* keep the mapping */
			kbase_kunmap(p, page);
			pgd = mmu_mode->pte_to_phy_addr(kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
				kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, page[idx]));
			p = phys_to_page(pgd);
		}

		switch (level) {
		case MIDGARD_MMU_LEVEL(2):
			/* remap to single entry to update */
			pcount = 1;
			break;
		case MIDGARD_MMU_BOTTOMLEVEL:
			/* page count is the same as the logical count */
			pcount = count;
			break;
		default:
			dev_warn(kbdev->dev, "%sNo support for ATEs at level %d", __func__, level);
			goto next;
		}

		if (dirty_pgds && pcount > 0)
			*dirty_pgds |= 1ULL << level;

		num_of_valid_entries = mmu_mode->get_num_valid_entries(page);
		if (WARN_ON_ONCE(num_of_valid_entries < pcount))
			num_of_valid_entries = 0;
		else
			num_of_valid_entries -= pcount;

		/* Invalidate the entries we added */
		mmu_mode->entries_invalidate(&page[idx], pcount);

		if (!num_of_valid_entries) {
			kbase_kunmap(p, page);

			kbase_mmu_add_to_free_pgds_list(mmut, p);

			kbase_mmu_update_and_free_parent_pgds(kbdev, mmut, pgds, vpfn, level,
							      KBASE_MMU_OP_NONE, dirty_pgds);
			vpfn += count;
			continue;
		}

		mmu_mode->set_num_valid_entries(page, num_of_valid_entries);

		/* MMU cache flush strategy is NONE because GPU cache maintenance is
		 * going to be done by the caller
		 */
		kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (idx * sizeof(u64)),
				   kbase_dma_addr(p) + sizeof(u64) * idx, sizeof(u64) * pcount,
				   KBASE_MMU_OP_NONE);
		kbase_kunmap(p, page);
next:
		vpfn += count;
	}

	/* If page migration is enabled: the only way to recover from failure
	 * is to mark all pages as not movable. It is not predictable what's
	 * going to happen to these pages at this stage. They might return
	 * movable once they are returned to a memory pool.
	 */
	if (kbase_is_page_migration_enabled() && !ignore_page_migration && phys) {
		const u64 num_pages = to_vpfn - from_vpfn + 1;
		u64 i;

		for (i = 0; i < num_pages; i++) {
			struct page *phys_page = as_page(phys[i]);
			struct kbase_page_metadata *page_md = kbase_page_private(phys_page);

			if (page_md) {
				spin_lock(&page_md->migrate_lock);
				page_md->status = PAGE_STATUS_SET(page_md->status, (u8)NOT_MOVABLE);
				spin_unlock(&page_md->migrate_lock);
			}
		}
	}
}

static void mmu_flush_invalidate_insert_pages(struct kbase_device *kbdev,
					      struct kbase_mmu_table *mmut, const u64 vpfn,
					      size_t nr, u64 dirty_pgds,
					      enum kbase_caller_mmu_sync_info mmu_sync_info,
					      bool insert_pages_failed)
{
	struct kbase_mmu_hw_op_param op_param;
	int as_nr = 0;

	op_param.vpfn = vpfn;
	op_param.nr = nr;
	op_param.op = KBASE_MMU_OP_FLUSH_PT;
	op_param.mmu_sync_info = mmu_sync_info;
	op_param.kctx_id = mmut->kctx ? mmut->kctx->id : 0xFFFFFFFF;
	op_param.flush_skip_levels = pgd_level_to_skip_flush(dirty_pgds);

#if MALI_USE_CSF
	as_nr = mmut->kctx ? mmut->kctx->as_nr : MCU_AS_NR;
#else
	WARN_ON(!mmut->kctx);
#endif

	/* MMU cache flush strategy depends on whether GPU control commands for
	 * flushing physical address ranges are supported. The new physical pages
	 * are not present in GPU caches therefore they don't need any cache
	 * maintenance, but PGDs in the page table may or may not be created anew.
	 *
	 * Operations that affect the whole GPU cache shall only be done if it's
	 * impossible to update physical ranges.
	 *
	 * On GPUs where flushing by physical address range is supported,
	 * full cache flush is done when an error occurs during
	 * insert_pages() to keep the error handling simpler.
	 */
	if (mmu_flush_cache_on_gpu_ctrl(kbdev) && !insert_pages_failed)
		mmu_invalidate(kbdev, mmut->kctx, as_nr, &op_param);
	else
		mmu_flush_invalidate(kbdev, mmut->kctx, as_nr, &op_param);
}

/**
 * update_parent_pgds() - Updates the page table from bottom level towards
 *                        the top level to insert a new ATE
 *
 * @kbdev:    Device pointer.
 * @mmut:     GPU MMU page table.
 * @cur_level:    The level of MMU page table where the ATE needs to be added.
 *                The bottom PGD level.
 * @insert_level: The level of MMU page table where the chain of newly allocated
 *                PGDs needs to be linked-in/inserted.
 * @insert_vpfn:  The virtual page frame number for the ATE.
 * @pgds_to_insert: Ptr to an array (size MIDGARD_MMU_BOTTOMLEVEL+1) that contains
 *                  the physical addresses of newly allocated PGDs from index
 *                  insert_level+1 to cur_level, and an existing PGD at index
 *                  insert_level.
 *
 * The newly allocated PGDs are linked from the bottom level up and inserted into the PGD
 * at insert_level which already exists in the MMU Page Tables. Migration status is also
 * updated for all the newly allocated PGD pages.
 *
 * Return:
 * * 0 - OK
 * * -EFAULT - level N+1 PGD does not exist
 * * -EINVAL - kmap() failed for level N PGD PFN
 */
static int update_parent_pgds(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
			      int cur_level, int insert_level, u64 insert_vpfn,
			      phys_addr_t *pgds_to_insert)
{
	int pgd_index;
	int err = 0;

	/* Add a PTE for the new PGD page at pgd_index into the parent PGD at (pgd_index-1)
	 * Loop runs from the bottom-most to the top-most level so that all entries in the chain
	 * are valid when they are inserted into the MMU Page table via the insert_level PGD.
	 */
	for (pgd_index = cur_level; pgd_index > insert_level; pgd_index--) {
		int parent_index = pgd_index - 1;
		phys_addr_t parent_pgd = pgds_to_insert[parent_index];
		unsigned int current_valid_entries;
		u64 pte;
		phys_addr_t target_pgd = pgds_to_insert[pgd_index];
		u64 parent_vpfn = (insert_vpfn >> ((3 - parent_index) * 9)) & 0x1FF;
		struct page *parent_page = pfn_to_page(PFN_DOWN(parent_pgd));
		u64 *parent_page_va;

		if (WARN_ON_ONCE(target_pgd == KBASE_MMU_INVALID_PGD_ADDRESS)) {
			err = -EFAULT;
			goto failure_recovery;
		}

		parent_page_va = kbase_kmap(parent_page);

		if (unlikely(parent_page_va == NULL)) {
			dev_err(kbdev->dev, "%s: kmap failure", __func__);
			err = -EINVAL;
			goto failure_recovery;
		}

		current_valid_entries = kbdev->mmu_mode->get_num_valid_entries(parent_page_va);

		kbdev->mmu_mode->entry_set_pte(&pte, target_pgd);
		parent_page_va[parent_vpfn] = kbdev->mgm_dev->ops.mgm_update_gpu_pte(
			kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, parent_index, pte);
		kbdev->mmu_mode->set_num_valid_entries(parent_page_va, current_valid_entries + 1);
		kbase_kunmap(parent_page, parent_page_va);

		if (parent_index != insert_level) {
			/* Newly allocated PGDs */
			kbase_mmu_sync_pgd_cpu(
				kbdev, kbase_dma_addr(parent_page) + (parent_vpfn * sizeof(u64)),
				sizeof(u64));
		} else {
			/* A new valid entry is added to an existing PGD. Perform the
			 * invalidate operation for GPU cache as it could be having a
			 * cacheline that contains the entry (in an invalid form).
			 */
			kbase_mmu_sync_pgd(
				kbdev, mmut->kctx, parent_pgd + (parent_vpfn * sizeof(u64)),
				kbase_dma_addr(parent_page) + (parent_vpfn * sizeof(u64)),
				sizeof(u64), KBASE_MMU_OP_FLUSH_PT);
		}

		/* Update the new target_pgd page to its stable state */
		if (kbase_is_page_migration_enabled()) {
			struct kbase_page_metadata *page_md =
				kbase_page_private(phys_to_page(target_pgd));

			spin_lock(&page_md->migrate_lock);

			WARN_ON_ONCE(PAGE_STATUS_GET(page_md->status) != ALLOCATE_IN_PROGRESS ||
				     IS_PAGE_ISOLATED(page_md->status));

			if (mmut->kctx) {
				page_md->status = PAGE_STATUS_SET(page_md->status, PT_MAPPED);
				page_md->data.pt_mapped.mmut = mmut;
				page_md->data.pt_mapped.pgd_vpfn_level =
					PGD_VPFN_LEVEL_SET(insert_vpfn, parent_index);
			} else {
				page_md->status = PAGE_STATUS_SET(page_md->status, NOT_MOVABLE);
			}

			spin_unlock(&page_md->migrate_lock);
		}
	}

	return 0;

failure_recovery:
	/* Cleanup PTEs from PGDs. The Parent PGD in the loop above is just "PGD" here */
	for (; pgd_index < cur_level; pgd_index++) {
		phys_addr_t pgd = pgds_to_insert[pgd_index];
		struct page *pgd_page = pfn_to_page(PFN_DOWN(pgd));
		u64 *pgd_page_va = kbase_kmap(pgd_page);
		u64 vpfn = (insert_vpfn >> ((3 - pgd_index) * 9)) & 0x1FF;

		kbdev->mmu_mode->entries_invalidate(&pgd_page_va[vpfn], 1);
		kbase_kunmap(pgd_page, pgd_page_va);
	}

	return err;
}

/**
 * mmu_insert_alloc_pgds() - allocate memory for PGDs from level_low to
 *                           level_high (inclusive)
 *
 * @kbdev:    Device pointer.
 * @mmut:     GPU MMU page table.
 * @level_low:  The lower bound for the levels for which the PGD allocs are required
 * @level_high: The higher bound for the levels for which the PGD allocs are required
 * @new_pgds:   Ptr to an array (size MIDGARD_MMU_BOTTOMLEVEL+1) to write the
 *              newly allocated PGD addresses to.
 *
 * Numerically, level_low < level_high, not to be confused with top level and
 * bottom level concepts for MMU PGDs. They are only used as low and high bounds
 * in an incrementing for-loop.
 *
 * Return:
 * * 0 - OK
 * * -ENOMEM - allocation failed for a PGD.
 */
static int mmu_insert_alloc_pgds(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
				 phys_addr_t *new_pgds, int level_low, int level_high)
{
	int err = 0;
	int i;

	lockdep_assert_held(&mmut->mmu_lock);

	for (i = level_low; i <= level_high; i++) {
		do {
			new_pgds[i] = kbase_mmu_alloc_pgd(kbdev, mmut);
			if (new_pgds[i] != KBASE_MMU_INVALID_PGD_ADDRESS)
				break;

			rt_mutex_unlock(&mmut->mmu_lock);
			err = kbase_mem_pool_grow(&kbdev->mem_pools.small[mmut->group_id],
						  level_high, NULL);
			rt_mutex_lock(&mmut->mmu_lock);
			if (err) {
				dev_err(kbdev->dev, "%s: kbase_mem_pool_grow() returned error %d",
					__func__, err);

