summaryrefslogtreecommitdiff
path: root/dvalin/kernel/drivers/gpu/arm/midgard/mmu/mali_kbase_mmu_hw_direct.c
blob: f22e73e07398300b847c04997042c4bf62a7d478 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
 *
 * (C) COPYRIGHT 2014-2019 ARM Limited. All rights reserved.
 *
 * This program is free software and is provided to you under the terms of the
 * GNU General Public License version 2 as published by the Free Software
 * Foundation, and any use by you of this program is subject to the terms
 * of such GNU licence.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
 *
 * SPDX-License-Identifier: GPL-2.0
 *
 */

#include <linux/bitops.h>
#include <mali_kbase.h>
#include <mali_kbase_mem.h>
#include <mmu/mali_kbase_mmu_hw.h>
#include <tl/mali_kbase_tracepoints.h>
#include <backend/gpu/mali_kbase_device_internal.h>
#include <mali_kbase_as_fault_debugfs.h>

/**
 * lock_region() - Generate lockaddr to lock memory region in MMU
 * @pfn:       Starting page frame number of the region to lock
 * @num_pages: Number of pages to lock. It must be greater than 0.
 * @lockaddr:  Address and size of memory region to lock
 *
 * The lockaddr value is a combination of the starting address and
 * the size of the region that encompasses all the memory pages to lock.
 *
 * The size is expressed as a logarithm: it is represented in a way
 * that is compatible with the HW specification and it also determines
 * how many of the lowest bits of the address are cleared.
 *
 * Return: 0 if success, or an error code on failure.
 */
static int lock_region(u64 pfn, u32 num_pages, u64 *lockaddr)
{
	const u64 lockaddr_base = pfn << PAGE_SHIFT;
	u64 lockaddr_size_log2, region_frame_number_start,
		region_frame_number_end;

	if (num_pages == 0)
		return -EINVAL;

	/* The size is expressed as a logarithm and should take into account
	 * the possibility that some pages might spill into the next region.
	 */
	lockaddr_size_log2 = fls(num_pages) + PAGE_SHIFT - 1;

	/* Round up if the number of pages is not a power of 2. */
	if (num_pages != ((u32)1 << (lockaddr_size_log2 - PAGE_SHIFT)))
		lockaddr_size_log2 += 1;

	/* Round up if some memory pages spill into the next region. */
	region_frame_number_start = pfn >> (lockaddr_size_log2 - PAGE_SHIFT);
	region_frame_number_end =
	    (pfn + num_pages - 1) >> (lockaddr_size_log2 - PAGE_SHIFT);

	if (region_frame_number_start < region_frame_number_end)
		lockaddr_size_log2 += 1;

	/* Represent the size according to the HW specification. */
	lockaddr_size_log2 = MAX(lockaddr_size_log2,
		KBASE_LOCK_REGION_MIN_SIZE_LOG2);

	if (lockaddr_size_log2 > KBASE_LOCK_REGION_MAX_SIZE_LOG2)
		return -EINVAL;

	/* The lowest bits are cleared and then set to size - 1 to represent
	 * the size in a way that is compatible with the HW specification.
	 */
	*lockaddr = lockaddr_base & ~((1ull << lockaddr_size_log2) - 1);
	*lockaddr |= lockaddr_size_log2 - 1;

	return 0;
}

static int wait_ready(struct kbase_device *kbdev,
		unsigned int as_nr)
{
	unsigned int max_loops = KBASE_AS_INACTIVE_MAX_LOOPS;
	u32 val = kbase_reg_read(kbdev, MMU_AS_REG(as_nr, AS_STATUS));

	/* Wait for the MMU status to indicate there is no active command, in
	 * case one is pending. Do not log remaining register accesses.
	 */
	while (--max_loops && (val & AS_STATUS_AS_ACTIVE))
		val = kbase_reg_read(kbdev, MMU_AS_REG(as_nr, AS_STATUS));

	if (max_loops == 0) {
		dev_err(kbdev->dev, "AS_ACTIVE bit stuck, might be caused by slow/unstable GPU clock or possible faulty FPGA connector\n");
		return -1;
	}

	/* If waiting in loop was performed, log last read value. */
	if (KBASE_AS_INACTIVE_MAX_LOOPS - 1 > max_loops)
		kbase_reg_read(kbdev, MMU_AS_REG(as_nr, AS_STATUS));

	return 0;
}

static int write_cmd(struct kbase_device *kbdev, int as_nr, u32 cmd)
{
	int status;

	/* write AS_COMMAND when MMU is ready to accept another command */
	status = wait_ready(kbdev, as_nr);
	if (status == 0)
		kbase_reg_write(kbdev, MMU_AS_REG(as_nr, AS_COMMAND), cmd);

	return status;
}

void kbase_mmu_hw_configure(struct kbase_device *kbdev, struct kbase_as *as)
{
	struct kbase_mmu_setup *current_setup = &as->current_setup;
	u64 transcfg = 0;

	if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU)) {
		transcfg = current_setup->transcfg;

