summaryrefslogtreecommitdiff
path: root/USB_Host_Shield/examples/board_test/board_test.pde
blob: 1188fbf8e71511b86bff0513d1a25282b623a26c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/* USB Host Shield Board test routine. Runs after assembly to check board functionality */

/* USB related */
//#include <Spi.h>
#include <Max3421e.h>
#include <Max3421e_constants.h>
#include <Usb.h>

#include "board_test.h" /* Board test messages */

//#define MAX_SS 10

void setup();
void loop();

MAX3421E Max;
USB Usb;

void setup()
{
  Serial.begin( 115200 );
  //Serial.println("Start");
  //Serial.println( SCK_PIN, DEC );
  Max.powerOn();
  printProgStr( startBanner );
  printProgStr( anykey_msg );
  //Serial.print( Max.getvar(), DEC);
}

void loop()
{
  while( Serial.available() == 0 );  //wait for input
  Serial.read();                     //empty input buffer
  /* start tests */
  /* SPI short test */
  if (!revregcheck()) test_halted();
  /* GPIO test */
  if (!gpiocheck()) printProgStr(PSTR("\r\nGPIO check failed. Make sure GPIO loopback adapter is installed"));
  /* SPI long test */
  if (!spitest()) test_halted();      //test SPI for transmission errors
  if (!osctest()) printProgStr(PSTR("OSCOK test failed. Check the oscillator"));
  if (!usbtest()) printProgStr(PSTR("USB connection test failed. Check traces from USB connector to MAX3421E, as well as VBUS"));  //never gets here
    /* All tests passed */
  printProgStr( anykey_msg );
}

/* SPI short test. Checks connectivity to MAX3421E by reading REVISION register. */
/* Die rev.1 returns 0x01, rev.2 0x12, rev.3 0x13. Any other value is considered communication error */
bool revregcheck()
{
  byte tmpbyte;
  printProgStr(PSTR("\r\nReading REVISION register...Die revision "));
  tmpbyte = Max.regRd( rREVISION );
  switch( tmpbyte ) {
    case( 0x01 ):  //rev.01
      printProgStr(PSTR("01"));
      break;  
    case( 0x12 ):  //rev.02
      printProgStr(PSTR("02"));
      break;
    case( 0x13 ):  //rev.03
      printProgStr(PSTR("03"));
      break;
    default:
      printProgStr(PSTR("invalid. Value returned: "));
      print_hex( tmpbyte, 8 );
      printProgStr( testfailed_msg );
      return( false );
      break;
  }//switch( tmpbyte )...
  printProgStr( testpassed_msg );
  return( true );
}
/* SPI long test */
bool spitest()
{
  byte l = 0;
  byte k = 0;
  byte gpinpol_copy = Max.regRd( rGPINPOL );
  printProgStr(PSTR("\r\nSPI test. Each  '.' indicates 64K transferred. Stops after transferring 1MB (16 dots)\r\n"));
  /**/
  for( byte j = 0; j < 16; j++ ) {
    for( word i = 0; i < 65535; i++ ) {
      Max.regWr( rGPINPOL, k );
      l = Max.regRd( rGPINPOL);
      if( l != k ) {
        printProgStr( spitest_fail_msg );
        print_hex( k, 8);
        printProgStr(PSTR("Value read: "));
        print_hex( l, 8 );
        return( false );                  //test failed
      }
      k++;
    }//for( i = 0; i < 65535; i++
    Serial.print(".");
  }//for j = 0; j < 16...
  Max.regWr( rGPINPOL, gpinpol_copy );
  printProgStr(testpassed_msg);
  return( true );
}
/* Oscillator test */
bool osctest()
{
  printProgStr(PSTR("\r\nOscillator start/stop test."));
  printProgStr( osctest_oscstate_msg );
  check_OSCOKIRQ();                          //print OSCOK state
  printProgStr(PSTR("\r\nSetting CHIP RESET."));
  Max.regWr( rUSBCTL, bmCHIPRES );              //Chip reset. This stops the oscillator
  printProgStr( osctest_oscstate_msg );
  check_OSCOKIRQ();  //print OSCOK state
  printProgStr(PSTR("\r\nClearing CHIP RESET. "));
  Max.regWr( rUSBCTL, 0x00 );                //Chip reset release
  for( word i = 0; i < 65535; i++) {
    if( Max.regRd( rUSBIRQ ) & bmOSCOKIRQ ) {
      printProgStr(PSTR("PLL is stable. Time to stabilize - "));
      Serial.print( i, DEC );
      printProgStr(PSTR(" cycles"));
      printProgStr( testpassed_msg );
      return( true );
    }
  }//for i = 
  return(false);
}
/* Stop/start oscillator */
void check_OSCOKIRQ()
{
  if( Max.regRd( rUSBIRQ ) & bmOSCOKIRQ ) {  //checking oscillator state
    printProgStr(PSTR("ON"));
  }
  else {
    printProgStr(PSTR("OFF"));
  }
}
/* Test USB connectivity */
bool usbtest()
{
  byte rcode;
  byte usbstate;
    Max.powerOn();
    delay( 200 );
    printProgStr(PSTR("\r\nUSB Connectivity test. Waiting for device connection... "));
    while( 1 ) {
      delay( 200 );
      Max.Task();
      Usb.Task();
      usbstate = Usb.getUsbTaskState();
      switch( usbstate ) {
        case( USB_ATTACHED_SUBSTATE_RESET_DEVICE ):
          printProgStr(PSTR("\r\nDevice connected. Resetting"));
          break;
        case( USB_ATTACHED_SUBSTATE_WAIT_SOF ): 
          printProgStr(PSTR("\r\nReset complete. Waiting for the first SOF..."));
          //delay( 1000 );
          break;  
        case( USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE ):
          printProgStr(PSTR("\r\nSOF generation started. Enumerating device."));
          break;
        case( USB_STATE_ADDRESSING ):
          printProgStr(PSTR("\r\nSetting device address"));
          //delay( 100 );
          break;
        case( USB_STATE_CONFIGURING ):
          //delay( 1000 );
          printProgStr(PSTR("\r\nGetting device descriptor"));
          rcode = getdevdescr( 1 );
            if( rcode ) {
              printProgStr(PSTR("\r\nError reading device descriptor. Error code "));
              print_hex( rcode, 8 );
            }
            else {
              printProgStr(PSTR("\r\n\nAll tests passed. Press RESET to restart test")); 
              while(1);
            }
          break;
        case( USB_STATE_ERROR ):
          printProgStr(PSTR("\r\nUSB state machine reached error state"));
          break;
        default:
          break;
    }//switch
  }//while(1)
}
/* Get device descriptor */
byte getdevdescr( byte addr )
{
  USB_DEVICE_DESCRIPTOR buf;
  byte rcode;
  rcode = Usb.getDevDescr( addr, 0, 0x12, ( char *)&buf );
  if( rcode ) {
    return( rcode );
  }
  printProgStr(PSTR("\r\nDevice descriptor: "));
  printProgStr(PSTR("\r\nDescriptor Length:\t"));
  print_hex( buf.bLength, 8 );
  printProgStr(PSTR("\r\nDescriptor type:\t"));
  print_hex( buf.bDescriptorType, 8 );
  printProgStr(PSTR("\r\nUSB version:\t"));
  print_hex( buf.bcdUSB, 16 );
  printProgStr(PSTR("\r\nDevice class:\t"));
  print_hex( buf.bDeviceClass, 8 );
  printProgStr(PSTR("\r\nDevice Subclass:\t"));
  print_hex( buf.bDeviceSubClass, 8 );
  printProgStr(PSTR("\r\nDevice Protocol:\t"));
  print_hex( buf.bDeviceProtocol, 8 );
  printProgStr(PSTR("\r\nMax.packet size:\t"));
  print_hex( buf.bMaxPacketSize0, 8 );
  printProgStr(PSTR("\r\nVendor ID:\t"));
  print_hex( buf.idVendor, 16 );
  printProgStr(PSTR("\r\nProduct ID:\t"));
  print_hex( buf.idProduct, 16 );
  printProgStr(PSTR("\r\nRevision ID:\t"));
  print_hex( buf.bcdDevice, 16 );
  printProgStr(PSTR("\r\nMfg.string index:\t"));
  print_hex( buf.iManufacturer, 8 );
  printProgStr(PSTR("\r\nProd.string index:\t"));
  print_hex( buf.iProduct, 8 );
  printProgStr(PSTR("\r\nSerial number index:\t"));
  print_hex( buf.iSerialNumber, 8 );
  printProgStr(PSTR("\r\nNumber of conf.:\t"));
  print_hex( buf.bNumConfigurations, 8 );
  return( 0 );
}