				/* Free all PGDs allocated in previous successful iterations
				 * from (i-1) to level_low
				 */
				for (i = (i - 1); i >= level_low; i--) {
					if (new_pgds[i] != KBASE_MMU_INVALID_PGD_ADDRESS)
						kbase_mmu_free_pgd(kbdev, mmut, new_pgds[i]);
				}

				return err;
			}
		} while (1);
	}

	return 0;
}

static int kbase_mmu_insert_single_page(struct kbase_context *kctx, u64 start_vpfn,
					struct tagged_addr phys, size_t nr, unsigned long flags,
					int const group_id,
					enum kbase_caller_mmu_sync_info mmu_sync_info,
					bool ignore_page_migration)
{
	phys_addr_t pgd;
	u64 *pgd_page;
	u64 insert_vpfn = start_vpfn;
	size_t remain = nr;
	int err;
	struct kbase_device *kbdev;
	u64 dirty_pgds = 0;
	unsigned int i;
	phys_addr_t new_pgds[MIDGARD_MMU_BOTTOMLEVEL + 1];
	enum kbase_mmu_op_type flush_op;
	struct kbase_mmu_table *mmut = &kctx->mmu;
	int l, cur_level, insert_level;

	if (WARN_ON(kctx == NULL))
		return -EINVAL;

	/* 64-bit address range is the max */
	KBASE_DEBUG_ASSERT(start_vpfn <= (U64_MAX / PAGE_SIZE));

	kbdev = kctx->kbdev;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	/* If page migration is enabled, pages involved in multiple GPU mappings
	 * are always treated as not movable.
	 */
	if (kbase_is_page_migration_enabled() && !ignore_page_migration) {
		struct page *phys_page = as_page(phys);
		struct kbase_page_metadata *page_md = kbase_page_private(phys_page);

		if (page_md) {
			spin_lock(&page_md->migrate_lock);
			page_md->status = PAGE_STATUS_SET(page_md->status, (u8)NOT_MOVABLE);
			spin_unlock(&page_md->migrate_lock);
		}
	}

	rt_mutex_lock(&mmut->mmu_lock);

	while (remain) {
		unsigned int vindex = insert_vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - vindex;
		struct page *p;
		register unsigned int num_of_valid_entries;
		bool newly_created_pgd = false;

		if (count > remain)
			count = remain;

		cur_level = MIDGARD_MMU_BOTTOMLEVEL;
		insert_level = cur_level;

		/*
		 * Repeatedly calling mmu_get_lowest_valid_pgd() is clearly
		 * suboptimal. We don't have to re-parse the whole tree
		 * each time (just cache the l0-l2 sequence).
		 * On the other hand, it's only a gain when we map more than
		 * 256 pages at once (on average). Do we really care?
		 */
		/* insert_level < cur_level if there's no valid PGD for cur_level and insert_vpn */
		err = mmu_get_lowest_valid_pgd(kbdev, mmut, insert_vpfn, cur_level, &insert_level,
					       &pgd);

		if (err) {
			dev_err(kbdev->dev, "%s: mmu_get_lowest_valid_pgd() returned error %d",
				__func__, err);
			goto fail_unlock;
		}

		/* No valid pgd at cur_level */
		if (insert_level != cur_level) {
			/* Allocate new pgds for all missing levels from the required level
			 * down to the lowest valid pgd at insert_level
			 */
			err = mmu_insert_alloc_pgds(kbdev, mmut, new_pgds, (insert_level + 1),
						    cur_level);
			if (err)
				goto fail_unlock;

			newly_created_pgd = true;

			new_pgds[insert_level] = pgd;

			/* If we didn't find an existing valid pgd at cur_level,
			 * we've now allocated one. The ATE in the next step should
			 * be inserted in this newly allocated pgd.
			 */
			pgd = new_pgds[cur_level];
		}

		p = pfn_to_page(PFN_DOWN(pgd));

		pgd_page = kbase_kmap(p);
		if (!pgd_page) {
			dev_err(kbdev->dev, "%s: kmap failure", __func__);
			err = -ENOMEM;

			goto fail_unlock_free_pgds;
		}

		num_of_valid_entries =
			kbdev->mmu_mode->get_num_valid_entries(pgd_page);

		for (i = 0; i < count; i++) {
			unsigned int ofs = vindex + i;

			/* Fail if the current page is a valid ATE entry */
			KBASE_DEBUG_ASSERT(0 == (pgd_page[ofs] & 1UL));

			pgd_page[ofs] = kbase_mmu_create_ate(kbdev,
				phys, flags, MIDGARD_MMU_BOTTOMLEVEL, group_id);
		}

		kbdev->mmu_mode->set_num_valid_entries(
			pgd_page, num_of_valid_entries + count);

		dirty_pgds |= 1ULL << (newly_created_pgd ? insert_level : MIDGARD_MMU_BOTTOMLEVEL);

		/* MMU cache flush operation here will depend on whether bottom level
		 * PGD is newly created or not.
		 *
		 * If bottom level PGD is newly created then no GPU cache maintenance is
		 * required as the PGD will not exist in GPU cache. Otherwise GPU cache
		 * maintenance is required for existing PGD.
		 */
		flush_op = newly_created_pgd ? KBASE_MMU_OP_NONE : KBASE_MMU_OP_FLUSH_PT;

		kbase_mmu_sync_pgd(kbdev, kctx, pgd + (vindex * sizeof(u64)),
				   kbase_dma_addr(p) + (vindex * sizeof(u64)), count * sizeof(u64),
				   flush_op);

		if (newly_created_pgd) {
			err = update_parent_pgds(kbdev, mmut, cur_level, insert_level, insert_vpfn,
						 new_pgds);
			if (err) {
				dev_err(kbdev->dev, "%s: update_parent_pgds() failed (%d)",
					__func__, err);

				kbdev->mmu_mode->entries_invalidate(&pgd_page[vindex], count);

				kbase_kunmap(p, pgd_page);
				goto fail_unlock_free_pgds;
			}
		}

		insert_vpfn += count;
		remain -= count;
		kbase_kunmap(p, pgd_page);
	}

	rt_mutex_unlock(&mmut->mmu_lock);

	mmu_flush_invalidate_insert_pages(kbdev, mmut, start_vpfn, nr, dirty_pgds, mmu_sync_info,
					  false);

	return 0;

fail_unlock_free_pgds:
	/* Free the pgds allocated by us from insert_level+1 to bottom level */
	for (l = cur_level; l > insert_level; l--)
		kbase_mmu_free_pgd(kbdev, mmut, new_pgds[l]);

fail_unlock:
	if (insert_vpfn != start_vpfn) {
		/* Invalidate the pages we have partially completed */
		mmu_insert_pages_failure_recovery(kbdev, mmut, start_vpfn, insert_vpfn, &dirty_pgds,
						  NULL, true);
	}

	mmu_flush_invalidate_insert_pages(kbdev, mmut, start_vpfn, nr, dirty_pgds, mmu_sync_info,
					  true);
	kbase_mmu_free_pgds_list(kbdev, mmut);
	rt_mutex_unlock(&mmut->mmu_lock);

	return err;
}

int kbase_mmu_insert_single_imported_page(struct kbase_context *kctx, u64 vpfn,
					  struct tagged_addr phys, size_t nr, unsigned long flags,
					  int const group_id,
					  enum kbase_caller_mmu_sync_info mmu_sync_info)
{
	/* The aliasing sink page has metadata and shall be moved to NOT_MOVABLE. */
	return kbase_mmu_insert_single_page(kctx, vpfn, phys, nr, flags, group_id, mmu_sync_info,
					    false);
}

int kbase_mmu_insert_single_aliased_page(struct kbase_context *kctx, u64 vpfn,
					 struct tagged_addr phys, size_t nr, unsigned long flags,
					 int const group_id,
					 enum kbase_caller_mmu_sync_info mmu_sync_info)
{
	/* The aliasing sink page has metadata and shall be moved to NOT_MOVABLE. */
	return kbase_mmu_insert_single_page(kctx, vpfn, phys, nr, flags, group_id, mmu_sync_info,
					    false);
}

static void kbase_mmu_progress_migration_on_insert(struct tagged_addr phys,
						   struct kbase_va_region *reg,
						   struct kbase_mmu_table *mmut, const u64 vpfn)
{
	struct page *phys_page = as_page(phys);
	struct kbase_page_metadata *page_md = kbase_page_private(phys_page);

	if (!IS_ENABLED(CONFIG_PAGE_MIGRATION_SUPPORT))
		return;

	spin_lock(&page_md->migrate_lock);

	/* If no GPU va region is given: the metadata provided are
	 * invalid.
	 *
	 * If the page is already allocated and mapped: this is
	 * an additional GPU mapping, probably to create a memory
	 * alias, which means it is no longer possible to migrate
	 * the page easily because tracking all the GPU mappings
	 * would be too costly.
	 *
	 * In any case: the page becomes not movable. It is kept
	 * alive, but attempts to migrate it will fail. The page
	 * will be freed if it is still not movable when it returns
	 * to a memory pool. Notice that the movable flag is not
	 * cleared because that would require taking the page lock.
	 */
	if (!reg || PAGE_STATUS_GET(page_md->status) == (u8)ALLOCATED_MAPPED) {
		page_md->status = PAGE_STATUS_SET(page_md->status, (u8)NOT_MOVABLE);
	} else if (PAGE_STATUS_GET(page_md->status) == (u8)ALLOCATE_IN_PROGRESS) {
		page_md->status = PAGE_STATUS_SET(page_md->status, (u8)ALLOCATED_MAPPED);
		page_md->data.mapped.reg = reg;
		page_md->data.mapped.mmut = mmut;
		page_md->data.mapped.vpfn = vpfn;
	}

	spin_unlock(&page_md->migrate_lock);
}

static void kbase_mmu_progress_migration_on_teardown(struct kbase_device *kbdev,
						     struct tagged_addr *phys, size_t requested_nr)
{
	size_t i;

	if (!IS_ENABLED(CONFIG_PAGE_MIGRATION_SUPPORT))
		return;

	for (i = 0; i < requested_nr; i++) {
		struct page *phys_page = as_page(phys[i]);
		struct kbase_page_metadata *page_md = kbase_page_private(phys_page);