		/* Set flag AS_TRANSCFG_PTW_MEMATTR_WRITE_BACK
		 * Clear PTW_MEMATTR bits
		 */
		transcfg &= ~AS_TRANSCFG_PTW_MEMATTR_MASK;
		/* Enable correct PTW_MEMATTR bits */
		transcfg |= AS_TRANSCFG_PTW_MEMATTR_WRITE_BACK;
		/* Ensure page-tables reads use read-allocate cache-policy in
		 * the L2
		 */
		transcfg |= AS_TRANSCFG_R_ALLOCATE;

		if (kbdev->system_coherency == COHERENCY_ACE) {
			/* Set flag AS_TRANSCFG_PTW_SH_OS (outer shareable)
			 * Clear PTW_SH bits
			 */
			transcfg = (transcfg & ~AS_TRANSCFG_PTW_SH_MASK);
			/* Enable correct PTW_SH bits */
			transcfg = (transcfg | AS_TRANSCFG_PTW_SH_OS);
		}

		kbase_reg_write(kbdev, MMU_AS_REG(as->number, AS_TRANSCFG_LO),
				transcfg);
		kbase_reg_write(kbdev, MMU_AS_REG(as->number, AS_TRANSCFG_HI),
				(transcfg >> 32) & 0xFFFFFFFFUL);
	} else {
		if (kbdev->system_coherency == COHERENCY_ACE)
			current_setup->transtab |= AS_TRANSTAB_LPAE_SHARE_OUTER;
	}

	kbase_reg_write(kbdev, MMU_AS_REG(as->number, AS_TRANSTAB_LO),
			current_setup->transtab & 0xFFFFFFFFUL);
	kbase_reg_write(kbdev, MMU_AS_REG(as->number, AS_TRANSTAB_HI),
			(current_setup->transtab >> 32) & 0xFFFFFFFFUL);

	kbase_reg_write(kbdev, MMU_AS_REG(as->number, AS_MEMATTR_LO),
			current_setup->memattr & 0xFFFFFFFFUL);
	kbase_reg_write(kbdev, MMU_AS_REG(as->number, AS_MEMATTR_HI),
			(current_setup->memattr >> 32) & 0xFFFFFFFFUL);

	KBASE_TLSTREAM_TL_ATTRIB_AS_CONFIG(kbdev, as,
			current_setup->transtab,
			current_setup->memattr,
			transcfg);

	write_cmd(kbdev, as->number, AS_COMMAND_UPDATE);
}

int kbase_mmu_hw_do_operation(struct kbase_device *kbdev, struct kbase_as *as,
		u64 vpfn, u32 nr, u32 op,
		unsigned int handling_irq)
{
	int ret;

	lockdep_assert_held(&kbdev->mmu_hw_mutex);

	if (op == AS_COMMAND_UNLOCK) {
		/* Unlock doesn't require a lock first */
		ret = write_cmd(kbdev, as->number, AS_COMMAND_UNLOCK);
	} else {
		u64 lock_addr;

		ret = lock_region(vpfn, nr, &lock_addr);

		if (!ret) {
			/* Lock the region that needs to be updated */
			kbase_reg_write(kbdev,
				MMU_AS_REG(as->number, AS_LOCKADDR_LO),
				lock_addr & 0xFFFFFFFFUL);
			kbase_reg_write(kbdev,
				MMU_AS_REG(as->number, AS_LOCKADDR_HI),
				(lock_addr >> 32) & 0xFFFFFFFFUL);
			write_cmd(kbdev, as->number, AS_COMMAND_LOCK);

			/* Run the MMU operation */
			write_cmd(kbdev, as->number, op);

			/* Wait for the flush to complete */
			ret = wait_ready(kbdev, as->number);
		}
	}

	return ret;
}

void kbase_mmu_hw_clear_fault(struct kbase_device *kbdev, struct kbase_as *as,
		enum kbase_mmu_fault_type type)
{
	unsigned long flags;
	u32 pf_bf_mask;

	spin_lock_irqsave(&kbdev->mmu_mask_change, flags);

	/*
	 * A reset is in-flight and we're flushing the IRQ + bottom half
	 * so don't update anything as it could race with the reset code.
	 */
	if (kbdev->irq_reset_flush)
		goto unlock;

	/* Clear the page (and bus fault IRQ as well in case one occurred) */
	pf_bf_mask = MMU_PAGE_FAULT(as->number);
	if (type == KBASE_MMU_FAULT_TYPE_BUS ||
			type == KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED)
		pf_bf_mask |= MMU_BUS_ERROR(as->number);

	kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_CLEAR), pf_bf_mask);

unlock:
	spin_unlock_irqrestore(&kbdev->mmu_mask_change, flags);
}

void kbase_mmu_hw_enable_fault(struct kbase_device *kbdev, struct kbase_as *as,
		enum kbase_mmu_fault_type type)
{
	unsigned long flags;
	u32 irq_mask;

	/* Enable the page fault IRQ
	 * (and bus fault IRQ as well in case one occurred)
	 */
	spin_lock_irqsave(&kbdev->mmu_mask_change, flags);

	/*
	 * A reset is in-flight and we're flushing the IRQ + bottom half
	 * so don't update anything as it could race with the reset code.
	 */
	if (kbdev->irq_reset_flush)
		goto unlock;

	irq_mask = kbase_reg_read(kbdev, MMU_REG(MMU_IRQ_MASK)) |
			MMU_PAGE_FAULT(as->number);

	if (type == KBASE_MMU_FAULT_TYPE_BUS ||
			type == KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED)
		irq_mask |= MMU_BUS_ERROR(as->number);

	kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_MASK), irq_mask);

unlock:
	spin_unlock_irqrestore(&kbdev->mmu_mask_change, flags);
}