/* GPIO lines check. A loopback adapter connecting GPIN to GPOUT is assumed */
bool gpiocheck()
{
 byte tmpbyte = 0;
  printProgStr(PSTR("\r\nChecking GPIO lines. Install GPIO loopback adapter and press any key to continue..."));
  while( Serial.available() == 0 );  //wait for input
  Serial.read();                     //empty input buffer  
    for( byte i = 0; i < 255; i++ ) {
      Max.gpioWr( i );
      tmpbyte = Max.gpioRd();
      if( tmpbyte != i ) {
        printProgStr(PSTR("GPIO read/write mismatch. Write: "));
        Serial.print(i, HEX);
        printProgStr(PSTR(" Read: "));
        Serial.println( tmpbyte, HEX );
        return( false );
      }//if( tmpbyte != i )
    }//for( i= 0...
    printProgStr( testpassed_msg );
    return( true );
}
/* Test halted state. Generates 0x55 to aid in SPI troubleshooting */    
void test_halted()
{
  printProgStr( test_halted_msg );
  printProgStr(PSTR("\r\nPress RESET to restart test"));
  while( 1 )  {            //System Stop. Generating pattern to keep SCLK, MISO, MOSI, SS busy
    digitalWrite(MAX_SS,LOW);
    Max.regWr( 0x55, 0x55 );
//    Spi.transfer( 0x55 ); 
    digitalWrite(MAX_SS,HIGH);
  }
}
/* given a PROGMEM string, use Serial.print() to send it out */
/* Some non-intuitive casting necessary:                           */
/* printProgStr(PSTR("Func.Mode:\t0x"));                           */
/* printProgStr((char*)pgm_read_word(&mtpopNames[(op & 0xFF)]));   */
void printProgStr(const char* str )
{
  if(!str) { 
    return;
  }
  char c;
  while((c = pgm_read_byte(str++))) {
    Serial.print(c,BYTE);
  }
}
/* prints hex numbers with leading zeroes */
// copyright, Peter H Anderson, Baltimore, MD, Nov, '07
// source: http://www.phanderson.com/arduino/arduino_display.html
void print_hex(int v, int num_places)
{
  int mask=0, n, num_nibbles, digit;

  for (n=1; n<=num_places; n++)
  {
    mask = (mask << 1) | 0x0001;
  }
  v = v & mask; // truncate v to specified number of places

  num_nibbles = num_places / 4;
  if ((num_places % 4) != 0)
  {
    ++num_nibbles;
  }

  do
  {
    digit = ((v >> (num_nibbles-1) * 4)) & 0x0f;
    Serial.print(digit, HEX);
  } 
  while(--num_nibbles);
}