		/* Skip the 4KB page that is part of a large page, as the large page is
		 * excluded from the migration process.
		 */
		if (is_huge(phys[i]) || is_partial(phys[i]))
			continue;

		if (page_md) {
			u8 status;

			spin_lock(&page_md->migrate_lock);
			status = PAGE_STATUS_GET(page_md->status);

			if (status == ALLOCATED_MAPPED) {
				if (IS_PAGE_ISOLATED(page_md->status)) {
					page_md->status = PAGE_STATUS_SET(
						page_md->status, (u8)FREE_ISOLATED_IN_PROGRESS);
					page_md->data.free_isolated.kbdev = kbdev;
					/* At this point, we still have a reference
					 * to the page via its page migration metadata,
					 * and any page with the FREE_ISOLATED_IN_PROGRESS
					 * status will subsequently be freed in either
					 * kbase_page_migrate() or kbase_page_putback()
					 */
					phys[i] = as_tagged(0);
				} else
					page_md->status = PAGE_STATUS_SET(page_md->status,
									  (u8)FREE_IN_PROGRESS);
			}

			spin_unlock(&page_md->migrate_lock);
		}
	}
}

u64 kbase_mmu_create_ate(struct kbase_device *const kbdev,
	struct tagged_addr const phy, unsigned long const flags,
	int const level, int const group_id)
{
	u64 entry;

	kbdev->mmu_mode->entry_set_ate(&entry, phy, flags, level);
	return kbdev->mgm_dev->ops.mgm_update_gpu_pte(kbdev->mgm_dev,
		group_id, level, entry);
}

static int mmu_insert_pages_no_flush(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
				     const u64 start_vpfn, struct tagged_addr *phys, size_t nr,
				     unsigned long flags, int const group_id, u64 *dirty_pgds,
				     struct kbase_va_region *reg, bool ignore_page_migration)
{
	phys_addr_t pgd;
	u64 *pgd_page;
	u64 insert_vpfn = start_vpfn;
	size_t remain = nr;
	int err;
	struct kbase_mmu_mode const *mmu_mode;
	unsigned int i;
	phys_addr_t new_pgds[MIDGARD_MMU_BOTTOMLEVEL + 1];
	int l, cur_level, insert_level;

	/* Note that 0 is a valid start_vpfn */
	/* 64-bit address range is the max */
	KBASE_DEBUG_ASSERT(start_vpfn <= (U64_MAX / PAGE_SIZE));

	mmu_mode = kbdev->mmu_mode;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	rt_mutex_lock(&mmut->mmu_lock);

	while (remain) {
		unsigned int vindex = insert_vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - vindex;
		struct page *p;
		register unsigned int num_of_valid_entries;
		bool newly_created_pgd = false;
		enum kbase_mmu_op_type flush_op;

		if (count > remain)
			count = remain;

		if (!vindex && is_huge_head(*phys))
			cur_level = MIDGARD_MMU_LEVEL(2);
		else
			cur_level = MIDGARD_MMU_BOTTOMLEVEL;

		insert_level = cur_level;

		/*
		 * Repeatedly calling mmu_get_lowest_valid_pgd() is clearly
		 * suboptimal. We don't have to re-parse the whole tree
		 * each time (just cache the l0-l2 sequence).
		 * On the other hand, it's only a gain when we map more than
		 * 256 pages at once (on average). Do we really care?
		 */
		/* insert_level < cur_level if there's no valid PGD for cur_level and insert_vpn */
		err = mmu_get_lowest_valid_pgd(kbdev, mmut, insert_vpfn, cur_level, &insert_level,
					       &pgd);

		if (err) {
			dev_err(kbdev->dev, "%s: mmu_get_lowest_valid_pgd() returned error %d",
				__func__, err);
			goto fail_unlock;
		}

		/* No valid pgd at cur_level */
		if (insert_level != cur_level) {
			/* Allocate new pgds for all missing levels from the required level
			 * down to the lowest valid pgd at insert_level
			 */
			err = mmu_insert_alloc_pgds(kbdev, mmut, new_pgds, (insert_level + 1),
						    cur_level);
			if (err)
				goto fail_unlock;

			newly_created_pgd = true;

			new_pgds[insert_level] = pgd;

			/* If we didn't find an existing valid pgd at cur_level,
			 * we've now allocated one. The ATE in the next step should
			 * be inserted in this newly allocated pgd.
			 */
			pgd = new_pgds[cur_level];
		}

		p = pfn_to_page(PFN_DOWN(pgd));
		pgd_page = kbase_kmap(p);

		if (!pgd_page) {
			dev_err(kbdev->dev, "%s: kmap failure", __func__);
			err = -ENOMEM;

			goto fail_unlock_free_pgds;
		}

		num_of_valid_entries =
			mmu_mode->get_num_valid_entries(pgd_page);

		if (cur_level == MIDGARD_MMU_LEVEL(2)) {
			int level_index = (insert_vpfn >> 9) & 0x1FF;
			pgd_page[level_index] =
				kbase_mmu_create_ate(kbdev, *phys, flags, cur_level, group_id);

			num_of_valid_entries++;
		} else {
			for (i = 0; i < count; i++) {
				unsigned int ofs = vindex + i;
				u64 *target = &pgd_page[ofs];

				/* Warn if the current page is a valid ATE
				 * entry. The page table shouldn't have anything
				 * in the place where we are trying to put a
				 * new entry. Modification to page table entries
				 * should be performed with
				 * kbase_mmu_update_pages()
				 */
				WARN_ON((*target & 1UL) != 0);

				*target = kbase_mmu_create_ate(kbdev,
					phys[i], flags, cur_level, group_id);

				/* If page migration is enabled, this is the right time
				 * to update the status of the page.
				 */
				if (kbase_is_page_migration_enabled() && !ignore_page_migration &&
				    !is_huge(phys[i]) && !is_partial(phys[i]))
					kbase_mmu_progress_migration_on_insert(phys[i], reg, mmut,
									       insert_vpfn + i);
			}
			num_of_valid_entries += count;
		}

		mmu_mode->set_num_valid_entries(pgd_page, num_of_valid_entries);

		if (dirty_pgds)
			*dirty_pgds |= 1ULL << (newly_created_pgd ? insert_level : cur_level);

		/* MMU cache flush operation here will depend on whether bottom level
		 * PGD is newly created or not.
		 *
		 * If bottom level PGD is newly created then no GPU cache maintenance is
		 * required as the PGD will not exist in GPU cache. Otherwise GPU cache
		 * maintenance is required for existing PGD.
		 */
		flush_op = newly_created_pgd ? KBASE_MMU_OP_NONE : KBASE_MMU_OP_FLUSH_PT;

		kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (vindex * sizeof(u64)),
				   kbase_dma_addr(p) + (vindex * sizeof(u64)), count * sizeof(u64),
				   flush_op);

		if (newly_created_pgd) {
			err = update_parent_pgds(kbdev, mmut, cur_level, insert_level, insert_vpfn,
						 new_pgds);
			if (err) {
				dev_err(kbdev->dev, "%s: update_parent_pgds() failed (%d)",
					__func__, err);

				kbdev->mmu_mode->entries_invalidate(&pgd_page[vindex], count);

				kbase_kunmap(p, pgd_page);
				goto fail_unlock_free_pgds;
			}
		}

		phys += count;
		insert_vpfn += count;
		remain -= count;
		kbase_kunmap(p, pgd_page);
	}

	rt_mutex_unlock(&mmut->mmu_lock);

	return 0;

fail_unlock_free_pgds:
	/* Free the pgds allocated by us from insert_level+1 to bottom level */
	for (l = cur_level; l > insert_level; l--)
		kbase_mmu_free_pgd(kbdev, mmut, new_pgds[l]);

fail_unlock:
	if (insert_vpfn != start_vpfn) {
		/* Invalidate the pages we have partially completed */
		mmu_insert_pages_failure_recovery(kbdev, mmut, start_vpfn, insert_vpfn, dirty_pgds,
						  phys, ignore_page_migration);
	}

	mmu_flush_invalidate_insert_pages(kbdev, mmut, start_vpfn, nr,
					  dirty_pgds ? *dirty_pgds : 0xF, CALLER_MMU_ASYNC, true);
	kbase_mmu_free_pgds_list(kbdev, mmut);
	rt_mutex_unlock(&mmut->mmu_lock);

	return err;
}

int kbase_mmu_insert_pages_no_flush(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
				    const u64 start_vpfn, struct tagged_addr *phys, size_t nr,
				    unsigned long flags, int const group_id, u64 *dirty_pgds,
				    struct kbase_va_region *reg)
{
	int err;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	err = mmu_insert_pages_no_flush(kbdev, mmut, start_vpfn, phys, nr, flags, group_id,
					dirty_pgds, reg, false);

	return err;
}

/*
 * Map 'nr' pages pointed to by 'phys' at GPU PFN 'vpfn' for GPU address space
 * number 'as_nr'.
 */
int kbase_mmu_insert_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut, u64 vpfn,
			   struct tagged_addr *phys, size_t nr, unsigned long flags, int as_nr,
			   int const group_id, enum kbase_caller_mmu_sync_info mmu_sync_info,
			   struct kbase_va_region *reg)
{
	int err;
	u64 dirty_pgds = 0;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	err = mmu_insert_pages_no_flush(kbdev, mmut, vpfn, phys, nr, flags, group_id, &dirty_pgds,
					reg, false);
	if (err)
		return err;

	mmu_flush_invalidate_insert_pages(kbdev, mmut, vpfn, nr, dirty_pgds, mmu_sync_info, false);

	return 0;
}

KBASE_EXPORT_TEST_API(kbase_mmu_insert_pages);

int kbase_mmu_insert_pages_skip_status_update(struct kbase_device *kbdev,
					      struct kbase_mmu_table *mmut, u64 vpfn,
					      struct tagged_addr *phys, size_t nr,
					      unsigned long flags, int as_nr, int const group_id,
					      enum kbase_caller_mmu_sync_info mmu_sync_info,
					      struct kbase_va_region *reg)
{
	int err;
	u64 dirty_pgds = 0;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	/* Imported allocations don't have metadata and therefore always ignore the
	 * page migration logic.
	 */
	err = mmu_insert_pages_no_flush(kbdev, mmut, vpfn, phys, nr, flags, group_id, &dirty_pgds,
					reg, true);
	if (err)
		return err;

	mmu_flush_invalidate_insert_pages(kbdev, mmut, vpfn, nr, dirty_pgds, mmu_sync_info, false);

	return 0;
}

int kbase_mmu_insert_aliased_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
				   u64 vpfn, struct tagged_addr *phys, size_t nr,
				   unsigned long flags, int as_nr, int const group_id,
				   enum kbase_caller_mmu_sync_info mmu_sync_info,
				   struct kbase_va_region *reg)
{
	int err;
	u64 dirty_pgds = 0;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	/* Memory aliases are always built on top of existing allocations,
	 * therefore the state of physical pages shall be updated.
	 */
	err = mmu_insert_pages_no_flush(kbdev, mmut, vpfn, phys, nr, flags, group_id, &dirty_pgds,
					reg, false);
	if (err)
		return err;

	mmu_flush_invalidate_insert_pages(kbdev, mmut, vpfn, nr, dirty_pgds, mmu_sync_info, false);

	return 0;
}

#if !MALI_USE_CSF
/**
 * kbase_mmu_flush_noretain() - Flush and invalidate the GPU caches
 * without retaining the kbase context.
 * @kctx: The KBase context.
 * @vpfn: The virtual page frame number to start the flush on.
 * @nr: The number of pages to flush.
 *
 * As per kbase_mmu_flush_invalidate but doesn't retain the kctx or do any
 * other locking.
 */
static void kbase_mmu_flush_noretain(struct kbase_context *kctx, u64 vpfn, size_t nr)
{
	struct kbase_device *kbdev = kctx->kbdev;
	int err;
	/* Calls to this function are inherently asynchronous, with respect to
	 * MMU operations.
	 */
	const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_ASYNC;
	struct kbase_mmu_hw_op_param op_param;

	lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
	lockdep_assert_held(&kctx->kbdev->mmu_hw_mutex);

	/* Early out if there is nothing to do */
	if (nr == 0)
		return;

	/* flush L2 and unlock the VA (resumes the MMU) */
	op_param.vpfn = vpfn;
	op_param.nr = nr;
	op_param.op = KBASE_MMU_OP_FLUSH_MEM;
	op_param.kctx_id = kctx->id;
	op_param.mmu_sync_info = mmu_sync_info;
	if (mmu_flush_cache_on_gpu_ctrl(kbdev)) {
		/* Value used to prevent skipping of any levels when flushing */
		op_param.flush_skip_levels = pgd_level_to_skip_flush(0xF);
		err = kbase_mmu_hw_do_flush_on_gpu_ctrl(kbdev, &kbdev->as[kctx->as_nr],
							&op_param);
	} else {
		err = kbase_mmu_hw_do_flush_locked(kbdev, &kbdev->as[kctx->as_nr],
						   &op_param);
	}

	if (err) {
		/* Flush failed to complete, assume the
		 * GPU has hung and perform a reset to recover
		 */
		dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issuing GPU soft-reset to recover");

		if (kbase_prepare_to_reset_gpu_locked(kbdev, RESET_FLAGS_NONE))
			kbase_reset_gpu_locked(kbdev);
	}
}
#endif

void kbase_mmu_update(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut,
		int as_nr)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);
	lockdep_assert_held(&kbdev->mmu_hw_mutex);
	KBASE_DEBUG_ASSERT(as_nr != KBASEP_AS_NR_INVALID);

	kbdev->mmu_mode->update(kbdev, mmut, as_nr);
}
KBASE_EXPORT_TEST_API(kbase_mmu_update);

void kbase_mmu_disable_as(struct kbase_device *kbdev, int as_nr)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);
	lockdep_assert_held(&kbdev->mmu_hw_mutex);

	kbdev->mmu_mode->disable_as(kbdev, as_nr);
}

#if MALI_USE_CSF
void kbase_mmu_disable(struct kbase_context *kctx)
{
	/* Calls to this function are inherently asynchronous, with respect to
	 * MMU operations.
	 */
	const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_ASYNC;
	struct kbase_device *kbdev = kctx->kbdev;
	struct kbase_mmu_hw_op_param op_param = { 0 };
	int lock_err, flush_err;

	/* ASSERT that the context has a valid as_nr, which is only the case
	 * when it's scheduled in.
	 *
	 * as_nr won't change because the caller has the hwaccess_lock
	 */
	KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);

	lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
	lockdep_assert_held(&kctx->kbdev->mmu_hw_mutex);

	op_param.vpfn = 0;
	op_param.nr = ~0;
	op_param.op = KBASE_MMU_OP_FLUSH_MEM;
	op_param.kctx_id = kctx->id;
	op_param.mmu_sync_info = mmu_sync_info;

#if MALI_USE_CSF
	/* 0xF value used to prevent skipping of any levels when flushing */
	if (mmu_flush_cache_on_gpu_ctrl(kbdev))
		op_param.flush_skip_levels = pgd_level_to_skip_flush(0xF);
#endif

	/* lock MMU to prevent existing jobs on GPU from executing while the AS is
	 * not yet disabled
	 */
	lock_err = kbase_mmu_hw_do_lock(kbdev, &kbdev->as[kctx->as_nr], &op_param);
	if (lock_err)
		dev_err(kbdev->dev, "Failed to lock AS %d for ctx %d_%d", kctx->as_nr, kctx->tgid,
			kctx->id);

	/* Issue the flush command only when L2 cache is in stable power on state.
	 * Any other state for L2 cache implies that shader cores are powered off,
	 * which in turn implies there is no execution happening on the GPU.
	 */
	if (kbdev->pm.backend.l2_state == KBASE_L2_ON) {
		flush_err = kbase_gpu_cache_flush_and_busy_wait(kbdev,
								GPU_COMMAND_CACHE_CLN_INV_L2_LSC);
		if (flush_err)
			dev_err(kbdev->dev,
				"Failed to flush GPU cache when disabling AS %d for ctx %d_%d",
				kctx->as_nr, kctx->tgid, kctx->id);
	}
	kbdev->mmu_mode->disable_as(kbdev, kctx->as_nr);

	if (!lock_err) {
		/* unlock the MMU to allow it to resume */
		lock_err =
			kbase_mmu_hw_do_unlock_no_addr(kbdev, &kbdev->as[kctx->as_nr], &op_param);
		if (lock_err)
			dev_err(kbdev->dev, "Failed to unlock AS %d for ctx %d_%d", kctx->as_nr,
				kctx->tgid, kctx->id);
	}

#if !MALI_USE_CSF
	/*
	 * JM GPUs has some L1 read only caches that need to be invalidated
	 * with START_FLUSH configuration. Purge the MMU disabled kctx from
	 * the slot_rb tracking field so such invalidation is performed when
	 * a new katom is executed on the affected slots.
	 */
	kbase_backend_slot_kctx_purge_locked(kbdev, kctx);
#endif

	/* kbase_gpu_cache_flush_and_busy_wait() will reset the GPU on timeout. Only
	 * reset the GPU if locking or unlocking fails.
	 */
	if (lock_err)
		if (kbase_prepare_to_reset_gpu_locked(kbdev, RESET_FLAGS_NONE))
			kbase_reset_gpu_locked(kbdev);
}
#else
void kbase_mmu_disable(struct kbase_context *kctx)
{
	/* ASSERT that the context has a valid as_nr, which is only the case
	 * when it's scheduled in.
	 *
	 * as_nr won't change because the caller has the hwaccess_lock
	 */
	KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);

	lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
	lockdep_assert_held(&kctx->kbdev->mmu_hw_mutex);

	/*
	 * The address space is being disabled, drain all knowledge of it out
	 * from the caches as pages and page tables might be freed after this.
	 *
	 * The job scheduler code will already be holding the locks and context
	 * so just do the flush.
	 */
	kbase_mmu_flush_noretain(kctx, 0, ~0);

	kctx->kbdev->mmu_mode->disable_as(kctx->kbdev, kctx->as_nr);
#if !MALI_USE_CSF
	/*
	 * JM GPUs has some L1 read only caches that need to be invalidated
	 * with START_FLUSH configuration. Purge the MMU disabled kctx from
	 * the slot_rb tracking field so such invalidation is performed when
	 * a new katom is executed on the affected slots.
	 */
	kbase_backend_slot_kctx_purge_locked(kctx->kbdev, kctx);
#endif
}
#endif
KBASE_EXPORT_TEST_API(kbase_mmu_disable);

static void kbase_mmu_update_and_free_parent_pgds(struct kbase_device *kbdev,
						  struct kbase_mmu_table *mmut, phys_addr_t *pgds,
						  u64 vpfn, int level,
						  enum kbase_mmu_op_type flush_op, u64 *dirty_pgds)
{
	int current_level;

	lockdep_assert_held(&mmut->mmu_lock);

	for (current_level = level - 1; current_level >= MIDGARD_MMU_LEVEL(0);
	     current_level--) {
		phys_addr_t current_pgd = pgds[current_level];
		struct page *p = phys_to_page(current_pgd);

		u64 *current_page = kbase_kmap(p);
		unsigned int current_valid_entries =
			kbdev->mmu_mode->get_num_valid_entries(current_page);
		int index = (vpfn >> ((3 - current_level) * 9)) & 0x1FF;

		/* We need to track every level that needs updating */
		if (dirty_pgds)
			*dirty_pgds |= 1ULL << current_level;

		kbdev->mmu_mode->entries_invalidate(&current_page[index], 1);
		if (current_valid_entries == 1 &&
		    current_level != MIDGARD_MMU_LEVEL(0)) {
			kbase_kunmap(p, current_page);

			/* Ensure the cacheline containing the last valid entry
			 * of PGD is invalidated from the GPU cache, before the
			 * PGD page is freed.
			 */
			kbase_mmu_sync_pgd_gpu(kbdev, mmut->kctx,
				current_pgd + (index * sizeof(u64)),
				sizeof(u64), flush_op);

			kbase_mmu_add_to_free_pgds_list(mmut, p);
		} else {
			current_valid_entries--;

			kbdev->mmu_mode->set_num_valid_entries(
				current_page, current_valid_entries);

			kbase_kunmap(p, current_page);

			kbase_mmu_sync_pgd(kbdev, mmut->kctx, current_pgd + (index * sizeof(u64)),
					   kbase_dma_addr(p) + (index * sizeof(u64)), sizeof(u64),
					   flush_op);
			break;
		}
	}
}

/**
 * mmu_flush_invalidate_teardown_pages() - Perform flush operation after unmapping pages.
 *
 * @kbdev:         Pointer to kbase device.
 * @kctx:          Pointer to kbase context.
 * @as_nr:         Address space number, for GPU cache maintenance operations
 *                 that happen outside a specific kbase context.
 * @phys:          Array of physical pages to flush.
 * @phys_page_nr:  Number of physical pages to flush.
 * @op_param:      Non-NULL pointer to struct containing information about the flush
 *                 operation to perform.
 *
 * This function will do one of three things:
 * 1. Invalidate the MMU caches, followed by a partial GPU cache flush of the
 *    individual pages that were unmapped if feature is supported on GPU.
 * 2. Perform a full GPU cache flush through the GPU_CONTROL interface if feature is
 *    supported on GPU or,
 * 3. Perform a full GPU cache flush through the MMU_CONTROL interface.
 *
 * When performing a partial GPU cache flush, the number of physical
 * pages does not have to be identical to the number of virtual pages on the MMU,
 * to support a single physical address flush for an aliased page.
 */
static void mmu_flush_invalidate_teardown_pages(struct kbase_device *kbdev,
						struct kbase_context *kctx, int as_nr,
						struct tagged_addr *phys, size_t phys_page_nr,
						struct kbase_mmu_hw_op_param *op_param)
{
	if (!mmu_flush_cache_on_gpu_ctrl(kbdev)) {
		/* Full cache flush through the MMU_COMMAND */
		mmu_flush_invalidate(kbdev, kctx, as_nr, op_param);
	} else if (op_param->op == KBASE_MMU_OP_FLUSH_MEM) {
		/* Full cache flush through the GPU_CONTROL */
		mmu_flush_invalidate_on_gpu_ctrl(kbdev, kctx, as_nr, op_param);
	}
#if MALI_USE_CSF
	else {
		/* Partial GPU cache flush with MMU cache invalidation */
		unsigned long irq_flags;
		unsigned int i;
		bool flush_done = false;

		mmu_invalidate(kbdev, kctx, as_nr, op_param);

		for (i = 0; !flush_done && i < phys_page_nr; i++) {
			spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
			if (kbdev->pm.backend.gpu_ready && (!kctx || kctx->as_nr >= 0))
				mmu_flush_pa_range(kbdev, as_phys_addr_t(phys[i]), PAGE_SIZE,
						   KBASE_MMU_OP_FLUSH_MEM);
			else
				flush_done = true;
			spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
		}
	}
#endif
}

static int kbase_mmu_teardown_pgd_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
					u64 vpfn, size_t nr, u64 *dirty_pgds,
					struct list_head *free_pgds_list,
					enum kbase_mmu_op_type flush_op)
{
	struct kbase_mmu_mode const *mmu_mode = kbdev->mmu_mode;

	lockdep_assert_held(&mmut->mmu_lock);
	kbase_mmu_reset_free_pgds_list(mmut);

	while (nr) {
		unsigned int index = vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
		unsigned int pcount;
		int level;
		u64 *page;
		phys_addr_t pgds[MIDGARD_MMU_BOTTOMLEVEL + 1];
		register unsigned int num_of_valid_entries;
		phys_addr_t pgd = mmut->pgd;
		struct page *p = phys_to_page(pgd);

		if (count > nr)
			count = nr;

		/* need to check if this is a 2MB page or a 4kB */
		for (level = MIDGARD_MMU_TOPLEVEL;
				level <= MIDGARD_MMU_BOTTOMLEVEL; level++) {
			phys_addr_t next_pgd;

			index = (vpfn >> ((3 - level) * 9)) & 0x1FF;
			page = kbase_kmap(p);
			if (mmu_mode->ate_is_valid(page[index], level))
				break; /* keep the mapping */
			else if (!mmu_mode->pte_is_valid(page[index], level)) {
				/* nothing here, advance */
				switch (level) {
				case MIDGARD_MMU_LEVEL(0):
					count = 134217728;
					break;
				case MIDGARD_MMU_LEVEL(1):
					count = 262144;
					break;
				case MIDGARD_MMU_LEVEL(2):
					count = 512;
					break;
				case MIDGARD_MMU_LEVEL(3):
					count = 1;
					break;
				}
				if (count > nr)
					count = nr;
				goto next;
			}
			next_pgd = mmu_mode->pte_to_phy_addr(
				kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
					kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, page[index]));
			kbase_kunmap(p, page);
			pgds[level] = pgd;
			pgd = next_pgd;
			p = phys_to_page(pgd);
		}

		switch (level) {
		case MIDGARD_MMU_LEVEL(0):
		case MIDGARD_MMU_LEVEL(1):
			dev_warn(kbdev->dev, "%s: No support for ATEs at level %d", __func__,
				 level);
			kbase_kunmap(p, page);
			goto out;
		case MIDGARD_MMU_LEVEL(2):
			/* can only teardown if count >= 512 */
			if (count >= 512) {
				pcount = 1;
			} else {
				dev_warn(
					kbdev->dev,
					"%s: limiting teardown as it tries to do a partial 2MB teardown, need 512, but have %d to tear down",
					__func__, count);
				pcount = 0;
			}
			break;
		case MIDGARD_MMU_BOTTOMLEVEL:
			/* page count is the same as the logical count */
			pcount = count;
			break;
		default:
			dev_err(kbdev->dev, "%s: found non-mapped memory, early out", __func__);
			vpfn += count;
			nr -= count;
			continue;
		}

		if (pcount > 0)
			*dirty_pgds |= 1ULL << level;

		num_of_valid_entries = mmu_mode->get_num_valid_entries(page);
		if (WARN_ON_ONCE(num_of_valid_entries < pcount))
			num_of_valid_entries = 0;
		else
			num_of_valid_entries -= pcount;

		/* Invalidate the entries we added */
		mmu_mode->entries_invalidate(&page[index], pcount);

		if (!num_of_valid_entries) {
			kbase_kunmap(p, page);

			/* Ensure the cacheline(s) containing the last valid entries
			 * of PGD is invalidated from the GPU cache, before the
			 * PGD page is freed.
			 */
			kbase_mmu_sync_pgd_gpu(kbdev, mmut->kctx,
				pgd + (index * sizeof(u64)),
				pcount * sizeof(u64), flush_op);

			kbase_mmu_add_to_free_pgds_list(mmut, p);

			kbase_mmu_update_and_free_parent_pgds(kbdev, mmut, pgds, vpfn, level,
							      flush_op, dirty_pgds);

			vpfn += count;
			nr -= count;
			continue;
		}

		mmu_mode->set_num_valid_entries(page, num_of_valid_entries);

		kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (index * sizeof(u64)),
				   kbase_dma_addr(p) + (index * sizeof(u64)), pcount * sizeof(u64),
				   flush_op);
next:
	kbase_kunmap(p, page);
	vpfn += count;
	nr -= count;
	}
out:
	return 0;
}

/**
 * mmu_teardown_pages - Remove GPU virtual addresses from the MMU page table
 *
 * @kbdev:    Pointer to kbase device.
 * @mmut:     Pointer to GPU MMU page table.
 * @vpfn:     Start page frame number of the GPU virtual pages to unmap.
 * @phys:     Array of physical pages currently mapped to the virtual
 *            pages to unmap, or NULL. This is used for GPU cache maintenance
 *            and page migration support.
 * @nr_phys_pages: Number of physical pages to flush.
 * @nr_virt_pages: Number of virtual pages whose PTEs should be destroyed.
 * @as_nr:    Address space number, for GPU cache maintenance operations
 *            that happen outside a specific kbase context.
 * @ignore_page_migration: Whether page migration metadata should be ignored.
 *
 * We actually discard the ATE and free the page table pages if no valid entries
 * exist in the PGD.
 *
 * IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is
 * currently scheduled into the runpool, and so potentially uses a lot of locks.
 * These locks must be taken in the correct order with respect to others
 * already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more
 * information.
 *
 * The @p phys pointer to physical pages is not necessary for unmapping virtual memory,
 * but it is used for fine-grained GPU cache maintenance. If @p phys is NULL,
 * GPU cache maintenance will be done as usual; that is, invalidating the whole GPU caches
 * instead of specific physical address ranges.
 *
 * Return: 0 on success, otherwise an error code.
 */
static int mmu_teardown_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut, u64 vpfn,
			      struct tagged_addr *phys, size_t nr_phys_pages, size_t nr_virt_pages,
			      int as_nr, bool ignore_page_migration)
{
	u64 start_vpfn = vpfn;
	enum kbase_mmu_op_type flush_op = KBASE_MMU_OP_NONE;
	struct kbase_mmu_hw_op_param op_param;
	int err = -EFAULT;
	u64 dirty_pgds = 0;
	LIST_HEAD(free_pgds_list);

	/* Calls to this function are inherently asynchronous, with respect to
	 * MMU operations.
	 */
	const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_ASYNC;

	/* This function performs two operations: MMU maintenance and flushing
	 * the caches. To ensure internal consistency between the caches and the
	 * MMU, it does not make sense to be able to flush only the physical pages
	 * from the cache and keep the PTE, nor does it make sense to use this
	 * function to remove a PTE and keep the physical pages in the cache.
	 *
	 * However, we have legitimate cases where we can try to tear down a mapping
	 * with zero virtual and zero physical pages, so we must have the following
	 * behaviour:
	 *  - if both physical and virtual page counts are zero, return early
	 *  - if either physical and virtual page counts are zero, return early
	 *  - if there are fewer physical pages than virtual pages, return -EINVAL
	 */
	if (unlikely(nr_virt_pages == 0 || nr_phys_pages == 0))
		return 0;

	if (unlikely(nr_virt_pages < nr_phys_pages))
		return -EINVAL;

	/* MMU cache flush strategy depends on the number of pages to unmap. In both cases
	 * the operation is invalidate but the granularity of cache maintenance may change
	 * according to the situation.
	 *
	 * If GPU control command operations are present and the number of pages is "small",
	 * then the optimal strategy is flushing on the physical address range of the pages
	 * which are affected by the operation. That implies both the PGDs which are modified
	 * or removed from the page table and the physical pages which are freed from memory.
	 *
	 * Otherwise, there's no alternative to invalidating the whole GPU cache.
	 */
	if (mmu_flush_cache_on_gpu_ctrl(kbdev) && phys &&
	    nr_phys_pages <= KBASE_PA_RANGE_THRESHOLD_NR_PAGES)
		flush_op = KBASE_MMU_OP_FLUSH_PT;

	if (!rt_mutex_trylock(&mmut->mmu_lock)) {
		/*
		 * Sometimes, mmu_lock takes long time to be released.
		 * In that case, kswapd is stuck until it can hold
		 * the lock. Instead, just bail out here so kswapd
		 * could reclaim other pages.
		 */
		if (current_is_kswapd())
			return -EBUSY;
		rt_mutex_lock(&mmut->mmu_lock);
	}

	err = kbase_mmu_teardown_pgd_pages(kbdev, mmut, vpfn, nr_virt_pages, &dirty_pgds,
					   &free_pgds_list, flush_op);

	/* Set up MMU operation parameters. See above about MMU cache flush strategy. */
	op_param = (struct kbase_mmu_hw_op_param){
		.vpfn = start_vpfn,
		.nr = nr_virt_pages,
		.mmu_sync_info = mmu_sync_info,
		.kctx_id = mmut->kctx ? mmut->kctx->id : 0xFFFFFFFF,
		.op = (flush_op == KBASE_MMU_OP_FLUSH_PT) ? KBASE_MMU_OP_FLUSH_PT :
							    KBASE_MMU_OP_FLUSH_MEM,
		.flush_skip_levels = pgd_level_to_skip_flush(dirty_pgds),
	};
	mmu_flush_invalidate_teardown_pages(kbdev, mmut->kctx, as_nr, phys, nr_phys_pages,
					    &op_param);

	/* If page migration is enabled: the status of all physical pages involved
	 * shall be updated, unless they are not movable. Their status shall be
	 * updated before releasing the lock to protect against concurrent
	 * requests to migrate the pages, if they have been isolated.
	 */
	if (kbase_is_page_migration_enabled() && phys && !ignore_page_migration)
		kbase_mmu_progress_migration_on_teardown(kbdev, phys, nr_phys_pages);

	kbase_mmu_free_pgds_list(kbdev, mmut);

	rt_mutex_unlock(&mmut->mmu_lock);

	return err;
}

int kbase_mmu_teardown_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut, u64 vpfn,
			     struct tagged_addr *phys, size_t nr_phys_pages, size_t nr_virt_pages,
			     int as_nr)
{
	return mmu_teardown_pages(kbdev, mmut, vpfn, phys, nr_phys_pages, nr_virt_pages, as_nr,
				  false);
}

int kbase_mmu_teardown_imported_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
				      u64 vpfn, struct tagged_addr *phys, size_t nr_phys_pages,
				      size_t nr_virt_pages, int as_nr)
{
	return mmu_teardown_pages(kbdev, mmut, vpfn, phys, nr_phys_pages, nr_virt_pages, as_nr,
				  true);
}

/**
 * kbase_mmu_update_pages_no_flush() - Update phy pages and attributes data in GPU
 *                                     page table entries
 *
 * @kbdev: Pointer to kbase device.
 * @mmut:  The involved MMU table
 * @vpfn:  Virtual PFN (Page Frame Number) of the first page to update
 * @phys:  Pointer to the array of tagged physical addresses of the physical
 *         pages that are pointed to by the page table entries (that need to
 *         be updated). The pointer should be within the reg->gpu_alloc->pages
 *         array.
 * @nr:    Number of pages to update
 * @flags: Flags
 * @group_id: The physical memory group in which the page was allocated.
 *            Valid range is 0..(MEMORY_GROUP_MANAGER_NR_GROUPS-1).
 * @dirty_pgds: Flags to track every level where a PGD has been updated.
 *
 * This will update page table entries that already exist on the GPU based on
 * new flags and replace any existing phy pages that are passed (the PGD pages
 * remain unchanged). It is used as a response to the changes of phys as well
 * as the the memory attributes.
 *
 * The caller is responsible for validating the memory attributes.
 *
 * Return: 0 if the attributes data in page table entries were updated
 *         successfully, otherwise an error code.
 */
int kbase_mmu_update_pages_no_flush(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
					   u64 vpfn, struct tagged_addr *phys, size_t nr,
					   unsigned long flags, int const group_id, u64 *dirty_pgds)
{
	phys_addr_t pgd;
	u64 *pgd_page;
	int err;

	KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	rt_mutex_lock(&mmut->mmu_lock);

	while (nr) {
		unsigned int i;
		unsigned int index = vpfn & 0x1FF;
		size_t count = KBASE_MMU_PAGE_ENTRIES - index;
		struct page *p;
		register unsigned int num_of_valid_entries;
		int cur_level = MIDGARD_MMU_BOTTOMLEVEL;

		if (count > nr)
			count = nr;

		if (is_huge(*phys) && (index == index_in_large_page(*phys)))
			cur_level = MIDGARD_MMU_LEVEL(2);

		err = mmu_get_pgd_at_level(kbdev, mmut, vpfn, cur_level, &pgd);
		if (WARN_ON(err))
			goto fail_unlock;

		p = pfn_to_page(PFN_DOWN(pgd));
		pgd_page = kbase_kmap(p);
		if (!pgd_page) {
			dev_warn(kbdev->dev, "kmap failure on update_pages");
			err = -ENOMEM;
			goto fail_unlock;
		}

		num_of_valid_entries =
			kbdev->mmu_mode->get_num_valid_entries(pgd_page);

		if (cur_level == MIDGARD_MMU_LEVEL(2)) {
			int level_index = (vpfn >> 9) & 0x1FF;
			struct tagged_addr *target_phys =
				phys - index_in_large_page(*phys);

#ifdef CONFIG_MALI_DEBUG
			WARN_ON_ONCE(!kbdev->mmu_mode->ate_is_valid(
					pgd_page[level_index], MIDGARD_MMU_LEVEL(2)));
#endif
			pgd_page[level_index] = kbase_mmu_create_ate(kbdev,
					*target_phys, flags, MIDGARD_MMU_LEVEL(2),
					group_id);
			kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (level_index * sizeof(u64)),
					   kbase_dma_addr(p) + (level_index * sizeof(u64)),
					   sizeof(u64), KBASE_MMU_OP_NONE);
		} else {
			for (i = 0; i < count; i++) {
#ifdef CONFIG_MALI_DEBUG
				WARN_ON_ONCE(!kbdev->mmu_mode->ate_is_valid(
						pgd_page[index + i],
						MIDGARD_MMU_BOTTOMLEVEL));
#endif
				pgd_page[index + i] = kbase_mmu_create_ate(kbdev,
					phys[i], flags, MIDGARD_MMU_BOTTOMLEVEL,
					group_id);
			}

			/* MMU cache flush strategy is NONE because GPU cache maintenance
			 * will be done by the caller.
			 */
			kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (index * sizeof(u64)),
					   kbase_dma_addr(p) + (index * sizeof(u64)),
					   count * sizeof(u64), KBASE_MMU_OP_NONE);
		}

		kbdev->mmu_mode->set_num_valid_entries(pgd_page,
					num_of_valid_entries);

		if (dirty_pgds && count > 0)
			*dirty_pgds |= 1ULL << cur_level;

		phys += count;
		vpfn += count;
		nr -= count;

		kbase_kunmap(p, pgd_page);
	}

	rt_mutex_unlock(&mmut->mmu_lock);
	return 0;

fail_unlock:
	rt_mutex_unlock(&mmut->mmu_lock);
	return err;
}

static int kbase_mmu_update_pages_common(struct kbase_device *kbdev, struct kbase_context *kctx,
					 u64 vpfn, struct tagged_addr *phys, size_t nr,
					 unsigned long flags, int const group_id)
{
	int err;
	u64 dirty_pgds = 0;
	struct kbase_mmu_table *mmut;

#if !MALI_USE_CSF
	if (unlikely(kctx == NULL))
		return -EINVAL;

	mmut = &kctx->mmu;
#else
	mmut = kctx ? &kctx->mmu : &kbdev->csf.mcu_mmu;
#endif

	err = kbase_mmu_update_pages_no_flush(kbdev, mmut, vpfn, phys, nr, flags, group_id,
					      &dirty_pgds);

	kbase_mmu_flush_invalidate_update_pages(kbdev, kctx, vpfn, nr, dirty_pgds);

	return err;
}

void kbase_mmu_flush_invalidate_update_pages(struct kbase_device *kbdev, struct kbase_context *kctx, u64 vpfn,
					size_t nr, u64 dirty_pgds)
{
	struct kbase_mmu_hw_op_param op_param;
	/* Calls to this function are inherently asynchronous, with respect to
	 * MMU operations.
	 */
	const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_ASYNC;
	int as_nr;

#if !MALI_USE_CSF
	if (unlikely(kctx == NULL))
		return;

	as_nr = kctx->as_nr;
#else
	as_nr = kctx ? kctx->as_nr : MCU_AS_NR;
#endif

	op_param = (const struct kbase_mmu_hw_op_param){
		.vpfn = vpfn,
		.nr = nr,
		.op = KBASE_MMU_OP_FLUSH_MEM,
		.kctx_id = kctx ? kctx->id : 0xFFFFFFFF,
		.mmu_sync_info = mmu_sync_info,
		.flush_skip_levels = pgd_level_to_skip_flush(dirty_pgds),
	};

	if (mmu_flush_cache_on_gpu_ctrl(kbdev))
		mmu_flush_invalidate_on_gpu_ctrl(kbdev, kctx, as_nr, &op_param);
	else
		mmu_flush_invalidate(kbdev, kctx, as_nr, &op_param);
}

int kbase_mmu_update_pages(struct kbase_context *kctx, u64 vpfn, struct tagged_addr *phys,
			   size_t nr, unsigned long flags, int const group_id)
{
	if (unlikely(kctx == NULL))
		return -EINVAL;

	return kbase_mmu_update_pages_common(kctx->kbdev, kctx, vpfn, phys, nr, flags, group_id);
}

#if MALI_USE_CSF
int kbase_mmu_update_csf_mcu_pages(struct kbase_device *kbdev, u64 vpfn, struct tagged_addr *phys,
				   size_t nr, unsigned long flags, int const group_id)
{
	return kbase_mmu_update_pages_common(kbdev, NULL, vpfn, phys, nr, flags, group_id);
}
#endif /* MALI_USE_CSF */

static void mmu_page_migration_transaction_begin(struct kbase_device *kbdev)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);

	WARN_ON_ONCE(kbdev->mmu_page_migrate_in_progress);
	kbdev->mmu_page_migrate_in_progress = true;
}

static void mmu_page_migration_transaction_end(struct kbase_device *kbdev)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);
	WARN_ON_ONCE(!kbdev->mmu_page_migrate_in_progress);
	kbdev->mmu_page_migrate_in_progress = false;
	/* Invoke the PM state machine, as the MMU page migration session
	 * may have deferred a transition in L2 state machine.
	 */
	kbase_pm_update_state(kbdev);
}

int kbase_mmu_migrate_page(struct tagged_addr old_phys, struct tagged_addr new_phys,
			   dma_addr_t old_dma_addr, dma_addr_t new_dma_addr, int level)
{
	struct kbase_page_metadata *page_md = kbase_page_private(as_page(old_phys));
	struct kbase_mmu_hw_op_param op_param;
	struct kbase_mmu_table *mmut = (level == MIDGARD_MMU_BOTTOMLEVEL) ?
					       page_md->data.mapped.mmut :
					       page_md->data.pt_mapped.mmut;
	struct kbase_device *kbdev;
	phys_addr_t pgd;
	u64 *old_page, *new_page, *pgd_page, *target, vpfn;
	int index, check_state, ret = 0;
	unsigned long hwaccess_flags = 0;
	unsigned int num_of_valid_entries;
	u8 vmap_count = 0;

	/* If page migration support is not compiled in, return with fault */
	if (!IS_ENABLED(CONFIG_PAGE_MIGRATION_SUPPORT))
		return -EINVAL;
	/* Due to the hard binding of mmu_command_instr with kctx_id via kbase_mmu_hw_op_param,
	 * here we skip the no kctx case, which is only used with MCU's mmut.
	 */
	if (!mmut->kctx)
		return -EINVAL;

	if (level > MIDGARD_MMU_BOTTOMLEVEL)
		return -EINVAL;
	else if (level == MIDGARD_MMU_BOTTOMLEVEL)
		vpfn = page_md->data.mapped.vpfn;
	else
		vpfn = PGD_VPFN_LEVEL_GET_VPFN(page_md->data.pt_mapped.pgd_vpfn_level);

	kbdev = mmut->kctx->kbdev;
	index = (vpfn >> ((3 - level) * 9)) & 0x1FF;

	/* Create all mappings before copying content.
	 * This is done as early as possible because it is the only operation that may
	 * fail. It is possible to do this before taking any locks because the
	 * pages to migrate are not going to change and even the parent PGD is not
	 * going to be affected by any other concurrent operation, since the page
	 * has been isolated before migration and therefore it cannot disappear in
	 * the middle of this function.
	 */
	old_page = kbase_kmap(as_page(old_phys));
	if (!old_page) {
		dev_warn(kbdev->dev, "%s: kmap failure for old page.", __func__);
		ret = -EINVAL;
		goto old_page_map_error;
	}

	new_page = kbase_kmap(as_page(new_phys));
	if (!new_page) {
		dev_warn(kbdev->dev, "%s: kmap failure for new page.", __func__);
		ret = -EINVAL;
		goto new_page_map_error;
	}

	/* GPU cache maintenance affects both memory content and page table,
	 * but at two different stages. A single virtual memory page is affected
	 * by the migration.
	 *
	 * Notice that the MMU maintenance is done in the following steps:
	 *
	 * 1) The MMU region is locked without performing any other operation.
	 *    This lock must cover the entire migration process, in order to
	 *    prevent any GPU access to the virtual page whose physical page
	 *    is being migrated.
	 * 2) Immediately after locking: the MMU region content is flushed via
	 *    GPU control while the lock is taken and without unlocking.
	 *    The region must stay locked for the duration of the whole page
	 *    migration procedure.
	 *    This is necessary to make sure that pending writes to the old page
	 *    are finalized before copying content to the new page.
	 * 3) Before unlocking: changes to the page table are flushed.
	 *    Finer-grained GPU control operations are used if possible, otherwise
	 *    the whole GPU cache shall be flushed again.
	 *    This is necessary to make sure that the GPU accesses the new page
	 *    after migration.
	 * 4) The MMU region is unlocked.
	 */
#define PGD_VPFN_MASK(level) (~((((u64)1) << ((3 - level) * 9)) - 1))
	op_param.mmu_sync_info = CALLER_MMU_ASYNC;
	op_param.kctx_id = mmut->kctx->id;
	op_param.vpfn = vpfn & PGD_VPFN_MASK(level);
	op_param.nr = 1 << ((3 - level) * 9);
	op_param.op = KBASE_MMU_OP_FLUSH_PT;
	/* When level is not MIDGARD_MMU_BOTTOMLEVEL, it is assumed PGD page migration */
	op_param.flush_skip_levels = (level == MIDGARD_MMU_BOTTOMLEVEL) ?
					     pgd_level_to_skip_flush(1ULL << level) :
					     pgd_level_to_skip_flush(3ULL << level);

	rt_mutex_lock(&mmut->mmu_lock);

	/* The state was evaluated before entering this function, but it could
	 * have changed before the mmu_lock was taken. However, the state
	 * transitions which are possible at this point are only two, and in both
	 * cases it is a stable state progressing to a "free in progress" state.
	 *
	 * After taking the mmu_lock the state can no longer change: read it again
	 * and make sure that it hasn't changed before continuing.
	 */
	spin_lock(&page_md->migrate_lock);
	check_state = PAGE_STATUS_GET(page_md->status);
	if (level == MIDGARD_MMU_BOTTOMLEVEL)
		vmap_count = page_md->vmap_count;
	spin_unlock(&page_md->migrate_lock);

	if (level == MIDGARD_MMU_BOTTOMLEVEL) {
		if (check_state != ALLOCATED_MAPPED) {
			dev_dbg(kbdev->dev,
				"%s: state changed to %d (was %d), abort page migration", __func__,
				check_state, ALLOCATED_MAPPED);
			ret = -EAGAIN;
			goto page_state_change_out;
		} else if (vmap_count > 0) {
			dev_dbg(kbdev->dev, "%s: page was multi-mapped, abort page migration",
				__func__);
			ret = -EAGAIN;
			goto page_state_change_out;
		}
	} else {
		if (check_state != PT_MAPPED) {
			dev_dbg(kbdev->dev,
				"%s: state changed to %d (was %d), abort PGD page migration",
				__func__, check_state, PT_MAPPED);
			WARN_ON_ONCE(check_state != FREE_PT_ISOLATED_IN_PROGRESS);
			ret = -EAGAIN;
			goto page_state_change_out;
		}
	}

	ret = mmu_get_pgd_at_level(kbdev, mmut, vpfn, level, &pgd);
	if (ret) {
		dev_err(kbdev->dev, "%s: failed to find PGD for old page.", __func__);
		goto get_pgd_at_level_error;
	}

	pgd_page = kbase_kmap(phys_to_page(pgd));
	if (!pgd_page) {
		dev_warn(kbdev->dev, "%s: kmap failure for PGD page.", __func__);
		ret = -EINVAL;
		goto pgd_page_map_error;
	}

	mutex_lock(&kbdev->mmu_hw_mutex);

	/* Lock MMU region and flush GPU cache by using GPU control,
	 * in order to keep MMU region locked.
	 */
	spin_lock_irqsave(&kbdev->hwaccess_lock, hwaccess_flags);
	if (unlikely(!kbase_pm_l2_allow_mmu_page_migration(kbdev))) {
		/* Defer the migration as L2 is in a transitional phase */
		spin_unlock_irqrestore(&kbdev->hwaccess_lock, hwaccess_flags);
		mutex_unlock(&kbdev->mmu_hw_mutex);
		dev_dbg(kbdev->dev, "%s: L2 in transtion, abort PGD page migration", __func__);
		ret = -EAGAIN;
		goto l2_state_defer_out;
	}
	/* Prevent transitional phases in L2 by starting the transaction */
	mmu_page_migration_transaction_begin(kbdev);
	if (kbdev->pm.backend.gpu_ready && mmut->kctx->as_nr >= 0) {
		int as_nr = mmut->kctx->as_nr;
		struct kbase_as *as = &kbdev->as[as_nr];

		ret = kbase_mmu_hw_do_lock(kbdev, as, &op_param);
		if (!ret) {
				ret = kbase_gpu_cache_flush_and_busy_wait(
					kbdev, GPU_COMMAND_CACHE_CLN_INV_L2_LSC);
		}
		if (ret)
			mmu_page_migration_transaction_end(kbdev);
	}
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, hwaccess_flags);

	if (ret < 0) {
		mutex_unlock(&kbdev->mmu_hw_mutex);
		dev_err(kbdev->dev, "%s: failed to lock MMU region or flush GPU cache", __func__);
		goto undo_mappings;
	}

	/* Copy memory content.
	 *
	 * It is necessary to claim the ownership of the DMA buffer for the old
	 * page before performing the copy, to make sure of reading a consistent
	 * version of its content, before copying. After the copy, ownership of
	 * the DMA buffer for the new page is given to the GPU in order to make
	 * the content visible to potential GPU access that may happen as soon as
	 * this function releases the lock on the MMU region.
	 */
	dma_sync_single_for_cpu(kbdev->dev, old_dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
	memcpy(new_page, old_page, PAGE_SIZE);
	dma_sync_single_for_device(kbdev->dev, new_dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);

	/* Remap GPU virtual page.
	 *
	 * This code rests on the assumption that page migration is only enabled
	 * for 4 kB pages, that necessarily live in the bottom level of the MMU
	 * page table. For this reason, the PGD level tells us inequivocably
	 * whether the page being migrated is a "content page" or another PGD
	 * of the page table:
	 *
	 * - Bottom level implies ATE (Address Translation Entry)
	 * - Any other level implies PTE (Page Table Entry)
	 *
	 * The current implementation doesn't handle the case of a level 0 PGD,
	 * that is: the root PGD of the page table.
	 */
	target = &pgd_page[index];

	/* Certain entries of a page table page encode the count of valid entries
	 * present in that page. So need to save & restore the count information
	 * when updating the PTE/ATE to point to the new page.
	 */
	num_of_valid_entries = kbdev->mmu_mode->get_num_valid_entries(pgd_page);

	if (level == MIDGARD_MMU_BOTTOMLEVEL) {
		WARN_ON_ONCE((*target & 1UL) == 0);
		*target =
			kbase_mmu_create_ate(kbdev, new_phys, page_md->data.mapped.reg->flags,
					     level, page_md->data.mapped.reg->gpu_alloc->group_id);
	} else {
		u64 managed_pte;

#ifdef CONFIG_MALI_DEBUG
		/* The PTE should be pointing to the page being migrated */
		WARN_ON_ONCE(as_phys_addr_t(old_phys) != kbdev->mmu_mode->pte_to_phy_addr(
			kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
				kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, pgd_page[index])));
#endif
		kbdev->mmu_mode->entry_set_pte(&managed_pte, as_phys_addr_t(new_phys));
		*target = kbdev->mgm_dev->ops.mgm_update_gpu_pte(
			kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, managed_pte);
	}

	kbdev->mmu_mode->set_num_valid_entries(pgd_page, num_of_valid_entries);

	/* This function always updates a single entry inside an existing PGD,
	 * therefore cache maintenance is necessary and affects a single entry.
	 */
	kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (index * sizeof(u64)),
			   kbase_dma_addr(phys_to_page(pgd)) + (index * sizeof(u64)), sizeof(u64),
			   KBASE_MMU_OP_FLUSH_PT);

	/* Unlock MMU region.
	 *
	 * Notice that GPUs which don't issue flush commands via GPU control
	 * still need an additional GPU cache flush here, this time only
	 * for the page table, because the function call above to sync PGDs
	 * won't have any effect on them.
	 */
	spin_lock_irqsave(&kbdev->hwaccess_lock, hwaccess_flags);
	if (kbdev->pm.backend.gpu_ready && mmut->kctx->as_nr >= 0) {
		int as_nr = mmut->kctx->as_nr;
		struct kbase_as *as = &kbdev->as[as_nr];

		if (mmu_flush_cache_on_gpu_ctrl(kbdev)) {
			ret = kbase_mmu_hw_do_unlock(kbdev, as, &op_param);
		} else {
			ret = kbase_gpu_cache_flush_and_busy_wait(kbdev,
								  GPU_COMMAND_CACHE_CLN_INV_L2);
			if (!ret)
				ret = kbase_mmu_hw_do_unlock_no_addr(kbdev, as, &op_param);
		}
	}
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, hwaccess_flags);
	/* Releasing locks before checking the migration transaction error state */
	mutex_unlock(&kbdev->mmu_hw_mutex);

	spin_lock_irqsave(&kbdev->hwaccess_lock, hwaccess_flags);
	/* Release the transition prevention in L2 by ending the transaction */
	mmu_page_migration_transaction_end(kbdev);
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, hwaccess_flags);

	/* Checking the final migration transaction error state */
	if (ret < 0) {
		dev_err(kbdev->dev, "%s: failed to unlock MMU region.", __func__);
		goto undo_mappings;
	}

	/* Undertaking metadata transfer, while we are holding the mmu_lock */
	spin_lock(&page_md->migrate_lock);
	if (level == MIDGARD_MMU_BOTTOMLEVEL) {
		size_t page_array_index =
			page_md->data.mapped.vpfn - page_md->data.mapped.reg->start_pfn;

		WARN_ON(PAGE_STATUS_GET(page_md->status) != ALLOCATED_MAPPED);

		/* Replace page in array of pages of the physical allocation. */
		page_md->data.mapped.reg->gpu_alloc->pages[page_array_index] = new_phys;
	}
	/* Update the new page dma_addr with the transferred metadata from the old_page */
	page_md->dma_addr = new_dma_addr;
	page_md->status = PAGE_ISOLATE_SET(page_md->status, 0);
	spin_unlock(&page_md->migrate_lock);
	set_page_private(as_page(new_phys), (unsigned long)page_md);
	/* Old page metatdata pointer cleared as it now owned by the new page */
	set_page_private(as_page(old_phys), 0);

l2_state_defer_out:
	kbase_kunmap(phys_to_page(pgd), pgd_page);
pgd_page_map_error:
get_pgd_at_level_error:
page_state_change_out:
	rt_mutex_unlock(&mmut->mmu_lock);

	kbase_kunmap(as_page(new_phys), new_page);
new_page_map_error:
	kbase_kunmap(as_page(old_phys), old_page);
old_page_map_error:
	return ret;

undo_mappings:
	/* Unlock the MMU table and undo mappings. */
	rt_mutex_unlock(&mmut->mmu_lock);
	kbase_kunmap(phys_to_page(pgd), pgd_page);
	kbase_kunmap(as_page(new_phys), new_page);
	kbase_kunmap(as_page(old_phys), old_page);

	return ret;
}

static void mmu_teardown_level(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
			       phys_addr_t pgd, unsigned int level)
{
	u64 *pgd_page;
	int i;
	struct memory_group_manager_device *mgm_dev = kbdev->mgm_dev;
	struct kbase_mmu_mode const *mmu_mode = kbdev->mmu_mode;
	u64 *pgd_page_buffer = NULL;
	struct page *p = phys_to_page(pgd);

	lockdep_assert_held(&mmut->mmu_lock);

	pgd_page = kbase_kmap_atomic(p);
	/* kmap_atomic should NEVER fail. */
	if (WARN_ON_ONCE(pgd_page == NULL))
		return;
	if (level < MIDGARD_MMU_BOTTOMLEVEL) {
		/* Copy the page to our preallocated buffer so that we can minimize
		 * kmap_atomic usage
		 */
		pgd_page_buffer = mmut->scratch_mem.teardown_pages.levels[level];
		memcpy(pgd_page_buffer, pgd_page, PAGE_SIZE);
	}

	/* When page migration is enabled, kbase_region_tracker_term() would ensure
	 * there are no pages left mapped on the GPU for a context. Hence the count
	 * of valid entries is expected to be zero here.
	 */
	if (kbase_is_page_migration_enabled() && mmut->kctx)
		WARN_ON_ONCE(kbdev->mmu_mode->get_num_valid_entries(pgd_page));
	/* Invalidate page after copying */
	mmu_mode->entries_invalidate(pgd_page, KBASE_MMU_PAGE_ENTRIES);
	kbase_kunmap_atomic(pgd_page);
	pgd_page = pgd_page_buffer;

	if (level < MIDGARD_MMU_BOTTOMLEVEL) {
		for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
			if (mmu_mode->pte_is_valid(pgd_page[i], level)) {
				phys_addr_t target_pgd = mmu_mode->pte_to_phy_addr(
					mgm_dev->ops.mgm_pte_to_original_pte(mgm_dev,
									     MGM_DEFAULT_PTE_GROUP,
									     level, pgd_page[i]));

				mmu_teardown_level(kbdev, mmut, target_pgd, level + 1);
			}
		}
	}

	kbase_mmu_free_pgd(kbdev, mmut, pgd);
}

static void kbase_mmu_mark_non_movable(struct page *page)
{
	struct kbase_page_metadata *page_md;

	if (!kbase_is_page_migration_enabled())
		return;

	page_md = kbase_page_private(page);

	spin_lock(&page_md->migrate_lock);
	page_md->status = PAGE_STATUS_SET(page_md->status, NOT_MOVABLE);

	if (IS_PAGE_MOVABLE(page_md->status))
		page_md->status = PAGE_MOVABLE_CLEAR(page_md->status);

	spin_unlock(&page_md->migrate_lock);
}

int kbase_mmu_init(struct kbase_device *const kbdev,
	struct kbase_mmu_table *const mmut, struct kbase_context *const kctx,
	int const group_id)
{
	if (WARN_ON(group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) ||
	    WARN_ON(group_id < 0))
		return -EINVAL;

	compiletime_assert(KBASE_MEM_ALLOC_MAX_SIZE <= (((8ull << 30) >> PAGE_SHIFT)),
			   "List of free PGDs may not be large enough.");
	compiletime_assert(MAX_PAGES_FOR_FREE_PGDS >= MIDGARD_MMU_BOTTOMLEVEL,
			   "Array of MMU levels is not large enough.");

	mmut->group_id = group_id;
	rt_mutex_init(&mmut->mmu_lock);
	mmut->kctx = kctx;
	mmut->pgd = KBASE_MMU_INVALID_PGD_ADDRESS;

	/* We allocate pages into the kbdev memory pool, then
	 * kbase_mmu_alloc_pgd will allocate out of that pool. This is done to
	 * avoid allocations from the kernel happening with the lock held.
	 */
	while (mmut->pgd == KBASE_MMU_INVALID_PGD_ADDRESS) {
		int err;

		err = kbase_mem_pool_grow(
			&kbdev->mem_pools.small[mmut->group_id],
			MIDGARD_MMU_BOTTOMLEVEL, kctx ? kctx->task : NULL);
		if (err) {
			kbase_mmu_term(kbdev, mmut);
			return -ENOMEM;
		}

		mmut->pgd = kbase_mmu_alloc_pgd(kbdev, mmut);
	}

	kbase_mmu_mark_non_movable(pfn_to_page(PFN_DOWN(mmut->pgd)));
	return 0;
}

void kbase_mmu_term(struct kbase_device *kbdev, struct kbase_mmu_table *mmut)
{
	WARN((mmut->kctx) && (mmut->kctx->as_nr != KBASEP_AS_NR_INVALID),
	     "kctx-%d_%d must first be scheduled out to flush GPU caches+tlbs before tearing down MMU tables",
	     mmut->kctx->tgid, mmut->kctx->id);

	if (mmut->pgd != KBASE_MMU_INVALID_PGD_ADDRESS) {
		rt_mutex_lock(&mmut->mmu_lock);
		mmu_teardown_level(kbdev, mmut, mmut->pgd, MIDGARD_MMU_TOPLEVEL);
		rt_mutex_unlock(&mmut->mmu_lock);

		if (mmut->kctx)
			KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, mmut->kctx->id, 0);
	}
}

void kbase_mmu_as_term(struct kbase_device *kbdev, unsigned int i)
{
	destroy_workqueue(kbdev->as[i].pf_wq);
}

void kbase_mmu_flush_pa_range(struct kbase_device *kbdev, struct kbase_context *kctx,
			      phys_addr_t phys, size_t size,
			      enum kbase_mmu_op_type flush_op)
{
#if MALI_USE_CSF
	unsigned long irq_flags;

	spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
	if (mmu_flush_cache_on_gpu_ctrl(kbdev) && (flush_op != KBASE_MMU_OP_NONE) &&
	    kbdev->pm.backend.gpu_ready && (!kctx || kctx->as_nr >= 0))
		mmu_flush_pa_range(kbdev, phys, size, KBASE_MMU_OP_FLUSH_PT);
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
#endif
}

#ifdef CONFIG_MALI_VECTOR_DUMP
static size_t kbasep_mmu_dump_level(struct kbase_context *kctx, phys_addr_t pgd,
		int level, char ** const buffer, size_t *size_left)
{
	phys_addr_t target_pgd;
	u64 *pgd_page;
	int i;
	size_t size = KBASE_MMU_PAGE_ENTRIES * sizeof(u64) + sizeof(u64);
	size_t dump_size;
	struct kbase_device *kbdev;
	struct kbase_mmu_mode const *mmu_mode;

	if (WARN_ON(kctx == NULL))
		return 0;
	lockdep_assert_held(&kctx->mmu.mmu_lock);

	kbdev = kctx->kbdev;
	mmu_mode = kbdev->mmu_mode;

	pgd_page = kbase_kmap(pfn_to_page(PFN_DOWN(pgd)));
	if (!pgd_page) {
		dev_warn(kbdev->dev, "%s: kmap failure", __func__);
		return 0;
	}

	if (*size_left >= size) {
		/* A modified physical address that contains
		 * the page table level
		 */
		u64 m_pgd = pgd | level;

		/* Put the modified physical address in the output buffer */
		memcpy(*buffer, &m_pgd, sizeof(m_pgd));
		*buffer += sizeof(m_pgd);

		/* Followed by the page table itself */
		memcpy(*buffer, pgd_page, sizeof(u64) * KBASE_MMU_PAGE_ENTRIES);
		*buffer += sizeof(u64) * KBASE_MMU_PAGE_ENTRIES;

		*size_left -= size;
	}

	if (level < MIDGARD_MMU_BOTTOMLEVEL) {
		for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
			if (mmu_mode->pte_is_valid(pgd_page[i], level)) {
				target_pgd = mmu_mode->pte_to_phy_addr(
					kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
						kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP,
						level, pgd_page[i]));

				dump_size = kbasep_mmu_dump_level(kctx,
						target_pgd, level + 1,
						buffer, size_left);
				if (!dump_size) {
					kbase_kunmap(pfn_to_page(PFN_DOWN(pgd)), pgd_page);
					return 0;
				}
				size += dump_size;
			}
		}
	}

	kbase_kunmap(pfn_to_page(PFN_DOWN(pgd)), pgd_page);

	return size;
}

void *kbase_mmu_dump(struct kbase_context *kctx, int nr_pages)
{
	void *kaddr;
	size_t size_left;

	KBASE_DEBUG_ASSERT(kctx);

	if (nr_pages == 0) {
		/* can't dump in a 0 sized buffer, early out */
		return NULL;
	}

	size_left = nr_pages * PAGE_SIZE;

	if (WARN_ON(size_left == 0))
		return NULL;
	kaddr = vmalloc_user(size_left);

	rt_mutex_lock(&kctx->mmu.mmu_lock);

	if (kaddr) {
		u64 end_marker = 0xFFULL;
		char *buffer;
		char *mmu_dump_buffer;
		u64 config[3];
		size_t dump_size, size = 0;
		struct kbase_mmu_setup as_setup;

		buffer = (char *)kaddr;
		mmu_dump_buffer = buffer;

		kctx->kbdev->mmu_mode->get_as_setup(&kctx->mmu,
				&as_setup);
		config[0] = as_setup.transtab;
		config[1] = as_setup.memattr;
		config[2] = as_setup.transcfg;
		memcpy(buffer, &config, sizeof(config));
		mmu_dump_buffer += sizeof(config);
		size_left -= sizeof(config);
		size += sizeof(config);

		dump_size = kbasep_mmu_dump_level(kctx,
				kctx->mmu.pgd,
				MIDGARD_MMU_TOPLEVEL,
				&mmu_dump_buffer,
				&size_left);

		if (!dump_size)
			goto fail_free;

		size += dump_size;

		/* Add on the size for the end marker */
		size += sizeof(u64);

		if (size > (nr_pages * PAGE_SIZE)) {
			/* The buffer isn't big enough - free the memory and
			 * return failure
			 */
			goto fail_free;
		}

		/* Add the end marker */
		memcpy(mmu_dump_buffer, &end_marker, sizeof(u64));
	}

	rt_mutex_unlock(&kctx->mmu.mmu_lock);
	return kaddr;

fail_free:
	vfree(kaddr);
	rt_mutex_unlock(&kctx->mmu.mmu_lock);
	return NULL;
}
KBASE_EXPORT_TEST_API(kbase_mmu_dump);
#endif /* CONFIG_MALI_VECTOR_DUMP */

void kbase_mmu_bus_fault_worker(struct work_struct *data)
{
	struct kbase_as *faulting_as;
	int as_no;
	struct kbase_context *kctx;
	struct kbase_device *kbdev;
	struct kbase_fault *fault;

	faulting_as = container_of(data, struct kbase_as, work_busfault);
	fault = &faulting_as->bf_data;

	/* Ensure that any pending page fault worker has completed */
	flush_work(&faulting_as->work_pagefault);

	as_no = faulting_as->number;

	kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);

	/* Grab the context, already refcounted in kbase_mmu_interrupt() on
	 * flagging of the bus-fault. Therefore, it cannot be scheduled out of
	 * this AS until we explicitly release it
	 */
	kctx = kbase_ctx_sched_as_to_ctx(kbdev, as_no);
	if (!kctx) {
		atomic_dec(&kbdev->faults_pending);
		return;
	}

#ifdef CONFIG_MALI_ARBITER_SUPPORT
	/* check if we still have GPU */
	if (unlikely(kbase_is_gpu_removed(kbdev))) {
		dev_dbg(kbdev->dev, "%s: GPU has been removed", __func__);
		release_ctx(kbdev, kctx);
		atomic_dec(&kbdev->faults_pending);
		return;
	}
#endif

	if (unlikely(fault->protected_mode)) {
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Permission failure", fault);
		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
		release_ctx(kbdev, kctx);
		atomic_dec(&kbdev->faults_pending);
		return;

	}

#if MALI_USE_CSF
	/* Before the GPU power off, wait is done for the completion of
	 * in-flight MMU fault work items. So GPU is expected to remain
	 * powered up whilst the bus fault handling is being done.
	 */
	kbase_gpu_report_bus_fault_and_kill(kctx, faulting_as, fault);
#else
	/* NOTE: If GPU already powered off for suspend,
	 * we don't need to switch to unmapped
	 */
	if (!kbase_pm_context_active_handle_suspend(kbdev,
				KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
		kbase_gpu_report_bus_fault_and_kill(kctx, faulting_as, fault);
		kbase_pm_context_idle(kbdev);
	}
#endif

	release_ctx(kbdev, kctx);

	atomic_dec(&kbdev->faults_pending);
}

void kbase_flush_mmu_wqs(struct kbase_device *kbdev)
{
	int i;

	for (i = 0; i < kbdev->nr_hw_address_spaces; i++) {
		struct kbase_as *as = &kbdev->as[i];

		flush_workqueue(as->pf_wq);
	}
}